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Abstract Wang and Flournoy (2012) developed estimation procedures for the
bounded log-linear regression model, an alternative to the four parameter logis-
tic model which has a bounded response with non-homogeneous variance. In the
present paper, we theoretically obtain that an optimal design that minimizes an
information based criterion consists at most five design points including the two
boundary points of the design space. The D-optimal design does not depend on the
two parameters representing the boundaries of the response but it does depend on
the variance of the error. Furthermore, if the error variance is known and bigger than
a constant, we prove that the D-optimal design is the two-point design supported at
boundary points with equal weights. Numerical examples are provided.

1 The statement of the problem

Consider the bounded log-linear regression model defined by

log
(

B−Y
Y −A

)
= a+bx+ ε, or equivalently, Y = B− B−A

1+ e−(a+bx+ε)
, (1)
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where ε ∼ N(0,σ2), a, b, σ , A and B are unknown parameters, x is a non-random
covariate, x ∈ X and Y is the response. Note that model (1) is closely related to the
four parameter logistic (4PL) model. The inferential procedure for model (1) as well
as its advantages over the 4PL model can be found in [3].

For estimating θ = (a,b,σ ,A,B) by the local maximum likelihood method, the
Fisher information matrix based on a single observation at x is

I(θ ,x) =

I11 0 I13
0 I22 I23

IT
13 IT

23 I33

 ,
where I11 =

1
σ2

[
1 x
x x2

]
, I13 =− 1

σ2(B−A)

[
1+δec 1+δe−c

(1+δec)x (1+δe−c)x

]
, I22 =

2
σ2 ,

I23 = 2δ

σ(B−A)

[
−ec, e−c], I33 =

 δ 4e2c

(B−A)2 +
1+2δec+δ 4e2c

σ2(B−A)2 − 1
(B−A)2 +

2+δec+δe−c

σ2(B−A)2

− 1
(B−A)2 +

2+δec+δe−c

σ2(B−A)2
δ 4e2c

(B−A)2 +
1+2δe−c+δ 4e−2c

σ2(B−A)2

,

c = a+bx and δ = eσ2/2; see [3] for derivation of the matrix I(θ ,x).
Denote an approximate design by ξ = {xi,wi}K

1 , where wi > 0 is the design
weight at the point xi and ∑

K
i=1 wi = 1. Under the design ξ , the average informa-

tion matrix for θ is

Mξ (θ) =
K

∑
i=1

wiI(θ ,xi). (2)

We consider optimality criteria that minimize a statistically meaningful concave
functional of this information matrix. In the rest of the paper we assume that the
design space is defined such that c = a+bx ∈ [l,u].

2 Main results

2.1 The case of unknown σ

In the following theorem we obtain an upper bound for the number of support
points of optimal designs that improves on the classical upper bound based on
Carathéorody’s theorem [1, 2].

Theorem 1. An optimal design that minimizes an information based criterion for
model (1) is supported at no more than 5 design points. In addition, the optimal
design is always supported at boundary points.

Proof. Reformulating the design problem in terms of c rather than x, we rewrite the
design as ξ = {ci,wi}K

1 . By matrix manipulation, the matrix I(θ ,x) has the form
I(θ ,c) = PθCcPT

θ
, where
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Cc =


1 c 0 ec e−c

c c2 0 cec ce−c

0 0 1
2σ2 ec −e−c

ec cec ec (σ2 +1)δ 2e2c 1−σ2

δ 2

e−c ce−c −e−c 1−σ2

δ 2 (σ2 +1)δ 2e−2c


and

Pθ =
1
σ


1 0 0 0 0
−a
b

1
b 0 0 0

0 0 2σ 0 0
−1

B−A 0 0 −δ

B−A 0
−1

B−A 0 0 0 −δ

B−A

 .
Using notations from [5], we define Ψ1(c) = e−2c, Ψ2(c) = e−c, Ψ3(c) = ce−c,
Ψ4(c) = c, Ψ5(c) = ec, Ψ6(c) = c2, Ψ7(c) = cec and Ψ8(c) = e2c. As described in [5],
we find f1,1 =−2e−2c, f2,2 = ec/2, f3,3 = 1, f4,4 =−2ec, f5,5 = 6ec, f6,6 =−e−c/3,
f7,7 =−3ec, f8,8 = 24ec and F = ∏

8
i=1 fi,i = 288e2c > 0. Therefore, by Theorem 2

in [5], any optimal design based on the Fisher information matrix is supported at no
more than 8/2+1 = 5 points including two boundary points. �

Note that Cc is independent of the boundary parameters A and B, and Pθ does not
involve c. Thus, the D-optimal design does not depend on the boundary parameters
A and B.

Let us numerically study the sharpness of the derived upper bound. We focus on
D-optimality for all the numerical studies. Since the D-optimal design does not de-
pend on A and B, without loss of generality we define A = 0 and B = 10. We assume
that the design interval is X= [−2,2]. Suppose that a= 0 and b= 1. Straightforward
calculus gives the D-optimal designs: ξ ∗2p = {(−2,0.5),(2,0.5)} for σ = 1; ξ ∗3p =

{(−2,0.41),(0,0.18),(2,0.41)} for σ = 0.4; ξ ∗4p = {(−2,0.26),(−0.94,0.24),(0.94,
0.24),(2,0.26)} for σ = 0.1. In Figure 1 the sensitivity function d(x,ξ ∗,θ) =
tr
{

I(θ ,x)Mξ ∗(θ)
−1
}

is depicted for these three designs. Note that the D-optimality
of the computed designs is confirmed by the equivalence theorem. We have not
found cases when the D-optimal design is supported at 5 points.
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Fig. 1 The sensitivity function d(x,ξ ∗,θ) for model (1) with unknown σ in three cases. Left:
σ = 1. Middle: σ = 0.4. Right: σ = 0.1.
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Now we evaluate the asymptotic efficiency of designs ξ ∗2p, ξ ∗3p, ξ ∗4p, the uniform
design ξunif = {(−2,0.2),(−1,0.2),(0,0.2),(1,0.2),(2,0.2)} and the D-optimal de-
signs under different values of σ . Figure 2 displays the asymptotic efficiency of ξ ∗2p,
ξ ∗3p, ξ ∗4p and ξunif relative to the D-optimal design. It is seen that ξ ∗2p is optimal when
σ is large whereas ξ ∗3p and ξ ∗4p are each optimal only at one value of σ . Note that
the D-efficiency of ξunif is about 0.9 for small σ and 0.7 for large σ .
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Fig. 2 Values of {detMξ (θ)/detMξ D (θ)}1/5 the D-efficiency of design ξ for the model (1) with
unknown σ , different σ and cases when ξ is ξ ∗2p, ξ ∗3p, ξ ∗4p and ξunif, A = 0, B = 10.

For finite sample sizes, we compare the mean square error (MSE) for each param-
eter estimate under different designs by simulation. When sample sizes are small,
the MLE may not exist, see [3]. For these cases, the smallest and largest obser-
vations are used as estimators of A and B. We consider the two point design, the
uniform design and a design in which design points are randomly taken from a con-
tinuous uniform distribution on X = [−2,2]. The last we call the random design.
Table 1 presents the relative MSE (RMSE) of each parameter estimate calculated
from 1000 repetitions of the simulation. The two point design outperforms the other
two designs for most scenarios. It does not perform well for estimating σ when
σ = 0.5. The two point design is not optimal in this scenario.

2.2 The case of known σ

When σ is known, there are four unknown parameters and the matrix Cc in the

Fisher information matrix reduces to Cc =

[
Cc11 Cc12
Cc21 Σc

]
, where Cc11 =

[
1 c
c c2

]
, Cc21 =

CT
c12 = (Zc,cZc), Zc = (ec,e−c)T and Σc =

[
(σ2 +1)δ 2e2c (1−σ2)/δ 2

(1−σ2)/δ 2 (σ2 +1)δ 2e−2c

]
. Using
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Table 1 Values of MSE(eT
k θ̂ |ξ ∗2p)/MSE(eT

k θ̂ |ξ )× 100%, the relative performance of estimating
individual parameters for the model (1) with unknown σ in cases when ξ is the uniform design
and the random design of size n, k = 1, . . . ,5. “NS” is the number of cases that consistent solution
to the likelihood equation cannot be found for the given design and “NST” is the number of cases
of no consistent solution for the two point design among 1000 repetitions of simulation

Design a b σ A B NS NST

σ = 1.0
Uniform n = 20 98.5 44.6 105.2 39.8 40.8 252 263

n = 40 98.3 50.6 113.5 39.2 44.7 11 16
n = 80 96.3 53.7 117.9 45.7 43.2 0 0

Random n = 20 76.5 29.9 86.0 21.7 19.3 293 263
n = 40 74.5 31.9 89.3 22.2 21.4 10 16
n = 80 89.0 30.7 100.6 22.6 20.7 0 0

σ = 0.5
Uniform n = 20 139.3 88.4 270.6 74.6 77.0 66 175

n = 40 131.4 108.6 283.4 87.2 92.8 4 27
n = 80 120.1 114.2 249.8 90.6 101.8 0 0

Random n = 20 79.0 47.6 174.2 33.5 32.0 108 175
n = 40 83.5 55.4 181.8 40.5 43.2 16 27
n = 80 94.5 57.8 182.4 44.4 43.0 0 0

arguments from the proof of Theorem 1 we can obtain that an optimal design that
minimizes an information based criterion for this model is also supported at no more
than 5 points.

In the following theorem we explicitly derive the D-optimal design in some cases.

Theorem 2. For model (1) with known σ , there exists a constant ζ < 9 such that
if (σ2 + 1)eσ2

> ζ the D-optimal design ξ ∗ is the two-point design supported at
boundary points with equal weights.

Proof. From the extended general equivalence theorem in [4], it suffices to show
that supc∈[l,u] d(c,ξ

∗,θ) = 4. Note that

tr
{

Ic(θ)Mξ ∗(θ)
−1}=tr

{
PθCcPT

θ

(
Pθ APT

θ

)−1}
= tr

(
A−1Cc

)
,

where A = (Cl +Cu)/2, and Cl and Cu has the same form as Cc with c replaced by l
and u, respectively. Thus, we need to prove that supc∈[l,u] tr(A

−1Cc) = 4. By tedious
calculation, we have tr{(Cl−Cu)(Cl +Cu)

−1}= 0, which implies that tr(A−1Cl) =
tr(A−1Cu) = 4.

Now we will prove that tr(A−1Cc) reaches its maximum at the boundary points l
and u. By direct calculation, we obtain
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tr(A−1Cc) =2
(c− l)2 +(c−u)2

(l−u)2 + tr
(
D−1

Γc
)

+
tr
(
D−1{(u− c)(Zl−Zc)− (c− l)(Zu−Zc)}⊗2

)
(l−u)2

≤2+ tr(D−1
Γc)+ tr(D−1

κ),

where κ = {2(u− c)2(Zl − Zc)
⊗2 + 2(c− l)2(Zu − Zc)

⊗2}/(l−u)2, Γc = Σc −
ZcZT

c , D = (Γl +Γu)/2, Γl and Γu has the same form as Γc with c replaced by l
and u, respectively, and M⊗2 = MMT for any matrix M.

Note that tr(D−1κ) + tr(D−1Γc) = 2 at the boundary l or u. Consequently, we
need to show that tr(D−1κ)+ tr(D−1Γc) or equivalently tr(D∗κ)+ tr(D∗Γc) achieves
its maximum at boundary points l or u, where

D∗ =
1
2

[
φ
(
e−2l + e−2u

)
2ψ

2ψ φ
(
e2l + e2u

)]
is the co-factor matrix of D, and φ = (σ2+1)δ 2−1 and ψ = {1+δ 2−σ2}/δ 2 > 0.

By direct calculation, we have

tr(D∗κ)≤ 2φ
(u− c)2

(l−u)2 (e
2l + e2u)(e−c− e−l)2 +2φ

(c− l)2

(l−u)2 (e
−2l + e−2u)(ec− eu)2

= ∆1 +∆2

and

tr(D∗Γc) =
φ 2

2
{(e−2l + e−2u)e2c +(e2l + e2u)e−2c}−2ψ

2.

Note that if ∆i < tr(D∗Γl)/2− tr(D∗Γc)/2 for c ∈ (l,u), i = 1,2, then it follows that
tr(D∗κ)+ tr(D∗Γc) achieves its maximum at c = l. This is true because ∆i vanishes
at the two boundary points, i = 1,2.

By direct calculation, we obtain

1
2
{tr(D∗Γl)− tr(D∗Γc)}=

φ 2

4
(
e2l + e2u){1− e2(x−u)}(e−2l− e−2x). (3)

Thus, assuming φ ≥ 8, to prove that ∆1 < tr(D∗Γl)/2− tr(D∗Γc)/2, we need

(u− c)2

(l−u)2 ≤
{

1− e2(c−u)}1+ el−c

1− el−c . (4)

Note that the inequality (4) is true if {1− e2(c−u)}(1+ el−c)/(1− el−c)> 1. Other-
wise, we have 2el−c < e2(c−u)+ el+c−2u < 2e2(c−u), which implies (l +2u)/3 < c.
Thus, if u− l < 1, then by the mean value theorem we have

{
1−e2(c−u)}ec−l +1

ec−l−1
> 2(u−c)e

2(l−u)
3

2
e(c− l)

>
4(u− c)
e2(c− l)

>
1
3
(u− c)
(u− l)

>
(u− c)2

(l−u)2 .
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If u− l≥ 1, we obtain {1−e2(c−u)}(ec−l +1)/(ec−l−1)> {1−e2(c−u)}. Let h(c)=
{1−e2(c−u)}−(u− c)/{3(l−u)}. Then h′′(c) =−4e2(c−u) < 0 and, therefore, h(x)
is convex. Note that h(u) = 0 and h{(l+2u)/3}= 8/9−e2(l−u)/3≥ 8/9−e−2/3 > 0
and, thus, h(c)> 0 for c ∈ [(l +2u)/3,u]. �

Let us now investigate the dependence of the D-optimal design on σ . As pre-
viously, we suppose that A = 0, B = 10, X = [−2,2], a = 0 and b = 1. Then
we obtain the D-optimal designs: ξ ∗2p = {(−2,0.5),(2,0.5)} for σ = 1; ζ ∗3p =

{(−2,0.425),(0,0.15),(2,0.425)} for σ = 0.2; ζ ∗4p = {(−2,0.33),(−0.86,0.17),
(0.86,0.17),(2,0.33)} for σ = 0.1. In Figure 3 we depict the sensitivity function
d(x,ξ ∗,θ) for these three designs. We can observe that d(x,ξ ∗,θ)≤ 4 for all x ∈X
that proves the D-optimality. Note that the D-optimal design is the two-point design
if σ > 0.31 (for a = 0 and b = 1). The relative asymptotic efficiency graphs given
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Fig. 3 The sensitivity function d(x,ξ ∗,θ) for model (1) with known σ in three cases. Left: σ = 1.
Middle: σ = 0.2. Right: σ = 0.1.

in Figure 4 for the case of known σ are similar to the case when σ is unknown.
However, the design ξ ∗2p is D-optimal for a larger range of σ .
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Fig. 4 Values of {detMξ (θ)/detMξ D (θ)}1/4 the D-efficiency of design ξ for the model (1) with
known σ , different σ and cases when ξ is ξ ∗2p, ζ ∗3p, ζ ∗4p and ξunif, A = 0, B = 10.
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Table 2 reports finite sample comparisons. The two point design dominates the
other designs when σ = 1.0. When σ = 0.5, the uniform design provides better
accuracy for estimating only the parameter a and the two point design is preferable
for estimating the other parameters.

Table 2 Values of MSE(eT
k θ̂ |ξ ∗2p)/MSE(eT

k θ̂ |ξ )× 100%, the relative performance of estimating
individual parameters for the model (1) with known σ in cases when ξ is the uniform design and
the random design of size n, k = 1, . . . ,4. “NS” is the number of cases that consistent solution to
the likelihood equation cannot be found for the given design and “NST” is the number of cases of
no consistent solution for the two point design among 1000 repetitions of simulation

Design a b A B NS NST

σ = 1.0
Uniform n = 20 96.5 40.6 35.3 35.3 0 0

n = 40 98.6 45.2 33.7 37.3 0 0
n = 80 96.3 48.5 40.7 38.6 0 0

Random n = 20 74.2 28.5 19.6 17.6 4 0
n = 40 75.4 31.2 20.8 19.7 0 0
n = 80 90.3 30.9 21.9 21.1 0 0

σ = 0.5
Uniform n = 20 120.9 42.4 47.4 44.0 20 13

n = 40 129.0 49.0 46.2 49.1 0 1
n = 80 118.4 53.6 50.8 53.0 0 0

Random n = 20 75.0 32.0 21.9 19.3 23 13
n = 40 81.6 33.5 24.5 23.4 0 1
n = 80 94.6 34.9 27.4 26.4 0 0
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