A Selective Review on Statistical Techniques for
Big Data

Yaqiong Yao and HaiYing Wang

Abstract To meet the big data challenges, many new statistical tools have been de-
veloped in recent years. In this review, we summarize some of these approaches
to give an overview of the current state of the development. We will focus on the
case that the number of observations is much larger than the dimension of the un-
known parameters, although we will mention some investigations related to the
high-dimensional data. We will discuss methods using subsamples as well as meth-
ods processing the whole data piece-by-piece.
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1 Introduction

As the collection and storage of data becoming much cheaper than before, volumes
of available data are increasing exponentially and big data problems attract a wide
range of attentions from scientists [13]. In many disciplines, a lot of data with ex-
traordinary sizes emerge and need more advanced technologies and approaches to
analyze them, because traditional methods may fail due to large data volumes. For
big data, size is not the only concern. The difficulty of analyzing big data can be
evaluated in three aspects: volume, velocity and variety. Here, volume is the size
related to both the dimension and the number of observations; velocity is the inter-
action speed with the data; and variety means various data structures [20].

In this review, we mainly discuss the case that the number of observations far
exceeds the data dimension, and consider two challenges caused by big data. The
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one is that analyzing the entire dataset is time-consuming and the other is that the
data is too large to be held in the computer’s random access memory (RAM). To
deal with these two problems, a bunch of statistical methods have been developed:
some methods target at one of the challenges and some methods are useful to meet
both challenges.

To speed up calculation for the first challenge, one may project the massive
dataset to a lower dimensional space using some randomized transforms. This
procedure is called random projection, and existing methods often rely on the
Hadamard transform or the Johnson-Lindenstrauss transform [10, 26].

Another intuitive solution is to select a subset of the full data to analyze. This ap-
proach can be implemented through a random subsampling procedure or a determin-
istic selection method. For random subsampling, nonuniform subsampling probabil-
ities are often used for spotting more informative data points [e.g. 11]. Algorithmic
leveraging is an example of this procedure, which uses statistical leverage scores to
define subsampling probabilities for linear regression models [24]. Another example
is the local case control subsampling which is designed for logistic regression with
imbalanced data [14]. Optimal subsampling is a recently developed technique that
derives the optimal subsampling probabilities by minimizing the asymptotic mean
squared error of the resulting subsample estimator. This method typically needs to
be implemented in an adaptive way because the optimal subsampling probabilities
contain unknown parameters [38]. The information-based optimal subdata selec-
tion is a novel deterministic selection method designed for linear regression models
[37]. This methods has the advantage that the relevant information contained in the
resulting subsample is not restricted by the subsample size.

When the data volume is so large that the whole data cannot be analyzed in the
available RAM, one solution is to process the data piece-by-piece. The divide-and-
conquer method is a typical example of this approach. With this method, one divides
the entire dataset into small blocks, analyzes data in each blocks, and then aggre-
gates results from all blocks to form a final estimator [e.g. 22]. Stochastic gradient
descent is another example of processing the data piece-by-piece. This method reads
the observations one-by-one or batch-by-batch; and it updates the estimator step-by-
step, so there is no need to store the data that have been used.

Besides the approaches that we are going to discuss in this chapter, there are a
bunch of other methods focusing on a particular model when responses could be cor-
related, such as resampling-based stochastic approximation method [21] and multi-
resolution approximation method [18] for Gaussian processes, online asynchronous
decentralized leverage score sampling for vector autoregressive model [41].

The rest of the paper is organized as follows. Section 2 discusses the random-
ized numerical linear algebra including methods based on random projection and
random subsampling. Section 3 presents the information-based optimal subdata se-
lection methods. Section 4 is devoted to informative subsampling methods including
the optimal subsampling methods and local case control subsampling methods. Sec-
tion 5 presents divide-and-conquer methods, online updating methods, and stochas-
tic gradient descent methods. Section 6 gives brief summary and discussions.
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2 Randomized Numerical Linear Algebra

Suppose that {x;,y;}!" | are n observations with x; € € R? being the covariate and
yi being the response. Assume that they follow a linear regression model with the
following form

yi=xB+e, i=1,..n, (1)

where B € R? is the unknown regressmn coefficient and {g}}_, are uncorrelated
error terms with E(g;) = 0 and V(&;) = 2. This model can also be written as

y=XB+e, (2)

where X = (x1,X2,...,x,)T € R"™¢ is the covariate matrix or design matrix, y =
(Y1,¥2,-..,¥x)T is the n dimensional vector of responses, and € = (g1, &, ...,&,)T is
the n dimensional vector of model errors.

The ordinary least-squares (OLS) estimator is commonly used to estimate 8, and
it has a form of

B = arg min | XB —y|> =X*y, 3)
BeR4

where || - || represents the Euclidean norm and X is the Moore-Penrose inverse of
X.If X is a full-rank matrix, B has an expression of

—1
B=x"x)"'x"y= (Zx, ) Y xivi 4)
i=1

Under the setting of 7 > d, both (3) and (4) can be computed in O(nd?) time. How-
ever, for extremely large n and potentially large d, obtaining the OLS estimator is
not trivial. One reason is that the O(nd?) computational time may not be affordable,
and another reason is that the size of the dataset may exceed the capacity of avail-
able RAM. In the following, we discuss two methods proposed to fast approximate
the OLS estimator: one is based on random projection after the Hadamard transform
and the other is based on nonuniform subsampling according to leverage scores of
the design matrix. For other investigations on randomized numerical linear algebra,
readers can refer to [26, 27] and the references therein.

2.1 Random Projection

Random projection is a widely used method, which reduces the dimension of a ma-
trix by mapping it to a comparatively low dimensional space with a relatively small
error [17, 26]. A random projection method for solving the least-squares problem
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was introduced in [10], which combines random projection (and uniform sampling)
with the randomized Hadamard transform (also known as the Walsh—Hadamard
transform).

Before presenting this method, we need to introduce the Hadamard transform,
which is defined recursively through Hadamard matrix. Suppose that H,, represents
the n x n Hadamard matrix in which n = 2¢ for some positive integer a. When n =2

(a=1), define
(141
Hy = (+1 —1)'

The Hadamard matrix H,, is defined as
H,=H,oH, ),

where ® is the kronecker product. An computational advantage of the Hadamard
transform is that it takes O(nlog, n) time to obtain H,x for any x € R”. For exam-
ple, this can be achieved by using Algorithm 1. However, an disadvantage of the
Hadamard transform is that » has to be a power of 2.

Algorithm 1 Fast Walsh-Hadamard Transform (FWHT)
Input: x € R" with n =24
Output: 1 = H,x = FWHT(x)

1: if n =2 then

. [ x1+x2 - T
2: n= Y1 where x = (x1,x2)",
3: else !
4. partition x into x = (iz), where x! and x2 are of the same dimension, and calculate

1 2
n' < FWHT(x'), n? < FWHT(x?), and = (zl J_rgz)

5: end if

The basic idea of the proposed algorithm in [10] is to first average the informa-
tion of observations by using the Hadamard transform on both the response vector
and the design matrix, and then randomly project the transformed data into a lower
dimensional space or uniformly draw data points from the transformed data. The

=S
final estimator, say B, is calculated based on the projected data or the selected
subsample from the transformed data. The algorithm based on random projection is
described in Algorithm 2.
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Algorithm 2 Random Projection after Randomized Hadamard Transform
Input: X, y,r, q
Output: S
1: Let § € R™" be a sparse projection matrix such that fori=1,2,...,rand j=1,2,...,n,

+4 /iq with probability £,
8ij =9 /s with probability %, independently.
0, with probability 1 —g¢,
2: Let R € R™" be a diagonal matrix whose diagonal elements are +1 or —1 with equal proba-
bility.
=S
3: The estimator 8~ is obtained as

B® = ($H,RX)" $H,Ry.

Using Algorithm 1, the term H,RX, in Algorithm 2 can be calculated in O(ndlog, n)
time, which is the major computational cost in the algorithm if § is sparse enough.
Theorem 3 of [10] provides formulas for determining the values of r and ¢ based on
a desired level of relative approximation error.

In [10], the authors also considered the case that § is a subsampling matrix de-
fined in this way: for i = 1,2,...,r, randomly choose j from {1,2,...,n}, and set
§ij=1and §;7 = 0for j' # j. This is just to take a subsample from the transformed
data using uniform subsampling with replacement. There is a computational benefit
of using this approach. We actually only keep r rows of H,RX after multiplying the
sampling matrix §, the time complexity of §H,RX is O(ndlog, r) according to [4].
The authors also proved, in Theorem 2 of [10], that the value of r should be

r = max (48°d In(40nd) In{100°d In(40nd) },40d In(40nd) /) ,

in order to achieve the (1 + a) relative error approximation with high probabil-
ity, where o € (0,1). The overall time complexity of the proposed algorithm is
O(ndInd) if d <n < exp(d). The full data needs to be read in one time to conduct
the randomized Hadamard transform. Based on the approach in [10], a least-squares
solver BLENDENP IK is developed in [5].

Note that H,H,, = nl and RR = I, where I is the identity matrix. Thus the ran-
domized Hadamard transform does not change the full data OLS estimator, because
for OLS estimator based on the transformed data

By, = {(H,RX)"H,RX}"'(H,RX)"H,Ry = (X"X)"'X"y = B.

However, the randomized Hadamard transform make the data points more similar
so a uniform subsampling will not miss any very informative data points. This also
indicates that if the data have light-tailed distributions, the randomized Hadamard
transform may not be very effective. For example, if (x;,y;) are independent and
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identically distributed (i.i.d) with a multivariate normal distribution, then the ran-
domized Hadamard transformed data follows the same distribution.

2.2 Nonuniform Random Sampling

Instead of transforming the data to be more uniform and then using uniform sam-
pling, another idea is to use nonuniform subsampling and assign higher probabili-
ties to more informative data points. We obtain the least-squares or weighted least-
squares estimator based on the sample drawn according to those nonuniform sub-
sampling probabilities.

A general approach of nonuniform subsampling for the overconstrained linear
regression problem was proposed in [11], which only needs to process the full data
by one pass. Leverage scores are commonly used to construct nonuniform subsam-
pling probabilities, and this kind of algorithms is summarized in [24] and is named
as algorithmic leveraging.

Suppose that X is full rank with singular value decomposition (SVD),

X=Uzv", 5)

where U is a n x d orthonormal matrix, V is a d X d orthonormal matrix, and X €
R?*4 is a diagonal matrix with diagonal elements being the singular values. Denote
each row of U as uj,u», ...,u,. The leverage scores are

2 .
I’l,':Hu,'H s l:1,2,...7}’l7
which are equivalent to
T/yTy)\-1 .
hi=x; (X' X)) 'x;, i=1,2,..,n,

and they satisfies that 7' | h; = d.
The algorithmic leveraging is to use normalized leverage scores, d~'h;, i =
1,...,n, to define a subsampling distribution. Algorithm 3 describes how to obtain
AL
the algorithmic leveraging estimator 8 .

The authors of [24] investigated the properties of BAL and proposed the shrinkage
leveraging (SLEV) method which uses

n

hi 1
m=p—+(1—-p)- ,
{ pt( p)n}i=1
where p € (0, 1) is a tuning parameter. They showed that the SLEV estimator often
has a smaller variance. In addition, the asymptotic normality and unbiasedness of
~AL
B has been examed in [25] under some regularity conditions.
Another issue of algorithmic leveraging is that the leverage scores need O(nd?)
time to compute. To alleviate the computational burden, [9] proposed to fast approx-
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Algorithm 3 Algorithmic Leveraging
Input: {x;,y;}" ,, 7
Output: BAL

1: Sample with replacement for a subsample of size r from the full data, using the sampling

distribution
hiyn
= — .
{ T d }i:l

2: Denote the selected subsample and the corresponding subsampling probabilities as
} . AL .
{xf,yf,m}_,. The estimator B~ is

imate leverage scores /;’s by using
hi = |(XILX) TL)il?, i=1,.m,

where I1; =€ R*" is the subsampled randomized Hadamard transform (e.g.,
§H,R in Algorithm 2) and IT, € R"1*"2 is the Johnson-Lindenstrauss transform
(JLT) [2, 3]. To obtain the JLT, each entry of I1, is generated independently as

++/3/r2  with probability
I; ;)= —+/3/r>  with probability § .
0 with probability %

The values of r| and r; are discussed in Lemme 6 and Lemma 4 of [9], respectively.
This algorithm runs in O(ndInn) time if d < n and n = o(e?).

In stead of solving a subsample OLS problem, [7] suggested to use the following
estimator to estimate the true parameter

~NS L ' oxty?
B = (inxiT Z;TZ’,
i=1

i=1 i

for the situation with measurement constraints. This is a scenario that all x;’s are
available but the number of responses that can be measured is limited, and the goal
is to sample x;’s and then measure the corresponding values of y;’s to estimate .
This is a typical problem of interest in the field of survey sampling and design of

. . . . aNS . .
experiments in statistics. The estimator B~ does not improve the computational
efficiency compared with the full data OLS. However, there is an explicit formula

~NS
for the mean squared error (MSE) of B, and the authors obtained the optimal
subsampling probabilities under the A-optimality criteria in optimal design.
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Linear regression with measurement constraints is further discussed in [40]. Let
r be the number of y;’s can be measured. They proposed to first obtain a computa-
tionally tractable relaxed A-optimal design,

n 1 n
go - argC r{ngn}}n tr{ ( Cix,Tx,) }, subjectto 0 < ¢; and Z G<r
=15ifi=1 i=1 i=1

Additionally for Poisson subsampling, it is required that max({;) < 1. With § 0=
{Cio _,, they assign the subsampling probabilities as

for subsampling with replacement; and

{ngl) _ Coxl (T C,(')x,T'xj)_lxi}”
! d

i=1

2 &
{nl- : } for Poisson subsampling.
r

i=1

3 Information-Based Optimal Subdata Selection

The methods discussed in previous sections are based on random subsampling or
random projection. The asymptotic variances of the resulting estimators are typi-
cally at the orders of the inverse subsample sizes. This means that if the subsample
size r does not go to infinity, then the subsample estimator does not converge to the
true parameter, no matter how fast the full data sample size n goes to infinity. In
other words, the subsample estimator is not consistent if » does not go to infinite.
The information-based optimal subdata selection (IBOSS) aims to solve this issue.

The IBOSS method was proposed in [37] for the linear regression model (1)
or (2). Here, the linear regression model contains an intercept parameter, and we
emphasize this fact by writing x; = (1,x;1,...,x;4-1)" for i = 1,...,n and B =
(Bo; B -, Ba—1)".

Unlike the random sampling approaches we have discussed, the IBOSS deter-
ministically select data points according to some optimality criterion on the infor-
mation matrix. Suppose that & = {x},y;}/_, is a deterministic subset of the full
dataset and the selection rule depends on X = (x],...,x})T only. Since selection rule
does not depend on y = (y1,y2,...,y»)", based on the subsample, the least-squares
estimator

B- {i:ﬁlx?xf}lgx?yz‘ ©

is still the best linear unbiased estimator of B. The information matrix of the sub-
sample corresponding to the least-squares estimator for B is
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r

1(2)=— foxl’-‘T.

The IBOSS aims to select a subsample that, under some optimality criterion, max-
imizes 1(Z), which is equivalent to minimize the covariance matrix of B. Un-
der the D-optimality criterion, one needs to find the subsample that maximizes
|y x; x*T| Since there are (’r‘) different subsamples, the exact solution is com-
putatlonal infeasible due to the combinatorial time complexity. The authors derived
an upper bound of | Y, xfx;T
related to the extremes of the covariates. Based on this observation, they proposed
to select k = | observations corresponding to the smallest and largest val-

,
2(d—1)]
ues of each covariate variable, where [-] means rounding to the nearest integer. The
procedure of IBOSS is summarized in Algorithm 4.

Algorithm 4 IBOSS
Input: {x;,yi},, k= [55=7]
Output: BIBOSS

Initializing: & < @, 7° < {xi,yi}}_,.
1: for j € {1,2,3,....d— 1} do
2:  with a partition-based selection algorithm, choose the observations in ¢ with the k smallest
values of x; ; and the k largest values of x; ;; record these 2k observations as ;;
3:  update Z° < Z2°\ Zj and I + U D};
4: end for
5: Calculate BIB defined in (6) using the observations in Z.

The IBOSS procedure in Algorithm 4 has a time complexity of O(nd), which is

a linear time in terms of the full data and is faster than the algorithms described in
~1BOSS
Section 2. The authors investigated the variance of the resulting estimator B in

various settings. One key conclusion is that the variance for a slope estimator may
converge to zero at a rate related to both » and n. Theorem 5 of [37] shows that the
variance of a slope estimator satisfies

d—1
X)=0p i=1,2,d—1,
X ({ "y ,}2>

where X(i),j is the i-th order statistics of xy j, ..., X, j. This result indicates that even
if r is fixed, the variance of a slope estimator can still go to 0 as n increases if the
support of the covariate distribution is not bounded. For example, if the covariate

follows a ¢ distribution with degrees of freedom v, then the corresponding slope
. ) IBOSS .
estimator has a variance of order V([)’ |X) = Op(r~'n=%"). In addition, ev-

ery covariate should be read into memory in one time to select the subdata. Since
the data are stored in hard disk by row, the IBOSS fails when full data volume ex-
ceeds the capacity of available RAM. To solve this, the IBOSS was combined with

~IBOSS

V(B
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the divide-and-conquer approach in [34]. Another benefit of this investigation is to
utilize the distributed and parallel computing facilities.

4 Informative Subsampling

In sections 2 and 3, the subsampling approaches do not depend on the responses,
and our discussion has focused on linear regression models. In this section, we will
introduce some informative subsampling methods that are applicable to non-linear
models. By informative subsampling, we mean that the subsampling depends on the
responses.

4.1 Optimal Subsampling

Optimal subsampling is an informative subsampling approach that aims to maxi-
mize the estimation efficiency. The basic strategy is to find subsampling probabili-
ties that minimize the asymptotic variance of the subsample estimator.

The optimal subsampling method under the A-optimality criterion (OSMAC)
was first introduced for logistic regression in [38], where the authors derived sub-
sampling probabilities that minimize the asymptotic MSE of the subsample approx-
imation error.

Consider a logistic regression model,

oolf)
1+exp(x/B)’ B

where y; € {0,1} is the response, x; € R is the covariate, and B is the unknown
regression coefficient. Let {xl ,¥i,m | be a subsample taken according to sub-
sampling probabilities {7;}? | such that Y.}, m; = 1. A general subsample estimator
is

P(yi = l|x;) = p(x;,B) = , @)

~ gen ﬁ x 710g(1+€ﬁ x)
B —argm;xz o

L 1

; ®)

which aims to approximate the full data maximum likelihood estimator (MLE), de-
noted as B, .. The authors of [38] derived the following optimal subsamphng prob-
abilities that minimize the asymptotic MSE of the approximation error ﬁ [3 MLES

R -1
n’i: |yi_p(xi7ﬂmLf)|HMx le , i:17...,n, (9)

Z’}zl |yJ _p(xj7ﬁMLE)|||M;1xjH

where M, = %Z?:l p(xi, BMLE){I — p(x;, ﬁMLE)}xixiT. Since (9) contains ﬁMLE, the
full data MLE, the author proposed an adaptive algorithm stated in Algorithm 5.
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Note that, to reduce the computational burden, M, can be approximated by pilot
sample. Using this way, the approximated optimal subsampling probabilities can
be computed by going through the full data once. After sampling the index of the
subample from 1 to n under the approximated optimal subsampling probabilities,
the subsample is obtained by reading in the full data in one pass.

Algorithm 5 Two-Stage Adaptive Subsampling
Input: {x;,y;}7,, ro, r
Output: BOS
1: Pilot sampling: Sample with replacement for a subsample of size ro, {x;0,y:0, 70}/ |» using

i i =

uniform sampling {70 = n~'}"_, or case control sampling {7? = (2n9) 7 *!(2n;) =1 }"

i=1°

where ng and n; are the number of 0’s and 1’s, respectively, in the responses. Obtain the

pilot estimator B*O and substitute B wie 10 (9) with B*O to calculate the approximated optimal
probabilities 7;.
2: Second stage sampling: Sample with replacement based on {#;}”_, for a subsample of size

ENE IS
r XA Y

. 0S . . .
3: Estimation: The final estimator 8~ is obtained by combing the two state samples

Tk
i

5 o,y OB 0 — Blx®y BT - Blx;
BOS :argmax{zy' B'x;%—log (1+eP %) +Zle x; —log(l+e )} 10
=

)
i=1 i

The authors of [38] also proved the consistency of the resultant estimator to BMLE
given the full data and derived its asymptotic distribution. This method was im-
proved in [35] in terms of the estimation efficiency by using an unweighted target
function. Specially, instead of using (10), the author suggested to obtain

SUuwW

B :argmélxz{yi*ﬁTxT—log(1+eBTxf)}, (11)
i=1

correct the bias of Buw to have Bbs = Buw + B*O, and then aggregate Bbs and B*O
instead of combining the two stage subsamples. Here the bias correction procedure
is similar to that proposed for the local case control subsampling method [14] to
be discussed in the next section. The author of [35] also investigated the Poisson
subsampling procedure, and showed that it has a higher estimation efficiency in
addition to its computational benefits.

Although the OSMAC was proposed in the context of logistic regression, it is
applicable to other statistical models. It has been generalized in [42] to softmax
regression, in which the response y; has B+ 1 possible values, 0, 1,2,..., B, with the
following probabilities

— 0l — _ 1
P(yl 0|xl) pl(ovﬁ) l+z§3:1exp(x’irﬁj)a and

T (12)
P(yl:b|xl):pl(bvﬁ) %a m:laza'“vB'
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Here B, € R? is the regression coefficient for the b-th category and we set B, = 0 for
model identifiability. The whole unknown parameter vector is B = { B T, B g, B ;}T.
The optimal subsampling probabilities under the A- optimality criterion used to draw
subsamples for approximating the full data MLE ﬁ

1My {5i(By) @ xi}
Tt M (B @271

MLE

where Mg = n~ 'Y Y;(B,..) ® (xixT); G;(B) is a B x B matrix whose b-th di-
agonal element is Y',(b’b) (B) = pi(b,B) — p*(b,B) and bb,-th off-diagonal ele-
ment is 1; 5, 4,)(B) = —pi(b1,B)pi(b2, B): and 5;(B) € R® with b-th element being
sip(B) =1(yi =b) — pi(b, B

In [1], the OSMAC was generalized to include generalized linear models (GLMs)
with the following form

Fis|xi, B) = h(vi) exp [yig(xi B) — c{g(xi B)}]. (13)

where A(-), g(+) and ¢(-) are known functions. The optimal subsampling probabili-
ties under A-optimality for approximating the full data MLE [3

i — (el B} 1M ¢ (xF By )i

P = =

2 [y — LT B HIMG (T B x|

where ¢(-) and g(-) are the first-order derivatives of ¢(-) and g(-), respectively; and

MLE

= o LT BT (6T B )} v+ (a1 TR )

with ¢(-) and g(-) being the second-order derivatives of ¢(-) and g(-), respectively.

The OSMAC was extended to quantile regression in [36], which assume that the
7-th quantile (0 < 7 < 1) of the response y; at the give value x; satisfies

gz (yilx;) = x B.

The regression coefficient B is estimated through minimizing
1 n
)= Y i—Blx){r— 1 < B'x)}, (14)
i=1

and the L-optimal subsampling probabilities used to draw subsamples for approxi-
mating the full data estimator are

I -aB <O
=5 T , 1=1,...,n.
ji [T =10 —x; B <O)l|lx]

5)
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To obtain the A-optimal subsampling probabilities, one just replace ||x;|| in (15)
with ||M§1xj||, where Mg = n~' Y7, f..(0)xx}, and f;,(0) is the density function
of y; —x,-Tﬁ evaluated at O for a given x;. For quantile regression, the authors rec-
ommended the L-optimality over the A-optimality because fy,(0)’s in M are typi-
cally infeasible to obtain. In addition, the L-optimal subsampling probabilities takes
O(nd) time to calculate while the A-optimal subsampling probabilities takes O(nd?)
time to calculate even if M is available. To perform statistical inference without es-
timating f,(0)’s, the authors proposed an iterative subsampling procedure based on
the L-optimal probabilities.

Using the similar idea of OSMAC to approximate full data maximum quasi-
likelihood estimator ﬁQLE by Poisson subsampling was discussed in [43]. A dis-
tributed sampling system based on the divide-and-conquer method was also intro-
duced.

4.2 Local Case Control Subsampling

Local case control (LCC) sampling was proposed by [14] for logistic regression
model (7) with imbalanced datasets. Unlike the case control sampling in which the
subsampling probabilities only depend on the responses {y;}?_,, the LCC subsam-
pling probabilities depend on both the responses and the covariates. Specifically,
the LCC subsampling probabilities for estimating the parameter 8 in the logistic
regression model (7) are

niLCC:‘yi_p(thp)‘v i=1,..n, (16)

where [3’7 is a pilot estimator. The LCC subsampling is based on Poisson sam-
pling. A detail algorithm for estimating the regression parameter B is presented
in Algorithm 6. Given pilot estimator, the subsample is obtained by reading the full
data once because we can calculate niLCC based on i-th observation, and determine
whether to include i-th observation in the sample or not immediately after knowing
mCee.

From Algorithm 6, the actual subsample size is random, and with a consistent
pilot estimator, the expected subsample size is asymptotically nE|y — p(x,B)| =
2n[p(x,B){1 — p(x,B)}] < n/2. Although this expected subsample size is at the
same order of the full data sample size n, it can be much smaller than half of the full
sample size for very imbalanced data. The authors derived the asymptotic distribu-

tion of BLCC unconditionally on the full data. The asymptotic variance of B is
twice as large as than that of the full data MLE, if the logistic regression model is
correct.

The idea of LCC sampling is extended to the softmax regression model (12) in
[15], and the method is named as local uncertainty sampling (LUS). Given a pilot
estimator Bp, the authors proposed the following subsampling probabilities
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Algorithm 6 Local Case Control Subsampling

Input: {x;,y}! |, iip (a pilot estimator)

=LCC
Output:
Initializing: 7 < @

1: foriin {1,2,...,n} do

2:  generate u; ~ Uniform(0, 1) and calculate 7€ = |y; — p(x;, Bp)\
3: ifu; < ©CC then

4: 9(—9]U{(x,~7y,-)}

5: endif

6: end for

7

: Estimation: Denote the obtained subsample as 7 = {x},y; }/_,. Calculate Buw according to
(11) and the final LCC estimator is ﬁLCC = Buw + Bp.

1—q; . aly
7(xi,yi) = Tmmeosey L pi0iB) =ai
’ min(1,2¢;/8) Otherwise ’

where 0 > 1 is a pre-specified number so that the expected subsample size is no
more than n/0: and g; = max{0.5, p;(0,B"), pi(1.B"). pi(2,B"), .. pi(B,B")}. De-
note the obtained subsample as & = {x;,y; }/_;. The authors of [15] derived the
conditional distribution of y} given x; as follows,

P(y; = 0lx;) = 1 AR
1+2f:1 exp{BJT-xf +log Zgi* (j); }
o exp{ Bl 1o 5015 | (17
P(yf =blx;) = ' b=1,2,...,B.

T i) |
1+):§9:1 cxp{ﬁjxl-' +log m }

Note that Poisson subsampling is used so {x},y;}/_, are i.i.d conditional on Bp.
Thus, for a given ﬁp, (17) can be used to construct the likelihood function for the

=LUC
subsample, and the final estimator 8 is the MLE based on the sampled data.

5 Divide-and-Conquer and Updating Methods

This section introduces the divide-and-conquer method, which partitions the full
data into smaller pieces, performs calculations on them separately, and then com-
bines these calculation results to obtain a final estimator. Most updating methods
also process data piece-by-piece, but in a sequential manner, so we will discuss
several updating methods in this section as well.



A Selective Review on Statistical Techniques for Big Data 15

5.1 Divide-and-Conquer Methods

Unlike the methods we have discussed in previous sections that use part of the orig-
inal full data or transformed full data to perform the final analysis, the divide-and-
conquer approach provides another scheme to deal with massive data. This method
partitions the whole dataset into K pieces, processes these K pieces separately to ob-
tain relevant subdata statistics, and then aggregates these subdata statistics to obtain
the final estimator. Note that although divide-and-conquer method can take advan-
tage of distributed and parallel computing facility, it may not save computing time
if we have a single computer. Furthermore, there is no general approach to do the
aggregation. One way is to use the simple average of the subdata estimators as the
final estimator, but this may not have the highest estimation efficient. In the follow-
ing, we will discuss how to aggregate subdata estimators for estimation equation
[22] and how to determine the sparsity pattern for high dimensional case [8].

A divide-and-conquer method was investigated by [22] in terms of estima-
tion equation. Let the independent full dataset be {z;}! , which satisfies that
Y E{y(z;,B,)} = 0 for some smooth function y, where B, is the true param-

. . . . ~»EE . .
eter. The estimating equation estimator 8 is the solution to

-

v(zi,B) =0. (18)

i=1

Here the model setup is quite general and it includes regression models if we let
zi = (x;,y;). If the full data volume is too large to be loaded in one machine, [22]
proposed the aggregated estimating equation (AEE) estimator as presented in Al-
gorithm 7. The divide-and-conquer method has an obvious benefit on memory ef-
ficiency because the full data is processed block by block, and we only record
{CBk , B} for each block.

~AEE | . .. . . .
It was proved that 8 is consistent to the original full data estimation equation

estimator B EE under some regularity conditions [22].

The divide-and-conquer approach is applied to the generalized linear model (13)
with high dimensional data in [8]. A penalty term is added to the log-likelihood
in this setting to ensure sparsity, and the estimator is named as split-and-conquer

~PL
estimator. The full data penalized estimator B is defined as

n
A

PL_ o mad Y 0e Ol B)
B =arg A {Z /’L(Bab)}a

i=1 n

~PL
where A (-) is the penalty function to ensure sparsity (some components of f  are
0), and b is the tunning parameter. The full dataset is partitioned into K blocks, and

_ . . ~PL . .
within each block, a coefficient estimator B, ~ is obtained for k = 1,2,...,K. Since

~PL
B s are calculated from different data blocks, their sparsity patterns are typically
different, and this complicates the aggregation step. The authors of [8] proposed
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Algorithm 7 Divide-and-Conquer for estimation equation
Input: {z;}},
Output: BAEE
1: Partition the full dataset into K blocks, {z ful 1’ where ny,...,ng (Zszl ny = n) are the number

of observations in each block, respectively, and zl is the i- th observation in the k-th block.
2: for k€ {1,2,..K} do
3:  obtain the k-th block estimator B, by solving

sz“ =0

4: calculate

where /(-) is the gradient of y/(-) with respect to B.
5:  Record {CBk,Bk}.
6: end for
7: Obtain the aggregated estimating equation estimator as

~ K 71 K ~
AEE {Z } ];ICBkBk.

the majority voting method to specify the sparsity pattern of the split-and-conquer

. =SC ~
estimator, denoted as B~ = ( ISC,. d ©)T. The majority voting method sets

B =0 1fZI[3 £0)<w, j=1,2,..d

where @ € [0, K) controls the number of zeros in the final estimator. If @ = 0, then
BFC = 0 only if all ﬁPL’s are 0; if @ € [K — 1,K), then 37 = 0 if any of B/ is

~SC
0. Nonzero elements of B~ are obtained by aggregating the corresponding ele-

~PL =SC .
ments of B, , k=1,2,...,K. The author proved that B~ and the full data estimator
APL

B are asymptotic equivalent by showing that these two estimators have the same

asymptotic variances. This method reduces the computational burden from O(n’d)
to O(n*d) /K given that d > n, if the LARS algorithm proposed by [12] is used for
linear regression.

Some other related investigations on the divide-and-conquer approach include
[6, 30, 39, 44], among others. Note that K cannot grow too fast as N goes to infin-
ity in order to obtain a good final estimator [22]. The choice of K is discussed in
[30] in the smoothing spline setting and the authors stated that the rate of K should
be no faster than the sharp upper bound O(nz‘*/ (2“‘“)) in order for the aggregated
smooth spline estimator to attain the minimax optimal convergence rate, where s is
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the degree of smoothness of the true regression function. The authors of [6] studied
statistical inferences with the divide-and-conquer approach for high dimensional
linear and generalized linear models. They obtained the order of K under which
the error caused by the divide-and-conquer is negligible compared with the statis-
tical error. In [39], the adaptive LASSO estimator for sparse Cox regression model
is approximated through a three-steps divide-and-conquer algorithm. Divide-and-
conquer method was introduced to kernel ridge regression in [44] in which the final
estimator could achieve a minimax optimal convergence rate.

5.2 Updating Methods

The aforementioned divide-and-conquer methods assume that all blocks of data are
accessible simultaneously. For streaming data, one does not have access to all the
data at a time and may not be able to store all the historical data. Thus, one needs to
update the estimator as new data comes in. The online updating method was intro-
duced to deal with this situation. Stochastic gradient descent is a popular optimiza-
tion method, which uses new data or sampled data to approximate the gradient of the
objective function in each iterative step. This is essentially to update the estimator
with new pieces of data, so we categorize it as an updating method here.

5.2.1 Online Updating Methods

Under the simple linear regression model, the online updating method for streaming
data was investigated in [19], where the updating formulas for estimators of the
intercept, the slope and the model error variance are derived.

An online updating method based on the divide-and-conquer technique for es-
timating equation (18) is proposed in [29], and a novel cumulatively updated esti-
mating equation (CUEE) estimator is developed. Suppose that in Algorithm 7, data
blocks are coming sequentially, and each block of data is accessible only once. The

CUEE estimator up to block k, BSUEE, is defined as
5 CUEE k ey . &
i :{ZCB,} {Zcﬁiﬁi+zui(ﬂi)}a
i=1 i=1 i=1
where
. k—1 -1 sk—1 . _
Bi= (Z, S +Cfsk> ( LGP +Cﬁkﬁk>a

w(B) =X, vz, B). Cp = 04xq and B, = 0. For the CUEE estimator, there is
- 0
no need to store the raw data, and one only needs to store the following statistics
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for updating: Y € 5. yile ﬁ-Bi’ and Y= u;(B,). When the k-th data block ar-

. - ~CUEE
rives, these statistics are updated and B is calculated. The author proved that

A

the CUEE estimator is consistent to EE under some regularity conditions. Another
interesting problem studied by [33] is how to update the estimator when new covari-
ate variables are introduced into the model at some time point k.

A method to approximate the MLE for GLMs with streaming data is proposed
in [23], in which they focus on GLMs with a dispersion parameter in addition to
the mean parameter B as shown in model (13). Let U (B) be the score function
(the gradient of the log-likelihood function) and Ji(B) be the negative observed
information matrix (the negative Hessian matrix of the log-likelihood function), for
the mean parameter based on the k-th block of data, k = 1,...,K. The proposed

~RN
incremental updating algorithm obtains the updated estimator B, when the k-th
data block arrives by solving

RN ~RN

k—1 " N "
Y LB (B —Bi ) +UkBry) =0.
=1

This paper also provides the updating formula for estimating the dispersion parame-
ter enabling one to perform real-time statistical inference. The resultant estimator is
consistent to the true parameter and is asymptotically normal, and these asymptotic
properties are true without imposing the condition that K = O(n)) for some v < %
and any k which is needed in [22, 29].

5.2.2 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is a popular optimization technique for massive
data, which recursively updates estimators, and discards the involving raw data in
each step to improve the memory efficiency. Here we focus on a case of parameter
estimation through the log-likelihood function which is presented as an optimiza-
tion problem. Let {(x;,y;)}}_, be i.i.d data, and denote the log-likelihood for each
data point as £(y;;x;, B). In this setting, the MLE BMLE maximizes the log-likelihood
function of the full data Y7, £(y;;x;, B), and SGD is commonly used maximization
algorithm to approximate BMLE.
A popular classic SGD algorithm is defined as

~sod ~sod . = sgd
ﬁ?g = f]""}/iDig()’i;xiaﬁfl)’ i=1,2,..,nm, (19)

where {(yi;x;, B) = dlogf(y;;xi,)/dB is the gradient of the log-likelihood, ¥ =
O(n°) is the learning rate, ¢ € (0.5,1], and D; is a positive-definite matrix which
is often chosen to be the identity matrix or a diagonal matrix for computational
efficiency. The learning rate is critical for the performance of an SGD algorithm.
If 7;’s are too large, then the SGD procedure in (19) may not converge. To alleviate
this problem, [31] proposed an implicit SGD algorithm which updates the parameter
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. Aim . .
estimate ﬁ; in each step by solving

B;m = B;Tl + %Dié(yi;th;m)-

The implicit SGD differs from the classic SGD in that the stochastic gradient in
the i-th step is evaluated at the i-th estimate instead of previous estimate in the
(t — 1)-th step. The implicit SGD converges for a larger range of the learning rate,
and the resulting estimator is consistent to the true parameter and shares the same
asymptotic variance as that for the classic SGD estimator under mild conditions.

Another problem of the SGD is that only one data point (x;,y;) is used, so the
gradient may have a large variance, resulting in a slow convergence rate of the al-
gorithm. Mini-batch SGD alleviates this issue to some extent, but the computation
burden can be high for a large batch size. Several methods have been proposed to
reduce the variation of the gradient. Stochastic variance reduced gradient (SVRG)
proposed by [16] introduces an average gradient term, and the resulting algorithm
has been proved to converge in a linear rate for a smooth and strong convex opti-
mization target function.

The gradient variance can also be reduced by nonuniform sampling, which as-
signs different probabilities for different observations to be selected. This approach
was discussed in [28, 45]. The nonuniform probabilities can be obtained by min-
imizing the variance of the gradient, which are proportional to the norms of the
gradients. Calculating gradient norms for all observations in each step is computa-
tionally expensive. The authors of [45] constructed upper bounds of gradient norms
that do not depend on B and use them to construct nonuniform sampling probabili-
ties. Furthermore, a weighted SGD is used to ensure the unbiasedness, such as

sgd

d d Xty Py
B = By S B LR R
I

where (x;,y;) is a random sample from the full data according to the sampling dis-
tribution {7S}"_,.

Using control variate is another way to reduce the variation of the stochastic
gradient [32]. One uses a vector é(yi;x[,ﬁ), which has the same expectation as
{(y;:x;, B) but has a smaller variance, to substitute the gradient /(y;;x;, B). Here,

{(yi;x;, B) can be constructed as

(yisxi, B) = {(visxi, B) — A"k (yisx1, B) — k.(B)},

where k(y;;x;,B) is the control variate with E{x(y;;x;,B)} = x.(B) and A is a
d x d matrix obtained by minimizing V{/(y;;x;, B)}. The control variate k(y;;x;, B)
is expected to be highly correlated with ¢(y;;x;, B) to achieve the desired effect of
variance reduction. Different optimization problems have different control variates
and a useful way is to construct the control variate is by using low-order moments.
The author also discussed that A can be a diagonal matrix or even a single number
to attain faster computational speed.
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6 Summary and Discussion

We have selectively introduced several statistical methods aiming at reducing com-
putational burden for massive datasets, including randomized numerical linear alge-
bra, IBOSS, informative subsampling, divide-and-conquer and updating methods.
All of these methods exhibit excellent estimation efficiency and computation effi-
ciency. Meanwhile, they all have their limitations. Based on different datasets and
situations, we need to know how to choose an appropriate method.

Even though we have so many elegant methods to deal with big data problems,
there are still many research problems remaining to be solved. Most of the methods
require that the model is correctly specified. However, sometimes, it is hard to build
a model accurately due to the complexity and diversity of the data. How to improve
the robustness of existing methods is an important topic for future investigation. In
addition, real data can have various complex structures and may contain a lot of
noises, measurement errors, and censoring, which increase the difficulty to perform
data analysis. More advanced methods and complex models are required to fulfill
this need.
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