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Abstract

In this paper, the reference prior is developed for a truncated model with boundaries of support as two

functions of an unknown parameter. It generalizes the result obtained in a recent paper by Berger et al.

(2009), in which a rigorous definition of reference priors was proposed and the prior for a uniform distribution

with parameter-dependent support was derived. The assumption on the order of the derivatives of these

two boundary functions, required by Berger et al. (2009), is removed. In addition, we obtain the frequentist

asymptotic distribution of Bayes estimators under the squared error loss function. Comparisons of Bayesian

approach with frequentist approach are drawn in two examples in detail. Both theoretical and numerical

results indicate that Bayesian approach, especially under the reference prior, is preferable.
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1. Introduction

Reference priors, initially introduced by Bernardo (1979), fulfill the purpose of objective Bayesian analysis

through maximization of the missing information about the parameter (c.f. Berger et al., 2009). Since the

prior information is maximally dominated by the data, reference priors usually have appealing frequentist

properties in statistical inference such as point and interval estimation.

Bernardo (1979) originally introduced the concept of reference priors by defining them as priors that

maximize the missing information for unknown parameters (c.f. Berger et al., 2009). But the derivation was

informal and the explicit expression obtained reduced to Jeffreys’ prior (Jeffreys, 1946, 1961) for continuous

one parameter models under posterior asymptotic normality. Berger and Bernardo (1989) derived the

reference for a normal model when the parameter of interest is a product of two means. Ye and Berger (1991)

found the reference prior for a exponential regression model. Berger and Bernardo (1992a,b) developed an

sequential reference process for multi-parameter problems, but their consideration focused on continuous
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regular problems under asymptotic posterior normality. This reference process was applied to the balanced

variance components problem in Berger and Bernardo (1992c). Yang and Berger (1994) investigated the

reference prior for estimating the covariance matrix of a multivariate normal distribution. Sun and Ye (1995)

generalized Berger and Bernardo (1989)’s result to estimate a product of n (n > 2) normal means. Sun and

Berger (1998) studied reference priors based on partial information.

The aforementioned work focused on developing reference priors for regular cases in the sense that

the Fisher information exists and the posterior is asymptotically normal. For non-regular cases, reference

priors are considerably more challenging to derive and many problems remain to be explored. Ghosal and

Samanta (1997) derived reference priors for non-regular models with parameter-dependent support. Ghosal

(1997) developed reference priors for multi-parameter densities with discontinuities depending on a single

parameter. More related work can be found in Bernardo (2005) and the references therein.

This paper is closely related to Berger et al. (2009) who gave a rigorous definition of reference priors.

Consider the following truncated model

f(x | θ) =
g(x)

G (a2(θ))−G (a1(θ))
I[a1(θ), a2(θ)](x), θ ∈ (θL, ∞), (1)

where θ is an unknown parameter and θL is the lower bound of the parameter space; IA(·) is the indicator

function of a set A; G(·) is a strictly increasing and continuously differentiable function so g(·) = G′(·) > 0;

a1(·) and a2(·) are continuously differentiable and strictly increasing functions. Usually, g(·) is a density

function on R or R+ so that f(x | θ) is the truncation of the density on [a1(θ), a2(θ)].

Model (1) is not a regular model since the support of the distribution depends on an unknown parameter

and the Fisher information does not exist. This model is also different from the one in Ghosal and Samanta

(1997) in which it is required that one of a1(·) and a2(·) is increasing while the other is decreasing. When both

a1(·) and a2(·) are increasing, Berger et al. (2009) derived the reference prior of θ for a uniform distribution,

i.e., g(·) ≡ 1. Furthermore, the following condition on the derivatives of a1(·) and a2(·) is necessary in their

theorem,

a′1(θ) < a′2(θ), θ ∈ (θL,∞). (2)

In this paper, the result in Berger et al. (2009) is generalized. The reference prior of θ for model (1) is

developed for any continuous function g(·) > 0, and the condition in (2) is waived.

In non-regular estimation problems, Bayesian approach often has superior properties to frequentist ap-

proach (see Hill, 1963; Hirano and Porter, 2003; Hall and Wang, 2005). Hirano and Porter (2003) proved

that for models with parameter-dependent support, the maximum likelihood estimator (MLE) is generally

inefficient, whereas Bayes estimators are efficient in term of the local asymptotic minimax criterion for con-

ventional loss functions. For the model of interest in this paper, we obtain the asymptotic distribution of

Bayes estimators under the squared error loss function, which shows that Bayes estimators are asymptoti-

cally unbiased. On the other hand, the MLE is usually asymptotically biased, and some time it is not unique.

Two examples are elaborated to show the performance of Bayes estimators with reference priors. System-

atic simulation studies are carried out to investigate the finite sample performance of Bayesian approaches

2



compared with that of the frequentist approach. Both theoretical and numerical results indicate that Bayes

estimators under reference priors have desirable frequentist properties and they are better strategies than

the MLE for the model considered in this paper.

The rest of the paper is organized as follows. In Section 2, we present the main results. In Section 3, two

examples are discussed in detail and numerical results are provided. Section 4 summarizes and technical

details are given in the two appendices.

2. Main Results

This section gives the main results of the paper, including the reference prior for model (1) and the

sampling properties of Bayes estimators under the squared error loss function.

2.1. The Reference Prior

Before stating the result, we need to introduce some notations. Let

λi =
G (a2(θ))−G (a1(θ))

g (ai(θ)) a′i(θ)
, i = 1, 2,

and define λ = λ1λ2/(λ1 − λ2) if λ1 6= λ2.

Theorem 1. The reference prior of θ for model (1) is

πR(θ) =


1
|λ| exp

{
1 + b1 ∨ b2 + 1

b1−b2

[
b1ψ

(
1
b1

)
− b2ψ

(
1
b2

)]}
, if λ1 6= λ2,

1
λ1
, if λ1 = λ2,

(3)

where b1 ∨ b2 = max(b1, b2), bi = λi/|λ|, i = 1, 2 when λ1 6= λ2, and ψ(x) = d log(
∫∞
0
e−ttx−1dt)/dx is the

digamma function.

Proof. In Appendix A.

Remark 1. (a) If λ1 ≡ λ2, or equivalently G (a2(θ))−G (a1(θ)) ≡ Cg, a constant, then

πR(θ) ∝ 1

λ1
∝ g
(
a1(θ)

)
a′1(θ).

Define y = G(x)/Cg. Then model (1) can be transformed to a location family with location parameter

µ = {G(a2(θ)) + G(a1(θ))}/[2{G(a2(θ)) − G(a1(θ))}]. The expectation of y is µ, and the reference

prior of µ is the constant prior.

(b) If λ1 = λ2 only on a set of θ with Lebesgue measure 0, then

πR(θ) =
1

|λ|
exp

{
b1 ∨ b2 +

1

b1 − b2

[
b1ψ

(
1

b1

)
− b2ψ

(
1

b2

)]}
. (4)
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(c) If g(·) ≡ 1 and the condition in (2) holds, then the prior in (3) reduces to the prior obtained in

Berger et al. (2009). The transformation y = G(x) can be utilized to broaden the result in Berger

et al. (2009). With this transformation, y is a uniform distribution with two boundaries of support

as another two functions of θ. Then Berger et al (2009)’s result can be applied to find the reference

prior for θ. However the generalization can only be accomplished on G(·) such that λ1 > λ2 for all θ,

because the condition in (2) is required in their result.

(d) For a1(·) and a2(·) being both decreasing, the reference prior can be found by using transformation

y = −x.

2.2. Properties of Bayes Estimators

Suppose a simple random sample {x1, ..., xn} is taken from model (1). When the sample size is finite, the

MLE based on the observed sample is rather complicated, and it may not be unique. A Bayesian estimator,

on the other hand, always has explicit expression even though it involves integration. Given a prior π(θ),

the Bayes estimator is the posterior mean under the squared error loss function, which takes the form in (5)

for model (1).

θ̂B =

∫ a−1
1 (t1)

a−1
2 (tn)

sπ(s)

{G (a2(s))−G (a1(s))}n
ds

/∫ a−1
1 (t1)

a−1
2 (tn)

π(s)

{G (a2(s))−G (a1(s))}n
ds, (5)

where t1 = x(1) and tn = x(n) are the smallest and largest observations, and a−11 (·) and a−12 (·) are the

inverse functions of a1(·) and a2(·), respectively.

For fixed θ, if λ1 6= λ2, the MLE has the following asymptotic distribution,

n
(
θ̂M − θ

)
d−→

λ1Z1, if λ1 < λ2,

−λ2Z2, if λ1 > λ2,
(6)

as n→∞, where Z1 and Z2 are iid Exp(1). So the asymptotic bias is either λ1 or −λ2 instead of 0, meaning

that the MLE is always asymptotically biased. If λ1 = λ2, the expression of the MLE varies and, in general,

a closed form is not available even for a large sample size.

Next theorem gives the asymptotic properties of the Bayes estimator in (5) whose proof is given in

Appendix B.

Theorem 2. For fixed θ, the Bayes estimator in (5) has the following convergence properties.

n
(
θ̂B − θ

)
d−→ Λ as n→∞,

where

Λ =


(λ−λ2Z2)e

λ2Z2
λ −(λ+λ1Z1)e

−λ1Z1
λ

e
λ2Z2
λ −e

−λ1Z1
λ

, if λ1 6= λ2.

λ1
Z1−Z2

2 , if λ1 = λ2.

(7)

Moreover, the Bayes estimator is asymptotically unbiased, i.e. EΛ = 0.
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Remark 2. (a) The distribution of Λ holds whenever a1(·) and a2(·) are monotonic and differentiable.

(b) If λ1 = λ2, the distribution of Λ is symmetric, i.e., Λ
d
= −Λ. If λ1 6= λ2, the distribution of Λ is

asymmetric, but still EΛ = 0. The asymmetry of the distribution of Λ is easily seen when λ1 is much

larger than λ2, because the distribution of Λ is close to that of λ− λ2Z2 in this case.

(c) As in regular cases, the asymptotic distribution Λ is independent of the prior.

3. Examples

Here two examples are given to the illustrate the properties of Bayes estimators and to compare them

with that of the frequentist estimators. Numerical studies are carried out to evaluate the finite sample

performance and/or the asymptotic properties of both Bayes estimators and the MLE.

3.1. Example 1

Let {x1, ..., xn} be a simple random sample taken from the density

f(x | θ) =
1

log(2)x log(x)
I[θ,θ2](x). (8)

This is a special case of model (1), where g(x) = 1/{x log(x)}, G(x) = log(log(x)), a1(θ) = θ and a2(θ) = θ2

for θ ∈ (1,∞). Note that g(·) is not a density function here.

3.1.1. Theoretical Comparisons

The likelihood function of θ based on the sample is

L(θ) =

n∏
i=1

1

log(2)xi log(xi)
I[
√
tn,t1](θ) ∝ I[√tn,t1](θ).

The MLE. Clearly, any θ̂ is a MLE if
√
tn ≤ θ̂ ≤ t1. When MLE is not unique, the problem of

choosing an estimator is challenging. For simplicity, we focus on the class of MLE that can be written as

θ̂ = (1− w)t1 + w
√
tn for some constant w ∈ [0, 1]. It can be shown that

n(θ̂ − θ) d−→ λ1
[
(1− w)Z1 − wZ2

]
,

where λ1 = log(2)θ log(θ) and Z1 and Z2 are iid Exp(1). When w = 0.5, the asymptotic variance is

minimized and the asymptotic bias is 0. So the asymptotically optimal MLE is

θ̂O

M =
t1 +

√
tn

2
. (9)

The shortest confidence interval of θ with nominal coverage probability α is

CIOM =
[
θ̂O

M +
log(1− α) log(2)θ̂O

M log(θ̂O
M)

2n
, θ̂O

M −
log(1− α) log(2)θ̂O

M log(θ̂O
M)

2n

]
. (10)

Bayesian Estimation under the Constant Prior. Interestingly, the optimal MLE in (9) is also a Bayes

estimator under the constant prior. Since the posterior under the constant prior is a uniform distribution on
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[
√
tn, t1], all the Bayesian credible intervals with the same nominal level have equal length. The equal-tailed

Bayesian credible interval of θ under the constant prior is

CICB =

[
t1 +

√
tn

2
− αt1 −

√
tn

2
,

t1 +
√
tn

2
+ α

t1 −
√
tn

2

]
. (11)

Bayesian Estimation under the Reference Prior. By Theorem 1, the reference prior of θ is

πR(θ) ∝ 1

θ log(θ)
.

The corresponding posterior density of θ given (t1, tn) is

πR

(
θ | t1,

√
tn
)

=
1

log(log(t1))− log(log(
√
tn))

1

θ log(θ)
I[
√
tn,t1](θ). (12)

The posterior mean of θ given the sufficient statistics (t1, tn) is

θ̂R

B =

∫ t1√
tn

1
log(θ)dθ

log(log(t1))− log(log(
√
tn))

. (13)

Since the posterior density in (12) is not a constant in the support interval, the shortest Bayesian credible

interval of θ with nominal coverage level α is derived as

CIRB =
[√

tn,
√
tn

(
log(t1)

log (
√
tn)

)α]
, (14)

which turns out to be a one sided interval because
√
tn is the lower bound of the possible values of θ. In

addition, let u = log{log(x)/ log(θ)}/ log(2), and then Pr(θ ∈ CIRB | θ)=P
{

1−u(n)

1−u(n)+u(1)
< α

}
where u(1)

and u(n) are the smallest and largest observations of a sample of size n from Uniform[0, 1]. Using similar

technique used in the proof of Theorem 1 and by tedious calculation, it can be shown that this probability

α at the rate of 1/n as n→∞. So the reference prior is also the second order matching prior for θ.

By re-parametrization µ = log (log (θ))/log(2) + 1/2 and transformation y = log (log (x))/log(2), model

(8) can be transformed to f(y | µ) ∼ Uniform [µ − 0.5, µ + 0.5], which belongs to the location family.

The reference prior of µ is the constant prior and its corresponding posterior is π
(
µ | y(1), y(n)

)
∼ Uniform

[y(n) − 0.5, y(1) + 0.5], where y(1) and y(n) are the smallest and largest observed value of y. If the parameter

of interest is µ, then the posterior mean and the minimum risk invariant estimator (MRIE) of µ are both

µ̂ = {y(1) + y(n)}/2. However, if µ̂ is transformed back to have an estimator of θ, it is not the MRIE of θ.

3.1.2. Numerical Comparisons

For point estimators, relative mean square errors (RMSE) are calculated, which are ratios of the MSEs

of a given estimator to that of θ̂R
B . For interval estimators, frequentist coverage probabilities are compared as

well as relative average lengths that are defined similarly to RMSE. All the results are reported in Figures .1

and .2 based on 1000 repetitions of the simulation.

Figure .1 displays the results related to θ̂O
M and θ̂R

B . Note that θ̂O
M is also a Bayes estimator under the

constant prior, so we are also comparing Bayes estimators under different priors. It is seen that θ̂R
B invariably
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dominates θ̂O
M, and the performance of θ̂R

B relative to θ̂O
M improves as θ grows or as n decreases. When n = 20,

θ̂R
B and θ̂O

M have similar accuracy.

Figure .2 presents the results related to the interval estimation. In part (a)–(c), for the extreme case that

n = 1, the coverage probabilities of CIOM are far from the nominal coverage levels for large α, whereas CIRB

always gives coverage probabilities close to the nominal levels. CICB, although being an inferior alternative to

CIRB, provides better results than CIOM. When n is large (=20,500), CIOM gives reasonable outcomes. Part (d)

shows the relative average lengths. CIRB dominates CIOM for small sample sizes (n = 1, 3), and it dominates

CICB uniformly. There is a tendency for the relative lengths to decrease as n increases, but even when n = 500

CIRB still outperforms CIOM for high confidence levels. The two Bayesian approaches are almost equivalent

when n = 500.

3.2. Example 2

Suppose a simple random sample {x1, ..., xn} is drawn from the density below,

f(x | θ) =
e−x

e−θ − e−θ2
I[θ,θ2](x), θ > 1. (15)

Here g(x) = e−x, the density of Exp(1), G(x) = 1− e−x, a1(θ) = θ and a2(θ) = θ2 for θ ∈ (1,∞).

3.2.1. Theoretical Comparisons

The likelihood function of θ based on the sample is

L(θ) =
exp(−

∑n
i=1 xi)(

e−θ − e−θ2
)n I[θ,θ2](t1)I[θ,θ2](tn) ∝

I[
√
tn,t1](θ)(

e−θ − e−θ2
)n .

The MLE. In this example, the MLE of θ is unique and given by

θ̂M = t1∆ +
√
tn(1−∆), (16)

where ∆ = 1 if e−
√
tn − e−tn > e−

√
t1 − e−t1 and 0 otherwise. The MLE θ̂M in (16) has an asymptotic

distribution with the same form as that in (6) with λ1 = 1− eθ−θ2 , λ2 = {eθ2−θ − 1}/{2θ} if 2θe−θ
2 6= e−θ.

Based on (6) and (16), the shortest confidence interval of θ with nominal coverage probability α is

CIM =


[
t1 + log(1−α)λ̂1

n , t1
]
, if ∆ = 1,[√

tn,
√
tn − log(1−α)λ̂2

n

]
, if ∆ = 0,

where λ̂1 = 1− et1−t21 and λ̂2 = {etn−
√
tn − 1}/{2

√
tn}.

This is an example that the MLE is asymptotically biased almost everywhere ( the asymptotic bias is λ1

or −λ2). If θ is large, e−θ
2

is much smaller than e−θ. Then λ1 is close to 1 and λ2 is much greater than λ1.

So the asymptotic absolute bias and the asymptotic variance of the MLE both approach 1 as θ increases.

Bayesian Estimation. The reference prior of θ for model (15) is the same as equation (4) with b1 =

|1− 2θeθ−θ
2 |, b2 = |1− 1/{2θeθ−θ2}| and λ = {e−θ − e−θ2}/{2θe−θ2 − e−θ} if 2θe−θ

2 6= e−θ.
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The posterior density of θ given (t1, tn) under a prior π(θ) is

πB(θ | t1,
√
tn) ∝ π(θ)(

e−θ − e−θ2
)n I[√tn,t1](θ). (17)

Under the square error loss, the Bayes estimator of θ under a prior π(θ) is

θ̂B =

∫ t1

√
tn

sπ(s)(
e−s − e−s2

)n ds

/∫ t1

√
tn

π(s)(
e−s − e−s2

)n ds, (18)

of which the asymptotic distribution Λ takes the same form as equation (7).

For large θ, λ is close to -1 and e{λ2Z2}/λ is close to 0, so the asymptotic distribution Λ of the Bayes

estimator is close to that of Z1 − 1, a random variable with mean 0 and variance 1. This indicates,

asymptotically, the Bayes estimator is approximately twice as efficient as the MLE for large θ.

3.2.2. Numerical Comparisons

All the results reported in Figures .3-.6 are based on 1000 repetitions of the simulation.

Figure .3 exhibits the RMSE of θ̂M and θ̂C
B compared to θ̂R

B , where θ̂R
B is the Bayes estimator in (18) under

the reference prior and θ̂C
B is the Bayes estimator under the constant prior. From (a) of Figure .3, it is seen

that the RMSE are always greater than 2, which means that θ̂R
B is as at least twice efficient as θ̂M. The

results are especially significant when θ is between 1 and 2. From (b) of Figure .3, the RMSE stay closely

to 1 when n = 100, indicating the equivalence of θ̂C
B and θ̂R

B for a large sample size. For small sample sizes,

neither θ̂C
B or θ̂R

B dominates each other. But the advantage of θ̂R
B is more significant than that of θ̂C

B .

Figure .4 presents the asymptotic MSEs and variances of Bayes estimators and the MLE. One can see

that the asymptotic MSEs of the MLE are at least twice as that of the Bayes estimators.

Figure .5 gives the estimated densities of each point estimators from the simulated samples of size 5.

When θ = 1.45, clearly the distribution of θ̂M is skewed and biased whereas the distributions of θ̂C
B and θ̂R

B

are symmetric of the true value. When θ = 1.718, a value such that λ1 and λ2 are close, the densities of

all estimators are approximately symmetric of the true value. However, the density of θ̂M is not uni-model

and has a much bigger variance than the other two. When θ = 2.5, θ̂C
B and θ̂R

B are also skewed and the bias

dominates the difference of the performance between Bayes estimators and the MLE.

Figure .6 is about the frequentist coverage probabilities of Bayesian credible intervals, which are lower

one sided intervals calculated from the posterior distribution in (17) with π(θ) being replaced by either the

reference prior (CIRB) or the constant prior (CICB). It shows that when n = 5, all the three intervals give

desirable outcomes. CIRB evidently outperforms CICB when n = 1, 2, and the MLE is not capable of yielding

satisfactory outcomes in this scenario.

4. Summary

In this paper, the reference prior is developed for a truncated model and the asymptotic properties

of Bayes estimators are obtained. Numerical studies are carried out to evaluate the performance of both
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the Bayesian and frequentist approaches. According to both the theoretical and the numerical outcomes,

Bayes estimators are superior alternatives to the frequentist counterparts, the MLE, and the reference prior

is preferable over the constant prior for Bayesian approach. However the model of interest in this paper

requires that g(·) is independent of θ. In practice, g(·) often depends on θ, and then (t1, tn) may not be a

sufficient statistic of θ. Reference priors for this case are tremendously more challenging to find and this is

a topic worthwhile for future investigation.
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Appendix A. Proof of Theorem 1

Let x1, ..., xn be a simple random sample from model (1). (t1, tn) is a sufficient statistic of θ whose joint

density is

f(t1, tn | θ) =
n(n− 1)g(t1)g(tn)

[
G(tn)−G(t1)

]n−2
[G (a2(θ))−G (a1(θ))]

n , a1(θ) ≤ t1 < tn ≤ a2(θ).

Denote by y1 = n[a−11 (t1)− θ] and y2 = n[θ − a−12 (tn)]. Then

f(y1, y2 | θ) =
n− 1

n

a′1(θ + y1
n )a′2(θ − y2

n )g
(
a1(θ + y1

n )
)
g
(
a2(θ − y2

n )
)

[G (a2(θ))−G (a1(θ))]
n

×
[
G
(
a2(θ − y2

n
)
)
−G

(
a1(θ +

y1
n

)
)]n−2

=
n− 1

n

a′1(θ + y1
n )a′2(θ − y2

n )g
(
a1(θ + y1

n )
)
g
(
a2(θ − y2

n )
)

[G (a2(θ))−G (a1(θ))]
2

×

{
G
(
a2(θ − y2

n )
)
−G

(
a1(θ + y1

n )
)

G (a2(θ))−G (a1(θ))

}n−2

=
1

λ1λ2

{
1− 1

n

g
(
a1(θ)

)
a′1(θ)y1 + g

(
a2(θ)

)
a′2(θ)y2

G (a2(θ))−G (a1(θ))
+ o(

1

n
)

}n−2 [
1 + o(1)

]
→ 1

λ1λ2
exp

(
−
g
(
a1(θ)

)
a′1(θ)y1 + g

(
a2(θ)

)
a′2(θ)y2

G (a2(θ))−G (a1(θ))

)

=
1

λ1
exp(− y1

λ1
)× 1

λ2
exp(− y2

λ2
) ≡ f∗(y1, y2 | θ).

This means y1 and y2 are, asymptotically, independent exponential variables with mean λ1 and λ2, respec-

tively. Choosing a prior of θ as π∗ = 1, the posterior density given (t1, tn) is

π∗(θ | t1, tn) =
1

[G (a2(θ))−G (a1(θ))]
n
mn(t1, tn)

, θ ∈
[
a−12 (tn), a−11 (t1)

]
,
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where

mn(t1, tn) =

∫ a−1
1 (t1)

a−1
2 (tn)

1

[G (a2(s))−G (a1(s))]
n ds

=
1

n

∫ y1

−y2

1[
G
(
a2(θ + v

n )
)
−G

(
a1(θ + v

n )
)]n dv.

The last equality holds from the transformation s = θ + v/n. Thus for fixed y1 and y2,

nmn(t1, tn) [G (a2(θ))−G (a1(θ))]
n

=

∫ y1

−y2

[G (a2(θ))−G (a1(θ))]n[
G
(
a2(θ + v

n )
)
−G

(
a1(θ + v

n )
)]n dv

−→
∫ y1

−y2
exp

(
− [

1

λ2
− 1

λ1
]v
)

dv =


|λ| exp( y2|λ| )

{
1− exp

[
− y1+y2

|λ|
]}
, if λ1 > λ2,

|λ| exp( y1|λ| )
{

1− exp
[
− y1+y2

|λ|
]}
, if λ1 < λ2,

y1 + y2, if λ1 = λ2,

= |λ| exp

{
y1I(λ1<λ2) + y2I(λ1>λ2)

|λ|

}{
1− exp

[
− y1 + y2

|λ|
]}

I(λ1 6=λ2) + (y1 + y2)I(λ1=λ2).

So for fixed θ,

−
∫

log
[
π∗(θ | t1, tn)

]
f(t1, tn | θ)dt1dtn + log(n)

−→
{

log(|λ|) +
E
[
y1I(λ1<λ2) + y2I(λ1>λ2)

]
|λ|

+ E log

{
1− exp

(
− y1 + y2

|λ|

)}}
I(λ1 6=λ2)

+ E log(y1 + y2)I(λ1=λ2)

=

{
log(|λ|) +

λ1I(λ1<λ2) + λ2I(λ1>λ2)

|λ|
−
∞∑
i=1

1

i
E

{
exp

[
− i(y1 + y2)

|λ|

]}
I(λ1 6=λ2)

+
[

log(λ1) + E log((y1 + y2)/λ1
)]
I(λ1=λ2)

=

{
log(|λ|) +

λ1 ∧ λ2
|λ|

−
∞∑
i=1

1

i
E exp(− iy1

|λ|
)E exp(− iy2

|λ|
)

}
I(λ1 6=λ2) +

[
log(λ1) + C

]
I(λ1=λ2)

=

{
log(|λ|) + b1 ∧ b2 −

∞∑
i=1

1

i(1 + b1i)(1 + b2i)

}
I(λ1 6=λ2) +

[
log(λ1) + C

]
I(λ1=λ2)

=

{
log(|λ|) + b1 ∧ b2 − γ −

1

b1 − b2

{
b1ψ(

1

b1
+ 1)− b2ψ(

1

b2
+ 1)

}}
I(λ1 6=λ2)

+
[

log(λ1) + C
]
I(λ1=λ2),

where the expectations are taken with respect to y1 and y2 under the density of f∗(y1, y2 | θ), C =∫∞
0

∫∞
0

log(z1 + z2)e−z1−z2dz1dz2 = 1− γ, and γ ≈ 0.5772 is the Euler-Mascheroni constant. Using the fact

that ψ(z + 1) = ψ(z) + 1/z,∫
log
[
π∗(θ) | t1, tn

]
f(t1, tn | θ)dt1dtn − log(n)

=

{
− log(|λ|) + b1 ∨ b2 + 1 +

1

b1 − b2

{
b1ψ(

1

b1
)− b2ψ(

1

b2
)

}}
I(λ1 6=λ2) − log(λ1)I(λ1=λ2) − C.

Finally, the reference prior follows from Theorem 7 of Berger et al. (2009).
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Appendix B. Proof of Theorem 2

The case when λ1 = λ2 is straightforward so we prove only when λ1 6= λ2.

n
(
θ̂B − θ

)
=

∫ a−1
1 (t1)

a−1
2 (tn)

n(s−θ)π(s)
[G(a2(s))−G(a1(s))]

n ds∫ a−1
1 (t1)

a−1
2 (tn)

π(s)
[G(a2(s))−G(a1(s))]

n ds

=

∫ y1

−y2

vπ(θ+ v
n )

[G(a2(θ+ v
n ))−G(a1(θ+ v

n ))]
n dv∫ y1

−y2

π(θ+ v
n )

[G(a2(θ+ v
n ))−G(a1(θ+ v

n ))]
n dv

=

∫ y1

−y2
v

[
G(a2(θ))−G(a1(θ))

G(a2(θ+ v
n ))−G(a1(θ+ v

n ))

]n
dv∫ y1

−y2

[
G(a2(θ))−G(a1(θ))

G(a2(θ+ v
n ))−G(a1(θ+ v

n ))

]n
dv

+ oP (1)
d−→

∫ λ1Z1

−λ2Z2
se−

s
λ ds∫ λ1Z1

−λ2Z2
e−

s
λ ds

= Λ.

The convergence in the last line follows from the continuous mapping theorem and Slutsky’s theorem. For

the asymptotic unbiasedness, notice

EΛ =λ

∫ ∞
0

∫ ∞
0

(1− λ2z2
λ )e

λ2z2
λ − (λ1z1

λ + 1)e−
λ1z1
λ

e
λ2z2
λ − e

−λ1z1
λ

e−z1−z2dz1dz2.

Let v1 = λ1z1/λ, v2 = λ2z2/λ and r = λ1/λ. Then from Fubini’s theorem,

EΛ =
1 + r

r2

∫ ∞
0

∫ ∞
0

(1− v2)− (1 + v1)e−v1−v2

1− e−v1−v2
e−

v1
r −

(1+r)v2
r dv1dv2

=
1 + r

r2

∫ ∞
0

∫ ∞
0

[(1− v2)− (1 + v1)e−v1−v2 ]e−
v1
r −

(1+r)v2
r

∞∑
i=0

e−iv1−iv2dv1dv2

=
1 + r

r2

∞∑
i=0

∫ ∞
0

∫ ∞
0

[(1− v2)− (1 + v1)e−v1−v2 ]e−
v1
r −

(1+r)v2
r e−iv1−iv2dv1dv2

=
1 + r

r2

∞∑
i=0

{[
1

i+ 1 + 1
r

− 1(
i+ 1 + 1

r

)2
]

1

i+ 1
r

−

[
1

i+ 1 + 1
r

+
1(

i+ 1 + 1
r

)2
]

1

i+ 2 + 1
r

}

=0.

This finishes the proof.

References

Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means: Bayesian analysis with reference priors. Journal of

the American Statistical Association 84, 200–207.

Berger, J. O. and Bernardo, J. M. (1992a). On the development of reference priors. In J. M. Bernardo, J. O. Berger, A. P.

Dawid, and A. F. M. Smith, eds., Bayesian statistics, vol. 4, 35–60. Oxford Univ. Press, New York.

Berger, J. O. and Bernardo, J. M. (1992b). Ordered group reference priors with application to the multinomial problem.

Biometrika 79, 25–37.

Berger, J. O. and Bernardo, J. M. (1992c). Reference priors in a variance components problem. In P. K. Goel and N. S. Iyengar,

eds., Bayesian analysis in statistics and econometrics, vol. 75 of Lecture Notes in Statist., 177–194. Springer, New York.

Berger, J. O., Bernardo, J. M., and Sun, D. (2009). The formal definition of reference priors. The Annals of Statistics 37,

905–938.

11



Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference. Journal of the Royal Statistical Society.

Series B (Methodological) 41, 113–147.

Bernardo, J. M. (2005). Reference analysis. In D. K. Dey and C. R. Rao, eds., Handbook of Statistics, vol. 25, 17–90.

North-Holland, Amsterdam.

Ghosal, S. (1997). Reference priors in multiparameter nonregular cases. Test 6, 159–186.

Ghosal, S. and Samanta, T. (1997). Expansion of bayes risk for entropy loss and reference prior in nonregular cases. Statistcs

& Decisions 15, 129–140.

Hall, P. and Wang, J. Z. (2005). Bayesian likelihood methods for estimating the end point of a distribution. Journal of the

Royal Statistical Society. Series B (Statistical Methodology) 67, 717–729.

Hill, B. M. (1963). The three-parameter lognormal distribution and Bayesian analysis of a point-source epidemic. Journal of

the American Statistical Association 58, 72–84.

Hirano, K. and Porter, J. R. (2003). Asymptotic efficiency in parametric structural models with parameter-dependent support.

Econometrica 71, 1307–1338.

Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems. Proceedings of the Royal Society of

London. Series A, Mathematical and Physical Sciences 186, 453–461.

Jeffreys, H. (1961). Theory of probability. Third edition. Clarendon Press, Oxford.

Sun, D. and Berger, J. O. (1998). Reference priors with partial information. Biometrika 85, 55–71.

Sun, D. and Ye, K. (1995). Reference prior Bayesian analysis for normal mean products. Journal of the American Statistical

Association 90, 589–597.

Yang, R. and Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior. The Annals of Statistics 22,

1195–1211.

Ye, K. and Berger, J. O. (1991). Noninformative priors for inferences in exponential regression models. Biometrika 78, 645–656.

5 10 15 20

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

R
el
at
iv
e
M
SE

θ̂O
M v.s. θ̂R

B

n= 1
n= 2
n= 20

θ

Figure .1: Relative MSEs of θ̂OM compared to θ̂RB as functions of θ for different sample size n.

12



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) CIOM

a

C
ov
er
ag
e
P
ro
ba

bi
lit
y

n= 1
n= 2
n= 20
n= 500

α
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) CICB

a

C
ov
er
ag

e
P
ro
ba

bi
lit
y

n= 1
n= 2
n= 20
n= 500

α

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) CIRM

C
ov
er
ag
e
P
ro
ba

bi
lit
y

n= 1
n= 2
n= 20
n= 500

α
0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

(d) Relative Lengths

R
el
at
iv
e
L
en
gt
h

CIOM v.s. CIRB

n= 1
n= 2
n= 20
n= 500

CICB v.s. CIRB

n= 1
n= 2
n= 20
n= 500

α
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different sample size n when θ = 3.
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Figure .5: Estimated densities of θ̂M, θ̂CB and θ̂RB for different θ when n = 5.
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Figure .6: Coverage probabilities of CIOM, CICB and CIRB as functions of α for different sample size n and θ.
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