
J Syst Sci Complex (20XX) XX: 1–23

Optimal Poisson Subsampling for Softmax Regression∗

YAO Yaqiong · ZOU Jiahui · WANG HaiYing

DOI:

Received: May 28 2021 / Revised: x x 20xx

©The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2018

Abstract Softmax regression, which is also called multinomial logistic regression, is widely used in

various fields for modeling the relationship between covariates and categorical responses with multi-

ple levels. The increasing volumes of data bring new challenges for parameter estimation in softmax

regression, and the optimal subsampling method is an effective way to solve them. However, opti-

mal subsampling with replacement requires to access all the sampling probabilities simultaneously to

draw a subsample, and the resultant subsample could contain duplicate observations. In this paper,

we consider Poisson subsampling for its higher estimation accuracy and applicability in the scenario

that the data exceed the memory limit. We derive the asymptotic properties of the general Poisson

subsampling estimator and obtain optimal subsampling probabilities by minimizing the asymptotic

variance-covariance matrix under both A- and L- optimality criteria. The optimal subsampling prob-

abilities contain unknown quantities from the full dataset, so we suggest an approximately optimal

Poisson subsampling algorithm which contains two sampling steps, with the first step as a pilot phase.

We demonstrate the performance of our optimal Poisson subsampling algorithm through numerical

simulations and real data examples.
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1 Introduction

The rapid development of technology makes data collection much easier than before. The

growing data sizes aggravate the difficulty of data analyses because applying statistical methods

directly to large datasets is sometimes computationally infeasible. A popular way to solve this

issue is to use subsampling methods with non-uniform probabilities. Existing subsampling

approaches mainly use sampling with replacement, which requires to access all the non-uniform

probabilities at once in the sampling procedure. Compared with subsampling with replacement,

Poisson subsampling manifests a great convenience because it allows to calculate subsampling

probabilities and draw subsamples without loading the full data into the memory. In this paper,

we focus on the softmax regression model and present an optimal sampling method based on

Poisson subsampling.

Softmax regression is used to model the relationship between multi-class categorical re-

sponses and covariates. Consider a dataset {(xi, yi)}Ni=1, where {yi}Ni=1 are categorical responses

with K+1 possible values c0, c1, c2, ..., cK , and {xi}Ni=1 are d dimensional covariates. A softmax

regression model assumes that for each observation,

P (yi = ck|xi) =
exp(xT

i βk)
∑K
l=0 exp(xT

i βl)
, (1)

where βk, k = 0, 1, ...,K, are d dimensional regression coefficients. For identifiability, assume

that β0 = 0, and let β = (βT
1 ,β

T
2 , ...,β

T
K)T, a Kd dimensional vector. With this notation, the

model in (1) becomes

P (yi = c0|xi) = p0(xi,β) =
1

1 +
∑K
l=1 exp(xT

i βl)
,

P (yi = ck|xi) = pk(xi,β) =
exp(xT

i βk)

1 +
∑K
l=1 exp(xT

i βl)
,

for k = 1, 2, ...,K. Denote δi,k = I(yi = ck) as the category indicator for the ith observation.

To estimate β, the maximum likelihood estimator (MLE) β̂full can be obtained by maximizing
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the log-likelihood function

`f (β) =
1

N

N∑

i=1

[ K∑

k=1

δi,kx
T
i βk − log

{
1 +

K∑

l=1

exp(xT
i βl)

}]
. (2)

There is no general closed-form solution to β̂full. We adopt the Newton-Raphson method to

obtain β̂full by iteratively calculating the following equation until convergence.

β̂(t+1) = β̂(t) +
{ N∑

i=1

φi(β̂
(t))⊗ (xix

T
t )
}−1{ N∑

i=1

si(β̂
(t))⊗ xi

}
,

where ⊗ means the Kronecker product, φi(β) is a K ×K symmetric matrix with diagonal ele-

ments being pk(xi,β)−p2k(xi,β) and k1k2th off-diagonal elements being −pk1(xi,β)pk2(xi,β);

si(β) is a K dimensional vector with each element being δi,k−pk(xi,β). It takes O(ξNK2d2 +

ξK3d3) time to obtain the full data MLE, where ξ is the number of iterations for the Newton-

Raphson method to converge. When N > Kd, the time complexity becomes O(ξNK2d2). For

very large N , this computational cost could be high. Therefore, it is important to reduce the

computational cost in estimating parameters in softmax regression for massive datasets.

One way to reduce the computational cost is through subsampling, i.e., to use a subsample

of observations instead of the full dataset to perform the intended analysis. Many recent

studies focus on this area. For linear regression, non-uniform subsampling was recommended

in [1]. Non-uniform subsampling probabilities are often constructed by the statistical leverage

scores, which can be approximated efficiently by fast randomized algorithms proposed in [2, 3].

The aforementioned algorithms were summarized as the algorithmic leveraging approach in [4].

Random projection provides another scheme to solve the estimation problem for overconstraint

least squares. This approach performs randomized Hadamard transform on covariates and

responses and then applies uniform subsampling method on the transformed data [5, 6]. The

randomized algorithms to-date for least squares and matrix operation problems were reviewed in

[7]. A deterministic approach named information-based optimal subdata selection, which selects

the most informative data points characterized by the D-optimality criterion, was proposed in

[8]. An extension of this method to the divide-and-conquer setting can be found in [9].

Beyond linear models, a local case control sampling method was proposed in [10] for logistic
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regression with imbalanced responses. This idea was generalized in [11] to softmax regression.

An optimal subsampling method under the A-optimality criterion (OSMAC) for logistic re-

gression inspired by the idea of optimal design of experiments was developed in [12]. They

proposed to use a pilot subsample to estimate the optimal subsampling probabilities, which

were formatted by the asymptotic variance-covariance matrix of the subsample estimator, and

then draw a second stage sample according to the estimated optimal subsampling probabilities.

This method was further enhanced by using an unweighted objective function in [13]. The

OSMAC was extended to include generalized linear model in [14], softmax regression in [15],

Markov chain Monte Carlo in [16], quantile regression in [17], and quasi-likelihood estimation

in [18]. The investigation about softmax regression in [15] focused on the subsampling with re-

placement. However, taking observations by optimal subsampling with replacement requires to

access all subsampling probabilities at once, and the resultant subsample may contain duplicate

data points. To solve these issues, we consider Poisson subsampling in this paper. Compared

with subsampling with replacement, Poisson subsampling has a higher estimation accuracy and

it is applicable even when the data volume is larger than the available memory.

The rest of the paper is organized as follows. Section 2 presents the general Poisson sub-

sampling estimator and its asymptotic distribution. Section 3 shows the optimal subsampling

probabilities under both A- and L- optimality criteria. Section 4 describes a practical two-step

algorithm based on optimal Poisson subsampling along with its asymptotic properties. Nu-

merical simulations and real data analyses are presented in Section 5. Section 6 gives a brief

conclusion. The supplement contains all technical proofs.

2 General Poisson Subsampling Algorithm

In this section, we introduce a general Poisson subsampling algorithm in Algorithm 1 and

derive the asymptotic properties of the subsampling estimator.

In this paper, we do not recommend subsampling with replacement for the following reasons.

In subsampling with replacement, every draw is independent with other draws given the full

data, and thus a sample could contain duplicated observations. More importantly, to implement

subsampling with replacement, one has to use all subsampling probabilities at once in order to
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Algorithm 1 General Poisson Subsampling Algorithm

Input: Dataset {(xi, yi)}Ni=1 and subsampling probabilities {nπi}Ni=1, where
∑N
i=1 πi = 1

and n is the expected subsample size.
Output: Subsample estimator β̂Psub.
Sampling:
for i = 1 to N do

generate indicator variable νi ∼ Bern(nπi);
if νi = 1 then

include (xi, yi) into sample and keep the nπi;
end if

end for
Denote the subsample as {(x∗i , y∗i )}n∗

i=1 and the corresponding subsampling probabilities as
{nπ∗i }n

∗

i=1.

Estimation: To obtain the subsample estimator β̂Psub, maximize the following target function

`∗P (β) =
1

N

n∗∑

i=1

1

nπ∗i

[ K∑

k=1

δ∗i,kβ
T
k x∗i − log

{
1 +

K∑

l=1

eβ
T
l x∗

i

}]
.

The maximization is implemented through the Newton-Raphson method by iteratively ap-
plying

β̂
(t+1)
sub = β̂

(t)
sub +

{ n∗∑

i=1

1

nπ∗i
φi(β̂

(t)
sub)⊗ x∗i (x

∗
i )

T
}−1{ n∗∑

i=1

1

nπ∗i
si(β̂

(t)
sub)⊗ x∗i

}

until convergence.

draw a subsample. This would be difficult when the size of the full data exceeds the memory’s

limit. To solve the aforementioned limitations, we consider Poisson subsampling, which decides

if one observation is included in the sample or not by conducting a Bernoulli trail. Therefore,

Poisson subsampling ensures no repeated data points in the sample. Moreover, for Poisson

subsampling, it is possible to determine if one observation should be included or not in the

subsample without accessing other data points. One limitation of Poisson subsampling is that

the subsample size is random. However, we can control the expectation of the random subsample

size, which we call the expected subsample size. In Algorithm 1, the expected subsample size

is denoted as n and the actual subsample size is denoted as n∗.

Algorithm 1 becomes the uniform Poisson subsampling by choosing πi = 1
N , i = 1, 2, ..., N ,

which means all observations are treated equally. However, in order to obtain better approxi-

mation of β̂full, we want the subsample to include more informative observations, so we prefer

non-uniform subsampling probabilities.
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We derive the asymptotic distribution of β̂Psub , for which we need the following assumptions.

Assumption 1 The parameter space Θ of β is a compact set.

Assumption 2 AsN goes to∞, the negative Hessian matrix MN = N−1
∑N
i=1 φi(β̂full)⊗

(xix
T
i ) goes to a positive-definite matrix in probability.

Assumption 3 N−1
∑N
i=1 ‖xi‖3 = OP (1).

Assumption 4 For k = 0 and 4, N−2
∑N
i=1 π

−1
i ‖xi‖k = OP (1); and there exists some

δ > 0 such that N−(2+δ)
∑N
i=1 π

−1−δ
i ‖xi‖2+δ = OP (1).

Assumption 2 ensures that the Hessian matrix MN is invertible as N →∞. Assumption 3

tells that the third moment of covariates is bounded in probability. Assumption 4 constrains

the relationship between covariates and subsampling probabilities.

Theorem 2.1 Under Assumptions 1, 2, 3 and 4, given the full data DN , as N → ∞

and n→∞, the conditional distribution of β̂Psub − β̂full is asymptotically normal, namely,

√
nV
−1/2
G (β̂Psub − β̂full)→ N(0, I) (3)

in distribution, where VG = M−1
N VPGM−1

N ,

MN =
1

N

N∑

i=1

φi(β̂full)⊗ (xix
T
i ), (4)

VPG =
1

N2

N∑

i=1

(1− nπi){ψi(β̂full)⊗ (xix
T
i )}

πi
, (5)

and ψi(β) is a K ×K matrix with ψi,k1,k2(β) = {δi,k1 − pk1(xi,β)}{δi,k2 − pk2(xi,β)}.

3 Optimal Subsampling Probabilities

To improve the estimation efficiency, we formulate the optimal subsampling probabilities by

minimizing the asymptotic variance-covariance matrix of β̂Psub − β̂full, which is n−1VG. Since

VG is a matrix, we adopt the A-optimality criterion in optimal design to minimize the trace of

the variance-covariance matrix, which is tr(n−1VG) in our case. This quantity is often called

the asymptotic mean squared error (MSE). In addition to the A-optimality, we consider the
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L-optimality, which is to minimize the trace of the variance-covariance matrix of a linearly

transformed estimator. Here we decide to minimize tr(MNVGMN ) = tr(VPG) due to the

computational benefit as seen later. In the following of the paper, we use optA to represent

quantities associated with the A-optimality criterion and use optL to represent quantities asso-

ciated with the L-optimality criterion. Before presenting the optimal subsampling probabilities,

we define the following two notations to facilitate the presentation.

toptAi = ‖M−1N {si(β̂full)⊗ xi}‖, i = 1, 2, ..., N ; (6)

toptLi = ‖si(β̂full)‖‖xi‖, i = 1, 2, ..., N ; (7)

furthermore, define toptAN+1 = +∞ and toptLN+1 = +∞.

Theorem 3.1 Denote the order statistic of {ti}N+1
i=1 as t(1), t(2), ..., t(N+1), which are ar-

ranged in an increasing way. Under selected optimality criterion, the optimal subsampling

probabilities are

πopt
i =

ti ∧H∑N
j=1(tj ∧H)

, i = 1, 2, ..., N, (8)

where ti ∧H = min(ti, H),

H =

∑N−g
i=1 t(i)

n− g , (9)

and g is an integer satisfying

(n− g)t(N−g)∑N−g
i=1 t(i)

< 1,
(n− g + 1)t(N−g+1)∑N−g+1

i=1 t(i)
≥ 1. (10)

In Theorem 3.1, H works as a threshold to make sure that none of {nπopt
i }Ni=1 is larger

than 1. For the ith observation with ti > H, its optimal subsampling probability nπi equals 1,

which means that this observation will be included in the subsample for sure. Moreover, the

expressions of toptAi and toptLi show that L-optimality is more computationally efficient than

A-optimality because the time complexity of calculating {toptAi }Ni=1 is O(NK2d2), whereas the

time complexity of calculating {toptLi }Ni=1 is O(NKd).
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(b) Sampling observations by πoptL
i

Figure 1 Illustrate the distribution of chosen samples by a simulated dataset where

covariates are generated from N2(0, I2) and the true coefficient is β =

(5
√

3,−15,−5
√

3,−15)T when N = 2000 and n = 200 under both A-

optimality criterion and L-optimality criterion. Observations from the cat-

egory 0 are represented by red filled circle. Observations from the category

1 are represented by blue filled square. Observations from the category 2

are represented by green filled triangle point-up. The drawn samples are

indicated by black boundary.

We investigate the distribution of the sample drawn by the optimal subsampling probabilities

by a simulated dataset in Figure 1. It shows that the observations in the transition area of

two categories are more likely to be chosen under both A-optimality criterion and L-optimality

criterion. In principle, this pattern can be learned from (7) in a sense that higher optimal

subsampling probability for one observation comes from larger value of |δi,k − pi,k(β)|, k =

1, 2, ...,K. If one observation with higher probability falling in category k falls into another

category, then it has greater opportunity to be selected. Similarly, if one observation comes

from category k where the observation has lower probability to be fallen in, then it is more

likely to be sampled. This means observations, which are more likely to be miss-classified, have

more chance to be drawn into the sample.

4 Approximately Optimal Poisson Subsampling Algorithm

The optimal subsampling probabilities are used to draw subsamples containing more in-

formative observations so that we can obtain better approximations of β̂full. However, the
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computation of {πopt
i }Ni=1 in Theorem 3.1 involves β̂full, which is the unknown quantity to be

approximated by the subsample. To deal with this problem, we propose an approximately opti-

mal Poisson subsampling algorithm which uses a pilot sample estimator to substitute the β̂full

in Theorem 3.1. We draw the pilot subsample according to the proportion-based subsampling

probabilities {n0πprop
i }Ni=1, where πprop

i =
∑K
k=0

δi,k
(K+1)mk

, mk is the number of responses in

the kth category, and n0 is the expected sample size of the pilot subsample. We could also use

the uniform subsampling probabilities. However, for imbalanced datasets, the probability that

some categories contribute no observation to the subsample can be high.

Let the pilot sample of actual size n∗0 be {x∗0i , y∗0i }
n∗
0
i=1 and the corresponding subsampling

probabilities be {n0π∗0i }
n∗
0
i=1. After obtaining the pilot estimator β̂0

P from the pilot sample, the

optimal subsampling probabilities can be approximated by

nπ̃opt
i =

n(t̂i ∧ Ĥ)
n∗
0

n∗
0−d×K

∑n∗
0
i=1

t̂0i∧Ĥ
n∗
0π

∗0
i

∧ 1, (11)

where {t̂0i}n
∗
0
i=1 is either {t̂optA0i }n

∗
0
i=1 or {t̂optL0i }

n∗
0
i=1 with t̂optA0i = ‖(M̂0

N )−1{si(β̂0
P ) ⊗ x∗0i }‖ or

t̂optL0i = ‖si(β̂0
P )‖‖x∗0i ‖, respectively;

M̂0
N =

1

N

n∗
0∑

i=1

φi(β̂
0
P )⊗ {x∗0i (x∗0i )T}

n∗0π
∗0
i

; (12)

Ĥ is the (1− n
2N )th quantile of {t̂0i}n

∗
0
i=1;

n∗
0

n∗
0−d×K

is a finite-sample term to correct the degrees of

freedom; and t̂i is t̂optAi or t̂optLi according to the selected optimality criterion with the following

expressions

t̂optAi = ‖(M̂0
N )−1{si(β̂0

P )⊗ xi}‖ and t̂optLi = ‖si(β̂0
P )‖‖xi‖.

The approximately optimal Poisson subsampling algorithm is presented in Algorithm 2.

Remark 4.1 To reduce the computational burden when approximating the optimal sub-

sampling probabilities in (8), we use M̂0
N to estimate MN and use the (1 − n

2N )th quantile
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Algorithm 2 Approximately Optimal Poisson Subsampling Algorithm

First Stage Sampling: Run Algorithm 1 with expected sample size n0 and subsampling

probabilities {n0πprop
i }Ni=1 to obtain the first stage sample {x∗0i , y∗0i }

n∗
0
i=1 and the corresponding

subsampling probabilities {n0π∗0i }
n∗
0
i=1, and use them to obtain the coefficient estimator β̂0

P ,
where n∗0 is the actual subsample size.
Second Stage Sampling: Run Algorithm 1 with expected sample size n and the ap-
proximated optimal subsampling probabilities {nπ̃opt

i }Ni=1 in (11). Obtain the second stage
subsample {x∗1i , y∗1i }n

∗

i=1 and the corresponding subsampling probabilities {nπ∗1i }n
∗

i=1, where
n∗ is the actual subsample size. Use the second stage subsample to calculate the coefficient
estimator β̂1

P .

Combining: Obtain the final estimator β̂adaP by combining β̂0
P and β̂1

P , through

β̂adaP = (n∗0M̂
0
N + n∗M̂1

N )−1(n∗0M̂
0
N β̂

0
P + n∗M̂1

N β̂
1
P ),

where M̂0
N is defined in (12), and

M̂1
N =

1

N

n∗∑

i=1

φi(β̂
1
P )⊗ {x∗1i (x∗1i )T}

n∗π∗1i
.

of {t̂i}n
∗
0
i=1 to estimate H, instead of directly substituting β̂full with β̂0

P in (4) and (9). The

numerical results in Section 5 show that the performance of the resulting estimator is similar

to that of the estimator obtained by substituting β̂full with β̂0
P in (4) and (9). In addition, an

even simpler approach is to treat Ĥ as infinity, and we will evaluate the performance of this

choice in Section 5 as well.

Remark 4.2 In Algorithm 2, the final estimator is obtained by combining the two sub-

sample estimators in the two stages. We could also obtain the final estimator by combining the

subsamples from the two stages. The performances of these combining methods are similar in

terms of estimation efficiency when n0 and n are large. However, combining estimators waives

the need to apply Newton-Raphson calculations on the first stage subsample twice. When n0

and n are small, combining samples could be more computationally stable since the Newton-

Raphson method is applied to a larger sample.

To derive the asymptotic property of β̂adaP , we need the following assumption.

Assumption 5 The covariates {xi}Ni=1 are independent and identically distributed ran-

dom variables. E(‖xi‖−2) < ∞ and there exists a constant c > 0 such that E(ea‖xi‖) ≤

exp(c2a2/2) for all a ∈ R.
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This assumption constrains the distribution of the covariates. If we include intercept in the

model, the condition E(‖xi‖−2) <∞ is always satisfied because ‖xi‖ ≥ 1 almost surely in this

scenario.

Theorem 4.3 Under Assumptions 1, 2 and 5, if n = o(N/ lnN) and n0 = o(n1/2), as

n0 →∞, n→∞, N →∞, conditioned on DN and β̂0
P ,

√
nV−1/2

(
β̂adaP − β̂full

)
→ N(0, I) (13)

in distribution, where β̂adaP is obtained with H = +∞ under L-optimality criterion, and V =

M−1
N VPM−1

N , with VP having the expression of

VP =
1

N2

[
N∑

i=1

{1− nπi(β̂full)}{ψi(β̂full)⊗ (xix
T
i )}

‖si(β̂full)‖‖xi‖

]

N∑

j=1

‖sj(β̂full)‖‖xj‖


 .

Combining with Theorem 3.1, Theorem 4.3 tells us that, theoretically, the approximately

optimal Poisson subsampling should have a better estimation efficiency than uniform Poisson

subsampling since tr(VP ) is smaller than tr(VPG) for VPG with πi = 1/N in Theorem 2.1.

Moreover, [15] presented an optimal subsampling with replacement algorithm without deriving

the asymptotic distribution of the final estimator. To compare our results based on optimal

Poisson subsampling with that of [15], we derive the asymptotic distribution for the estimator

from their algorithm. Since the theoretical properties of [15]’s algorithm is not the main focus

of our paper, we put the results in the supplement. From Theorem A.2.1 of Section A.2 in the

supplement, the asymptotic variance-covariance matrix (scaled by n) of the estimator in [15] is

VS = M−1
N VNcM

−1
N , where

VNc =
1

N2

[
N∑

i=1

ψi(β̂full)⊗ (xix
T
i )

‖si(β̂full)‖‖xi‖

]

N∑

j=1

‖sj(β̂full)‖‖xj‖


 .

Compared with VNc, VP has one more subtraction term. Since VS > V in the Loewner

ordering, the approximately optimal Poisson subsampling algorithm is more efficient than the

optimal subsampling with replacement algorithm.

The asymptotic variance-covariance matrix of β̂adaP is n−1V in Theorem 4.3, which depends
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on β̂full. So we can insert β̂0
P and β̂1

P in order to approximate the variance-covariance matrix.

To accelerate the computation, we recommend using the subsamples from the two stages instead

of using the full data to approximate the variance-covariance matrix. Specifically, the variance-

covariance matrix can be approximated by

V̆ = (M̂0
N + M̂1

N )−1(V̂0
P + V̂1

P )(M̂0
N + M̂1

N )−1, (14)

where

V̂0
P =

1

N2

n∗
0∑

i=1

(1− n0π∗0i )ψi(β̂
0
P )⊗ x∗0i (x∗0i )T

(π∗0i )2
,

V̂1
P =

1

N2

n∗∑

i=1

(1− nπ∗1i )ψi(β̂
1
P )⊗ x∗1i (x∗1i )T

(π∗1i )2
.

In [15], the authors did not mention how to estimate the variance-covariance matrix of their

estimator, say β̂ada
sub , based on optimal subsampling with replacement. To compare the perfor-

mances of Poisson subsampling and subsampling with replacement, we propose to approximate

the variance-covariance matrix of β̂ada
sub by

V̆sub = M̆−1
N,subV̆NcM̆

−1
N,sub, (15)

where

M̆N,sub =
1

N

n0+n∑

i=1

φi(β̂
ada
sub )⊗ {x∗subi (x∗subi )}T

π∗subi

, (16)

V̆Nc =
1

N2

n0+n∑

i=1

ψi(β̂
ada
sub )⊗ {x∗subi (x∗subi )}T

(π∗subi )2
, (17)

and x∗subi and π∗subi are the subsample observations and the corresponding subsampling prob-

abilities obtained by the method proposed in [15]. The performance of V̆ and V̆sub will be

evaluated in Section 5.1.1.
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5 Numerical Results

In this section, we evaluate the performance of Algorithm 2 and its two variants discussed

in Remark 4.1 by using simulated and real datasets. We also apply the approximately optimal

subsampling with replacement algorithm proposed in [15] for comparison.

5.1 Simulations

We set the full data size N = 100000 and assume that the responses {yi}Ni=1 consist of three

distinct outcomes 0, 1, 2. The dimension of the covariate is d = 3 and the true value of the

parameter is β = (1, 1, 1, 2, 2, 2)T. We consider the following four cases of covariate structures,

where Σ is a 3× 3 matrix with diagonal elements being 1 and off-diagonal elements being 0.5.

Case 1. xi ∼ N3(0,Σ), i = 1, 2, ..., N . From this structure, the generated responses {yi}Ni=1

have roughly 42% of observations in each of the first and the third categories, and around

16% of observations are in the second category.

Case 2. xi ∼ N3(1.5,Σ), i = 1, 2, ..., N . The location shift of the covariate distribution results

in imbalanced responses. About 90% observations falls into the third category.

Case 3. xi ∼ 0.5N3(1,Σ)+0.5N3(−1,Σ), i = 1, 2, ..., N . This is a mixture normal distribution.

Around 45% data falls into the first category; 10% data falls into the second category and

45% data falls into the third category.

Case 4. xi ∼ t3(0,Σ), i = 1, 2, ..., N . The t3 distribution has a heavier tail than normal

distribution. Around 42.5% data falls into the first category; 15% data falls into the second

category and 42.5% data falls into the third category.

We are going to assess the estimation efficiency and computation efficiency of the proposed

algorithms based on these four datasets.
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5.1.1 Estimation Efficiency
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(d) Case 2
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(e) Case 3
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(f) Case 4

Figure 2 Empirical MSEs among different n when n0 = 200 is fixed using different

methods. OPS with ĤoptA stands for Algorithm 2 under the A-optimality

criterion; OPS with HoptA stands for Algorithm 2 under the A-optimality

criterion by directly substituting β̂full with β̂0
P in (4) and (9); OPS with

ĤoptA = ∞ stands for Algorithm 2 under the A-optimality criterion with

taking ĤoptA = ∞; OSWR optA stands for approximately optimal sub-

sampling with replacement algorithm under the A-optimality criterion. PS

with πoptA
i stands for Algorithm 1 by using the optimal subsampling proba-

bilities under A-optimality criterion. All one stage subsampling algorithms

take (n0 + n) as the subsample size or the expected subsample size.

The estimation efficiency is evaluated by empirical MSE, defined as MSE = S−1
∑S
s=1 ‖β̃s−

β̂full‖2, where S is the number of replicates and β̃s is the estimate in the sth replication. Figure

2 shows that the approximately optimal subsampling algorithms have an obvious benefit in
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estimation accuracy compared with the uniform probabilities based algorithms. Among these

four approximately optimal subsampling algorithms, as n goes large, the three algorithms based

on Poisson subsampling show a slight advantage to the algorithm based on subsampling with

replacement. The plot for Case 4 shows that even when Assumption 5 is not satisfied, the

approximately optimal subsampling algorithms still perform well. Algorithm 1 with optimal

subsampling probabilities acts as a reference and does not have practical utility because the

calculation of πoptA
i involves β̂full. The four approximately optimal subsampling algorithms

perform closely to Algorithm 1 with optimal subsampling probabilities showing that using pilot

sample estimator to substitute β̂full in Theorem 3.1 costs little in estimation accuracy.
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(h) Case 2
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(i) Case 3
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(j) Case 4

Figure 3 Empirical MSEs of different methods when n0 = 200 is fixed and n is large.

Figure 3 further compares the four approximately optimal subsampling algorithms when n

is relatively large. The three algorithms based on Poisson subsampling dominate the algorithm

based on subsampling with replacement, and this superiority becomes more significant as n
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becomes larger. Among these three algorithms based on Poisson subsampling, overall the one

with HoptA preforms best, which is reasonable because it uses the full data instead of the pilot

subsample to estimate H and therefore should result in better approximations to the optimal

subsampling probabilities.

Figure 4 evaluates the estimation performance of Algorithm 2 under different optimality

criteria, and shows that the Algorithm 2 under the A-optimality criterion is more efficient than

that under the L-optimality criterion in terms of MSE. This is reasonable because {πoptA
i }Ni=1

aims at minimizing the asymptotic MSE.
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(l) Case 2
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(m) Case 3
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uniform poisson

n

lo
g
(M

S
E
)

(n) Case 4

Figure 4 Empirical MSEs among different n when n0 = 200 is fixed using different

methods and different optimality criteria. OPS with ĤoptA means Algo-

rithm 2 under A-optimality criterion; OPS with ĤoptL means Algorithm 2

under L-optimality criterion.

To demonstrate the performance of the formulas (14) and (15) in estimating the variance-

covariance matrices, we compare the empirical MSEs with the estimated MSEs for all four cases.
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Here an estimated MSE is the trace of the estimated variance-covariance matrix. Figure 5 shows

that the proposed formula in (14) works well for Algorithm 2, and the proposed formula in (15)

works well for the approximately optimal algorithm based on subsampling with replacement.

The results for using the L-optimality criterion are omitted due to similarity.
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(q) Case 3
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(r) Case 4

Figure 5 Empirical MSEs and estimated MSEs for two different subsampling meth-

ods with a fixed n0 = 200 and different n.

5.1.2 Computation Efficiency

Besides estimation efficiency, we also investigate computational efficiency by comparing the

CPU seconds that each algorithm uses in Case 1 on a MacBook Pro equipped with a 2.5

GHz Intel Core i7 processor and 16 GB memory using R [19]. Table 1 indicates that the

approximately optimal subsampling algorithms under the L-optimality criterion are always

faster than that under the A-optimality criterion. This is as expected because compared with

πoptA
i , πoptL

i has a simpler expression and its calculation does not involve matrix multiplication.

Among all approximately optimal subsampling algorithms, Poisson subsampling algorithm with
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HoptA takes the longest time which is reasonable because it approximates MN and H using the

full data instead of the pilot subsample. The uniform subsampling algorithms (one based on

Poisson subsampling and the other based on sampling with replacement) take the least time

because there is no overhead time to calculate the subsampling probabilities. Clearly, using full

data to compute β̂full directly is the most time-consuming method.

Table 1 CPU seconds of different algorithms for Case 1 with a fixed n0 = 200 and

different n. The full data sample size is N = 105 with three categories

for the responses and covariate dimension d = 3. The times are the total

times calculated from 1000 implementations of each algorithms.

Method n

200 1000 3000

OPS with ĤoptA 121.78 123.75 132.61

OPS with ĤoptL 104.52 106.83 115.17

OPS with ĤoptA =∞ 120.97 122.85 131.46

OPS with ĤoptL =∞ 103.74 106.13 113.94

OPS with HoptA 148.58 149.54 158.80

OPS with HoptL 110.05 112.32 120.74

OSWR optA 120.82 123.00 125.57

OSWR optL 97.80 99.63 109.64

Uniform Poisson 8.95 10.88 17.86

Uniform 6.29 8.19 14.80

Next, we compare the computational efficiency among different algorithms for larger data

volumes by increasing the number of categories of the response variable and the dimension of

the covariates. We investigate how the computational cost changes as the full data sample size

N goes large. Suppose that the response variable has 6 categories, meaning K = 5, and the

dimension of covariates is d = 10. Let the true value of β be (1T
10, 21T

10, 31T
10, 41T

10, 51T
10)T,
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where 110 is a 10 dimensional vector with each entry being 1. We generate the covariates from

N10(0,Σ10) with Σ10 = 0.5I10 + 0.5J10, where J10 is a 10 × 10 matrix with each entry being

1. Table 2 shows that all approximately optimal subsampling algorithms demonstrate a supe-

rior computational efficiency to the full data computation. We also implement the stochastic

gradient descent (SGD) method for comparison. SGD is nearly twice faster than full data

computation and much slower than the approximately optimal subsampling algorithms.

Table 2 CPU seconds for different algorithms with n0 = 1000, n = 2000, and

different N . The response variable contains 6 categories and covariates

are generated from N10(0,Σ10). The times are the total times calculated

from 20 implementations of each algorithms. SGD stands for the stochastic

gradient descent with a learning rate 0.001.

Method N

105 5× 105 106

OPS with ĤoptA 15.99 65.70 126.77

OPS with ĤoptL 5.84 15.89 28.53

OPS with ĤoptA =∞ 15.85 66.15 126.64

OPS with ĤoptL =∞ 5.78 15.73 28.70

OPS with HoptA 23.23 101.12 196.85

OPS with HoptL 5.89 16.42 29.84

OSWR optA 16.75 65.72 127.49

OSWR optL 6.53 16.17 28.42

Uniform Poisson 3.39 3.92 4.56

Uniform 3.25 3.46 3.88

SGD 65.82 331.33 657.44

Full data 107.61 567.26 1146.82
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5.2 Real Data Analysis

5.2.1 Cover Type Data
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Figure 6 Empirical MSEs for cover type dataset among different n when n0 = 1000

is fixed using different methods for 1000 replicates.

We assess the estimation efficiency of the approximately optimal Poisson subsampling al-

gorithms by applying it to a forest cover type dataset [20]. This dataset is used to predict

the forest type based on different geographical conditions. It contains 581012 observations

and the response variable has 7 categories corresponding to 7 forest types whose percentages

are 36.46% (Spruce/Fir), 48.76% (Lodgepole Pine), 6.15% (Ponderosa Pine), 0.427% (Cotton-

wood/Willow), 1.63% (Aspen), 2.99% (Douglas-fir) and 3.53% (Krummholz). We use the 10

quantitive variables as covariates, which measure geographical locations and lighting conditions.

Figure 6 shows that the approximately optimal subsampling algorithms are more efficient than

the algorithms based on uniform subsampling probabilities.

5.2.2 Character Font Image Data

We apply the approximately optimal subsampling algorithms to the character font image

data [20]. This dataset contains pixel values and script information of different images for 153

fonts. We use observations from 5 fonts: Agency FB, Arial, Mongolian Baiti, Bank Gothic and
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OCR-B as the target dataset and the number of total observations is 124817. The font type

is the response variable and the corresponding percentages for each font are 0.80%, 21.02%,

1.32%, 1.79% and 75.06%. The dataset contains 410 quantitative variables and we use singular

value decomposition to find 20 principle components with the largest singular values as the

covariates. Figure 7 shows that the approximately optimal subsampling algorithms outperform

the uniform subsampling algorithms.
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Figure 7 Empirical MSEs for character font image dataset among different n when

n0 = 500 is fixed using different methods for 1000 replicates.

6 Summary

In this paper, we have proposed an approximately optimal Poisson subsampling algorithm

to reduce the computational burden in softmax regression. The Poisson subsampling procedure

ensures that there are no duplicate data points in the subsample, and it is feasible to draw

subsamples from massive datasets when the data volumes exceed the computer’s memory limit.

We have compared the proposed algorithm with the algorithm based on sampling with replace-

ment on both simulated and real datasets, and demonstrated that the proposed algorithm has

a better estimation efficiency, especially for high subsampling rate.
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YAO Yaqiong · ZOU Jiahui · WANG HaiYing

A.1 Proofs Related to Optimal Poisson Subsampling Algorithms

To begin with, we introduce several notations. Denote OP |DN
(1) and oP |DN

(1) as bound-

edness and convergence to zero, respectively, in conditional probability given the full data DN .

Specifically for a sequence of random vector vn,N , vn,N = OP |DN
(1) means that for any ε > 0,

there exists a finite Cε > 0 such that

P
{

sup
n

P (‖vn,N‖ > Cε|DN ) ≤ ε
}
→ 1 as n,N →∞;

vn,N = oP |DN
(1) means that for any ε, δ > 0,

P {P(‖vn,N‖ > δ|DN ) ≤ ε} → 1 as n,N →∞.

We use ḟ(β) to denote the first derivative of function f(β) with respect to β. The asymp-

totic properties followed are obtained based on n and N tending to infinity except additional

declarations.

Proof of Theorem 2.1

Proof (Theorem 2.1) Firstly, given the full data DN , under Assumptions 1 and 4, we

have

E
{
`∗p(β)− `f (β)

∣∣DN}2
=

1

N2

N∑
i=1

nπi(1− nπi)q2
i (β)

n2π2
i

≤ 1

nN2

N∑
i=1

q2
i (β)

πi

YAO Yaqiong
Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA.
Email: yaqiong.yao@uconn.edu
ZOU Jiahui
School of Statistics, Capital University of Economics and Business, Beijing 100070, China.
Email: zoujiahui@amss.ac.cn
WANG HaiYing (Corresponding author)
Department of Statistics, University of Connecticut, Storrs, CT, 06269, USA.
Email: haiying.wang@uconn.edu

◦ YAO Yaqiong and ZOU Jiahui contributed equally to this work.

1



≤ 1

nN2

N∑
i=1

2C2
1‖xi‖2 + 2C2

2

πi

≤ 2C2
1

nN2

N∑
i=1

‖xi‖2

πi
+

2C2
2

nN2

N∑
i=1

1

πi

= OP (n−1), (A.1)

where C1 = λ(K + 1), C2 = 1 + logK, λ = supβ∈Θ ‖β‖,

|qi(β)| =

∣∣∣∣∣
K∑
k=1

δi,kx
T
i βk − log

{
1 +

K∑
l=1

ex
T
i βl

}∣∣∣∣∣
≤

K∑
k=1

‖xi‖‖βk‖+ log
{

1 +

K∑
l=1

e‖xi‖‖βl‖
}

≤ K‖xi‖‖β‖+ log
(

1 +Ke‖xi‖‖β‖
)

≤ K‖xi‖‖β‖+ 1 + logK + ‖xi‖‖β‖

≤ λ(K + 1)‖xi‖+ 1 + logK

= C1‖xi‖+ C2

and

1

N2

N∑
i=1

‖xi‖2

πi
≤

√√√√ 1

N2

N∑
i=1

‖xi‖4
πi

√√√√ 1

N2

N∑
i=1

1

πi
= OP (1).

From (A.1), by Markov’s inequality, we have `∗P (β)− `f (β) → 0 in conditional probability

given DN . Note that the parameter space is compact, and β̂Psub and β̂full are the unique global

maximums of the continuous concave functions `∗P (β) and `f (β), respectively. Thus, from

Theorem 5.9 and its remark of [1], conditionally on DN in probability,

‖β̂Psub − β̂full‖ = oP |DN
(1), (A.2)

which ensures that β̂Psub is close to β̂full as long as n is not small.

Secondly, using Taylor’s theorem [c.f. Chapter 4 of 2],

0 = ˙̀∗
P,j(β̂

P
sub) = ˙̀∗

P,j(β̂full) +
∂ ˙̀∗
P,j(β̂full)

∂βT
(β̂Psub − β̂full) +RPj , (A.3)

where ˙̀∗
P,j(β) is the partial derivative of `∗P (β) with respect to βj , and

RPj = (β̂Psub − β̂full)
T

∫ 1

0

∫ 1

0

∂2 ˙̀∗
P,j{β̂full + uv(β̂Psub − β̂full)}

∂β∂βT
vdudv (β̂Psub − β̂full). (A.4)
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By direct calculation, the second derivative of ˙̀∗
P,j(β) satisfies the following condition

sup
β∈Θ

∥∥∥∥∥∂2 ˙̀∗
P,j(β)

∂β∂βT

∥∥∥∥∥ ≤ 2

nN

N∑
i=1

Lνi‖xi‖3

πi
, (A.5)

where L is a positive constant and ‖·‖ is the Frobenius norm. According to Markov’s inequality

and Assumption 3,

P

(
1

nN

N∑
i=1

νi‖xi‖3

πi
≥ τ

∣∣∣∣∣DN
)
≤ 1

nNτ

N∑
i=1

E

(
νi‖xi‖3

πi

∣∣∣∣∣DN
)

=
1

Nτ

N∑
i=1

‖xi‖3 → 0 (A.6)

in probability as τ →∞, which, combining with (A.5), deduces that

sup
u,v

∥∥∥∥∥∂2 ˙̀
P,j{β̂full + uv(β̂Psub − β̂full)}

∂β∂βT

∥∥∥∥∥ = OP |DN
(1), (A.7)

and results in

RPj = OP |DN
(‖β̂Psub − β̂full‖2). (A.8)

by (A.4). So, according to (A.3), we obtain

β̂Psub − β̂full = −῭∗−1
P (β̂full)

{
˙̀∗
P (β̂full) +OP |DN

(‖β̂Psub − β̂full‖2)
}
. (A.9)

Thirdly, by direct calculation, we know that

E
{

῭∗
P (β̂full)|DN

}
= MN . (A.10)

For any component [῭∗P ]j1j2 of ῭∗
P (β̂full) and 1 ≤ j1, j2 ≤ dK,

V
(

[῭∗P ]j1j2 |DN
)

=
1

(nN)2

N∑
i=1

nπi(1− nπi)
(

[φi(β̂full)⊗ (xix
T
i )]j1j2

)2

π2
i

≤ 1

nN2

N∑
i=1

(
[φi(β̂full)⊗ (xix

T
i )]j1j2

)2

πi

≤ 1

nN2

N∑
i=1

‖xi‖4

πi
= OP (n−1), (A.11)

where the second last inequality holds by the fact that all elements of φi are between 0 and 1,

and the last equality is from Assumption 4. Combining with (A.10) and (A.11), we have

῭∗
P (β̂full)−MN = OP |DN

(n−1/2). (A.12)

3



Afterwards, note that

˙̀∗
P (β̂full) =

1

N

N∑
i=1

νisi(β̂full)⊗ xi
nπi

≡ 1

N

N∑
i=1

ηPi . (A.13)

Given DN , ηP1 , ...,η
P
n are independent variables, we have

E{ ˙̀∗
P (β̂full)} =

1

N

N∑
i=1

si(β̂full)⊗ xi = 0 (A.14)

and

VPG ≡ V

(√
n

N

N∑
i=1

ηPi |DN

)
(A.15)

=
n

N2

N∑
i=1

V(νi)
{
si(β̂full)⊗ xi

}{
si(β̂full)⊗ xi

}T
(nπi)2

=
1

N2

N∑
i=1

(1− nπi)ψi(β̂full)⊗ (xix
T
i )

πi

= OP (1), (A.16)

where the last equality holds because each element of VPG is bounded by N−2
∑N
i=1 π

−1‖xi‖2 =

OP (1).

Meanwhile, for every ε > 0 and some ρ > 0,

N∑
i=1

E{‖
√
nN−1ηPi ‖2I(

√
n‖ηPi ‖ > Nε)|DN}

≤ n1+ρ/2

N2+ρερ

N∑
i=1

E{‖ηPi ‖2+ρI(
√
n‖ηPi ‖ > Nε)|DN}

≤ n1+ρ/2

N2+ρερ

N∑
i=1

E(‖ηPi ‖2+ρ|DN )

=
n1+ρ/2

N2+ρερ

N∑
i=1

‖si(β̂full)‖2+ρ‖xi‖2+ρ

(nπi)1+ρ

≤ 1

nρ/2
1

N2+ρ

1

ερ

N∑
i=1

K2+ρ‖xi‖2+ρ

π1+ρ
i

= oP (1),

where the last equality is from Assumption 4. From (A.13) and (A.16), by the Lindeberg-Feller
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central limit theorem [Proposition 2.27 of 1],

√
nV
−1/2
PG

˙̀∗
P (β̂full) = V

−1/2
PG

√
n

N

N∑
i=1

ηPi → N(0, I) (A.17)

in distribution conditionally on DN .

Finally, from (A.2), (A.9) and (A.12), we have

β̂Psub − β̂full = −῭∗−1
P (β̂full) ˙̀∗

P (β̂full) + oP |DN
(1), (A.18)

῭∗−1
P (β̂full)−M−1

N = −M−1
N {῭

∗
P (β̂full)−MN}῭∗−1

P (β̂full) = OP |DN
(n−1/2) (A.19)

and

V
−1/2
G M−1

N V
1/2
PG(V

−1/2
G M−1

N V
1/2
PG)T = V

−1/2
G M−1

N V
1/2
PGV

1/2
PGM

−1
N V

−1/2
G = I. (A.20)

Then gathering (A.17), (A.18), (A.19) and (A.20), by Slutsky’s Theorem [Theorem 6 of 2], we

have

√
nV
−1/2
G (β̂Psub − β̂full)

= −
√
nV
−1/2
G

῭∗−1
P (β̂full) ˙̀∗

P (β̂full) + oP |DN
(1)

= −
√
nV
−1/2
G M−1

N
˙̀∗
P (β̂full)−

√
nV
−1/2
G {῭∗−1

P (β̂full)−M−1
N } ˙̀∗

P (β̂full) + oP |DN
(1)

= −V−1/2
G M−1

N V
1/2
PG

√
nV
−1/2
PG

˙̀∗
P (β̂full) + oP |DN

(1)

→ N(0, I)

in distribution conditionally on DN , where VG = M−1
N VPGM

−1
N .

Proof of Theorem 3.1

Proof (Theorem 3.1) We only prove this theorem under A-optimality criterion because

the proof under L-optimality criterion is similar. The optimal subsampling probabilities under

A-optimality criterion minimize tr(VG), which is

tr(VG) = tr(M−1
N VPGM

−1
N )

=
1

N2

N∑
i=1

1− nπi
πi

tr
{
M−1
N ψi(β̂full)⊗ (xix

T
i )M−1

N

}
=

1

N2

N∑
i=1

1− nπi
πi

‖M−1
N {si(β̂full)⊗ xi}‖2

=
1

N2

N∑
i=1

(toptA
i )2

πi
− n

N2

N∑
i=1

(toptA
i )2.

For simplicity, let ti = toptA
(i) (i = 1, 2, ..., N). This optimization problem can be reduced to
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find πoptA
i minimizing

T =

N∑
i=1

t2i
πi

subject to

N∑
i=1

πi = 1, 0 ≤ πi ≤
1

n
, i = 1, 2, ..., N. (A.21)

Utilizing slack variables ω2
1 , ω

2
2 , ..., ω

2
N and by Lagrangian multiplier method, we can construct

H(π1, ..., πN , λ, µ1, ..., µN , ω1, ..., ωN ) =

N∑
i=1

t2i
πi

+ λ

(
N∑
i=1

πi − 1

)
+

N∑
i=1

µi

(
πi + ω2

i −
1

n

)
.

(A.22)

The KKT conditions [3]



∂H

∂πi
= − t

2
i

π2
i

+ λ+ µi = 0, i = 1, 2, ..., N ; (A.23)

∂H

∂λ
=

N∑
i=1

πi − 1 = 0; (A.24)

∂H

∂µi
= πi + ω2

i =
1

n
, i = 1, 2, ..., N ; (A.25)

∂H

∂ωi
= 2µiωi = 0, i = 1, 2, ..., N ; (A.26)

µi ≥ 0, i = 1, 2, ..., N . (A.27)

are satisfied. According to (A.23), we have

πi =
ti√
λ+ µi

, i = 1, 2, ..., N. (A.28)

Combined with (A.25),

ti√
λ+ µi

+ ω2
i =

1

n
, i = 1, 2, ..., N ; (A.29)

According to (A.26), at least one of µi and ωi should be 0. Then we have the following equations

ti ≤
√
λ

n
, µi = 0, πi =

ti√
λ

; (A.30)

ti >

√
λ

n
, ωi = 0, πi =

ti√
λ+ µi

=
1

n
. (A.31)

Here ti is organized in an increasing order, and let tN−g ≤
√
λ
n and tN−g+1 >

√
λ
n (g ≥ 0). From
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(A.24), we have

N−g∑
i=1

ti√
λ

+

N∑
i=N−g+1

ti√
λ+ µi

= 1,

N−g∑
i=1

ti√
λ

+

N∑
i=N−g+1

1

n
= 1.

Thus,

√
λ =

n

n− g

N−g∑
i=1

ti. (A.32)

Let H =
√
λ
n =

∑N−g
i=1 ti
n−g , then we have

N∑
i=1

(ti ∧H) =

N−g∑
i=1

ti +

N∑
i=N−g+1

H

=

N−g∑
i=1

ti +
g

n− g

N−g∑
i=1

ti

=
√
λ = nH. (A.33)

Combining with (A.31) and (A.30), we know

πi =
ti∑N

i=1(ti ∧H)
, ti < H;

πi =
H∑N

i=1(ti ∧H)
, ti ≥ H.

This can be further simplified as

πi =
ti ∧H∑N

i=1(ti ∧H)
, i = 1, 2, ..., N. (A.34)

The range of g is shown as follows. Combined with (A.33) and (A.34), we know
πN−g =

tN−g(n− g)

n
∑N−g
i=1 ti

<
1

n
,

πN−g+1 =
1

n
≥ tN−g+1(n− g + 1)

n
∑N−g+1
i=1 ti

;
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⇔


tN−g∑n−g
i=1 ti

<
1

n− g
,

tN−g+1∑N−g+1
i=1 ti

≥ 1

n− g + 1
;

⇔


∑N−g
i=1 ti
tN−g

> n− g,∑N−g+1
i=1 ti
tN−g+1

≤ n− g + 1.

Proof of Theorem 4.3

For clear presentation, we use πi(β̂full) to represent πoptL
i and use πi(β̂

0
P ) to represent the

quantity with same expression as πoptL
i except that β̂full is replaced by β̂0

P . The sample sizes

of the two stages are set to be n0 = o(n1/2) to ensure that the contribution of the first stage

subsample is dominated by that of the second stage subsample. Thus, we only need to consider

the second stage subsample in the objective function. Denote

`∗adaP (β) =
1

N

n∗∑
i=1

1

nπ∗i (β̂0
P )

[ K∑
k=1

δ∗i,kβ
T
k x
∗
i − log

{
1 +

K∑
l=1

eβ
T
l x∗i

}]

=
1

N

N∑
i=1

νi

nπi(β̂0
P )

[
K∑
k=1

δi,kβ
T
k xi − log

{
1 +

K∑
l=1

eβ
T
l xi

}]
,

where νi ∼ Bern{nπi(β̂0
P )} is the indicator variable in the second stage. For sake of simplicity,

we use ∗ to denote quantities of the second stage sample in this proof.

Before proofing, we need several lemmas.

Lemma A.1.1 Under Assumption 5, as N →∞

‖x‖(N) = OP (lnN),

where ‖x‖(N) = max{‖xi‖, i = 1, 2, ..., N}.

Proof (Lemma A.1.1) Note that for some M > 1 and a constant c > 0,

lim
N→∞

N ln

{
1− exp(c2/2)

NM

}
= lim
N→∞

−exp(c2/2)

NM−1
= 0 (A.35)

Thus, combing (A.35) with Markov’s inequality and Assumption 5, we know that for any ε > 0,

there exists a sufficient large N such that

P{‖x‖(N) ≤M lnN} = {1− P(‖xi‖ > M lnN)}N

≥
{

1− E(e‖xi‖)

eM lnN

}N

8



≥
{

1− exp(c2/2)

NM

}N
= exp

[
N ln

{
1− exp(c2/2)

NM

}]
= 1− ε.

Therefore,

‖x‖(N) = OP (lnN).

Lemma A.1.2 Under Assumptions 1 and 5, if k2 ≥ 1 and k1 − k2 ≥ −1, then

1

Nk2+1

N∑
i=1

‖xi‖k1

πk2i (β̂0
P )
≤ Kk2/2

 Kn

n− g
1

N

N∑
j=1

‖xj‖

k2  1

N

N∑
j=1

‖xj‖k1−k2
(

1 +Keλ‖xj‖
)k2

+
nk2

Nk2

 1

N

N∑
j=1

‖xi‖k1
 = OP (1),

where λ = supβ∈Θ ‖β‖.

Proof (Lemma A.1.2) For simplicity, here {ti}Ni=1 means {toptL
i (β̂0

P )}Ni=1, whose expres-

sion is the same as (7) except replacing β̂full with β̂0
P . Denote the order statistic of {ti}Ni=1

as {t(i)}Ni=1 and reorder {xi}Ni=1, {yi}Ni=1 and {si(β̂0
P )}Ni=1 to be the same sequence as {t(i)}Ni=1

and define them to be {x′i}Ni=1, {y′i}Ni=1 and {s′i(β̂0
P )}Ni=1, respectively.

Firstly, it is seen that

1

Nk2+1

N∑
i=1

‖xi‖k1

πk2i (β̂0
P )

=
1

Nk2+1

{
N∑
i=1

(ti ∧H)

}k2 { N∑
i=1

‖xi‖k1
(ti ∧H)k2

}

=
1

Nk2+1

{
N∑
i=1

(ti ∧H)

}k2 [ N∑
i=1

‖x′i‖k1
{t(i) ∧H}k2

]

=
1

Nk2+1

{
N∑
i=1

(ti ∧H)

}k2 N−g∑
i=1

‖x′i‖k1
{t(i) ∧H}k2

+

N∑
i=N−g+1

‖x′i‖k1
{t(i) ∧H}k2


=

1

Nk2+1

{
N∑
i=1

(ti ∧H)

}k2 
N−g∑
i=1

‖x′i‖k1

tk2(i)

+

N∑
i=N−g+1

‖x′i‖k1
Hk2


=

1

Nk2+1

{
N∑
i=1

(ti ∧H)

}k2 
N−g∑
i=1

‖x′i‖k1−k2

‖s′i(β̂0
P )‖k2

+

N∑
i=N−g+1

‖x′i‖k1
Hk2


≡ ∆1 + ∆2. (A.36)
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Secondly, we have

‖s′i(β̂0
P )‖ =

[
K∑
k=1

{δi,k − pk(x′i,β)}2
]1/2

≥ K− 1
2

K∑
k=1

|δi,k − pk(x′i,β)|

= K−
1
2

{
1 +

∑K
l=1 e

x′i
TβlI(l 6= j)

1 +
∑K
k=1 e

x′i
Tβk

+

∑K
l=1 e

x′i
TβlI(l 6= j)

1 +
∑K
k=1 e

x′i
Tβk

}

= K−
1
2

{
1 + 2

∑K
l=1 e

x′i
Tβl(1− δi,l)

1 +
∑K
k=1 e

x′i
Tβk

}

≥ K− 1
2

1

1 +
∑K
k=1 e

x′i
Tβk

≥ K− 1
2

(
1 +Keλ‖x

′
i‖
)−1

, (A.37)

where the first inequality is due to Cauchy-Schwartz inequality. Note that from Assumption 5

and Law of Large Numbers, for a given k > 0, we know

1

N

N∑
i=1

‖xi‖k =
1

N

N∑
i=1

E‖xi‖k + oP (1) = OP (1), (A.38)

and for a given a > 0,

1

N

N∑
i=1

ea‖xi‖ =
1

N

N∑
i=1

Eea‖xi‖ + oP (1) = OP (1). (A.39)

Then, by (A.38), (A.39) and Assumption 5, we have

1

N

N∑
i=1

‖xi‖k1−k2
(

1 +Keλ‖xi‖
)k2

≤ 1

N

N∑
i=1

‖xi‖k1−k2
(

2Keλ‖xi‖
)k2

≤ (2K)k2

{
1

N

N∑
i=1

‖xi‖2(k1−k2)

}1/2(
1

N

N∑
i=1

e2k2λ‖xi‖

)1/2

= OP (1), (A.40)

where the last inequality is according to Cauchy-Schwartz inequality.

Finally, with assumption 5, (A.37), (A.38) and (A.40), we can achieve

∆1 =
1

Nk2+1


N∑
j=1

(tj ∧H)


k2
N−g∑
i=1

‖x′i‖k1−k2

‖s′i(β̂0
P )‖k2
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≤ Kk2/2

(
n

n− g
1

N

N−g∑
i=1

t(i)

)k2 {
1

N

N−g∑
i=1

‖x′i‖k1−k2
(

1 +Keλ‖x
′
i‖
)k2}

≤ Kk2/2

(
n

n− g
1

N

N−g∑
i=1

‖s′i(β̂0
P )‖‖x′i‖

)k2 {
1

N

N−g∑
i=1

‖x′i‖k1−k2
(

1 +Keλ‖x
′
i‖
)k2}

≤ Kk2/2

(√
Kn

n− g
1

N

N−g∑
i=1

‖x′i‖

)k2 {
1

N

N−g∑
i=1

‖x′i‖k1−k2
(

1 +Keλ‖x
′
i‖
)k2}

≤ Kk2/2

(√
Kn

n− g
1

N

N∑
i=1

‖xi‖

)k2 {
1

N

N∑
i=1

‖xi‖k1−k2
(

1 +Keλ‖xi‖
)k2}

= OP (1). (A.41)

With the help of (A.33) and (A.38), we have

∆2 =
1

Nk2+1

{∑N
j=1(tj ∧H)

H

}k2 N∑
i=N−g+1

‖x′i‖k1

=
nk2

Nk2+1

N∑
i=N−g+1

‖x′i‖k1

≤ nk2

Nk2

(
1

N

N∑
i=1

‖xi‖k1
)

= OP

(
nk2

Nk2

)
. (A.42)

This proof is completed combining with (A.36), (A.41) and (A.42).

Lemma A.1.3 If Assumptions 1, 2 and 5 hold, then

῭∗ada
P (β̂full)−MN = OP |DN

(n−1/2) (A.43)

and

˙̀∗ada
P (β̂full) = OP |DN

(n−1/2), (A.44)

where

῭∗ada
P (β̂full) =

∂2`∗adaP (β̂full)

∂β∂βT
=

1

nN

N∑
i=1

νiφi(β̂full)⊗ (xixi
T)

πi(β̂0
P )

.

Proof (Lemma A.1.3) Calculate directly,

E
{

῭∗ada
P (β̂full)|DN

}
= Eβ̂0

P

[
E{῭∗adaP (β̂full)|DN , β̂0

P }
]

11



= Eβ̂0
P

(MN |DN ) = MN , (A.45)

where Eβ̂0
P

means the expectation is taken with respect to the distribution of β̂0
P conditionally

on DN .

For any element {῭∗adaP (β̂full)}j1j2 of ῭∗ada
P (β̂full) and 1 ≤ j1, j2 ≤ dK,

V
[
{῭∗adaP (β̂full)}j1j2 |DN , β̂0

P

]
=

1

nN2

N∑
i=1

{
1− nπi(β̂0

P )
}[
{φi(β̂full)⊗ (xix

T
i )}j1j2

]2
πi(β̂0

P )

≤ 1

nN2

N∑
i=1

‖xi‖4

πi(β̂0
P )
, (A.46)

where the last inequality holds by the fact that all elements of φi are between 0 and 1. Further,

from Lemma A.1.2 and (A.46),

V
{

[῭∗adaP (β̂full)]
j1j2 |DN

}
= Eβ̂0

P

(
V
[{

῭∗ada
P (β̂full)

}j1j2
|DN , β̂0

P

])
+ Vβ̂0

P

(
E
[{

῭∗ada
P (β̂full)

}j1j2
|DN , β̂0

P

])
= Eβ̂0

P

(
V
[{

῭∗ada
P (β̂full)

}j1j2
|DN , β̂0

P

])
≤ Eβ̂0

P

{
1

nN2

N∑
i=1

‖xi‖4

πi(β̂0
P )

}

≤ Eβ̂0
P

{
K1/2

n

 Kn

n− g
1

N

N∑
j=1

‖xj‖

 1

N

N∑
j=1

‖xj‖3
(

1 +Keλ‖xj‖
)

+
1

nN

 1

N

N∑
j=1

‖xi‖4
}

= OP (n−1). (A.47)

Using Markov’s inequality, (A.43) follows from (A.45) and (A.47).

Similarly, we can achieve that

E
{

˙̀∗ada
P (β̂full)

∣∣∣DN} = 0, (A.48)

V
{

˙̀∗ada
P (β̂full)

∣∣∣DN} = OP (n−1). (A.49)

Combing with (A.48), (A.49) and Markov’s inequality, (A.44) is obtained.
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Lemma A.1.4 If Assumptions 1, 2 and 5 hold, then

β̂adaP − β̂full = OP |DN ,β̂0
P

(n−1/2). (A.50)

Proof (Lemma A.1.4) Firstly, for any β ∈ Θ, we have

E
{
`∗adaP (β)− `f (β)

∣∣∣DN , β̂0
P

}2

=
1

n

[
1

N2

N∑
i=1

{1− nπi(β̂0
P )}q2

i (β)

πi(β̂0
P )

]

≤ 1

n

[
1

N2

N∑
i=1

2C2
1‖xi‖2 + 2C2

2

πi(β̂0
P )

]
= OP (n−1), (A.51)

where C1 = λ(K + 1), C2 = 1 + logK and the last inequality is due to Lemma A.1.2.

Now, according to (A.51), we have `∗adaP (β) − `f (β) → 0 in conditional probability condi-

tionally on DN and β̂0
P . Note that the parameter space is compact, and β̂adaP and β̂full are the

global maximus of the continuous concave functions `∗adaP (β) and `f (β), respectively. Thus,

‖β̂adaP − β̂full‖ = oP |DN ,β̂0
P

(1). (A.52)

Secondly, using Taylor’s theorem [c.f. Chapter 4 of 2],

0 = ˙̀∗ada
P,j (β̂adaP ) = ˙̀∗ada

P,j (β̂full) +
∂ ˙̀∗ada
P,j (β̂full)

∂βT
(β̂adaP − β̂full) +R

β̂0
sub
j , (A.53)

where ˙̀∗ada
P,j (β) is the partial derivative of `∗adaP (β) with respect to βj , and

R
β̂0
sub
j = (β̂adaP − β̂full)

T

∫ 1

0

∫ 1

0

∂2 ˙̀∗ada
P,j {β̂full + uv(β̂adaP − β̂full)}

∂β∂βT
vdudv (β̂adaP − β̂full). (A.54)

The second derivative of ˙̀∗ada
P,j (β) satisfies the following condtion

sup
β∈Θ

∥∥∥∥∥∂2 ˙̀∗ada
P,j (β)

∂β∂βT

∥∥∥∥∥ ≤ 2

n

N∑
i=1

L′νi‖xi‖3

Nπi(β̂0
P )

= OP |DN
(n−1), (A.55)

where L′ is a positive constant and the last equality is due to

P

{
1

n

N∑
i=1

νi‖xi‖3

Nπi(β̂0
P )
≥ τ

∣∣∣∣∣DN
}
≤ 1

nNτ

N∑
i=1

E

{
νi‖xi‖3

πi(β̂0
P )

∣∣∣∣∣DN
}

=
1

Nτ

N∑
i=1

‖xi‖3 → 0 (A.56)
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in probability as τ →∞. So, from (A.55) we have

sup
u,v

∥∥∥∥∥∂2 ˙̀∗ada
P,j {β̂full + uv(β̂adaP − β̂full)}

∂β∂βT

∥∥∥∥∥ = OP |DN
(1), (A.57)

which, combing with (A.54), deduces

R
β̂0
sub
j = OP |DN

(
‖β̂ada

sub − β̂full‖2
)
. (A.58)

Finally, from (A.53) and (A.58),

β̂adaP − β̂full = −
{

῭∗ada
P (β̂full)

}−1 {
˙̀∗ada
P (β̂full) +OP |DN

(‖β̂ada
sub − β̂full‖2)

}
= OP |DN

(n−1/2) + oP |DN
(‖β̂adaP − β̂full‖)

= oP |DN
(1), (A.59)

where the second equality is from (A.43) in Lemma A.1.3 and the last equality is due to (A.52).

Proof (Theorem 4.3) Firstly, denote

˙̀∗ada
P (β̂full) =

1

N

N∑
i=1

νisi(β̂full)⊗ xi

nπi(β̂0
P )

≡ 1

N

N∑
i=1

η
P β̂0

P
i . (A.60)

Given DN and β̂0
P ,η

P β̂0
P

i (i = 1, 2, ..., n) are independent. We also have that

V
P β̂0

P
c ≡ V

(√
n

N

N∑
i=1

η
P β̂0

P
i

∣∣∣DN , β̂0
P

)

=
1

nN2

N∑
i=1

V(νi)
{
si(β̂full)⊗ xi

}{
si(β̂full)⊗ xi

}T
π2
i (β̂0

P )

=
1

N2

N∑
i=1

{
1− nπi(β̂0

P )
}{
ψi(β̂full)⊗ (xix

T
i )
}

πi(β̂0
P )

= OP (1), (A.61)

where the last equality holds because each element of V
P β̂0

P
c is bounded byN−2

∑N
i=1 πi(β̂

0
P )−1‖xi‖2

and N−2
∑N
i=1 πi(β̂

0
P )−1‖xi‖2 = OP (1) from Lemma A.1.2.

Meanwhile, for every ε > 0 and some ρ > 0,

N∑
i=1

E{‖
√
nN−1η

P β̂0
P

i ‖2I(‖ηP β̂0
P

i ‖ > n−1/2Nε)|DN , β̂0
P }
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≤ n1+ρ/2

N1+ρ/2ερ

N∑
i=1

E{‖ηP β̂0
P

i ‖2+ρI(‖ηP β̂0
P

i ‖ > n1/2ε)|DN , β̂0
P }

≤ n1+ρ/2

N1+ρ/2ερ

N∑
i=1

E(‖ηP β̂0
P

i ‖2+ρ|DN , β̂0
P )

=
n1+ρ/2

N1+ρ/2ερ

N∑
i=1

‖si(β̂full)‖2+ρ‖xi‖2+ρ

{nπi(β̂0
P )}1+ρ

≤ 1

nρ/2
1

N2+ρ

1

ερ

N∑
i=1

K2+ρ‖xi‖2+ρ

π1+ρ
i (β̂0

P )
= oP (1),

where the last equality is from Lemma A.1.2. From (A.60) and (A.61), by the Lindeberg-Feller

central limit theorem [Proposition 2.27 of 1], conditionally on DN and β̂0
P ,

√
n(V

P β̂0
P

c )−1/2 ˙̀∗ada
P (β̂full) =

[
V(
√
nN−1η

P β̂0
P

i |DN , β̂0
P )
]−1/2 1

N

N∑
i=1

η
P β̂0

P
i → N(0, I) (A.62)

in distribution.

Secondly, we exam the distance between V
P β̂0

P
c and VP . Here we introduce some new

notations. Let csub(i) denotes the rank of toptL
i (β̂0

P ) in {toptL
(i) (β̂0

P )}Ni=1, and cfull(i) as the rank

of toptL
i (β̂full) in {toptL

(i) (β̂full)}Ni=1. We use gfull to represent the g in Theorem 3.1 and use gsub

to represent the quantity with same expression as g except replacing β̂full with β̂0
P . Besides,

S1 = {i|csub(i) ≤ N − gsub & cfull(i) ≤ N − gfull},

S2 = {i|csub(i) ≥ N − gsub + 1 & cfull(i) ≤ N − gfull},

S3 = {i|csub(i) ≤ N − gsub & cfull(i) ≥ N − gfull + 1},

S4 = {i|csub(i) ≥ N − gsub + 1 & cfull(i) ≥ N − gfull + 1}.

We assume S2 ∪ S3 ∪ S4 = Ø, then∣∣∣∣∣ 1

πi(β̂full)
− 1

πi(β̂0
P )

∣∣∣∣∣
=

∣∣∣∣∣
∑N
j=1 t

optL
j (β̂full)

toptL
i (β̂full)

−
∑N
j=1 t

optL
j (β̂0

P )

toptL
i (β̂0

P )

∣∣∣∣∣
≤

∣∣∣∣∣
∑N
j=1 t

optL
j (β̂full)

toptL
i (β̂full)

−
∑N
j=1 t

optL
j (β̂0

P )

toptL
i (β̂full)

∣∣∣∣∣+

∣∣∣∣∣
∑N
j=1 t

optL
j (β̂0

P )

toptL
i (β̂full)

−
∑N
j=1 t

optL
j (β̂0

P )

toptL
i (β̂0

P )

∣∣∣∣∣
≤

∑N
j=1

∣∣∣toptL
j (β̂full)− toptL

j (β̂0
P )
∣∣∣

toptL
i (β̂full)

+

∣∣∣∣∣ 1

toptL
i (β̂full)

− 1

toptL
i (β̂0

P )

∣∣∣∣∣
N∑
j=1

toptL
j (β̂0

P )

= ∆1 + ∆2. (A.63)
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Note that combining with (A.37), we have∣∣∣‖sj(β̂full)‖ − ‖sj(β̂0
P )‖
∣∣∣

=

∣∣∣‖sj(β̂full)‖2 − ‖sj(β̂0
P )‖2

∣∣∣
‖sj(β̂full)‖+ ‖sj(β̂0

P )‖

≤

∑K
k=1

∣∣∣∣{δj,k − pk(xj , β̂full)
}2

−
{
δj,k − pk(xj , β̂

0
P )
}2
∣∣∣∣

2K−
1
2

(
1 +Keλ‖xi‖

)−1

=

∑K
k=1

∣∣∣{pk(xj , β̂full)− pk(xj , β̂
0
P )
}{

2δj.k − pk(xj , β̂full)− pk(xj , β̂
0
P )
}∣∣∣

2K−
1
2

(
1 +Keλ‖xi‖

)−1

≤
2
∑K
k=1

∣∣∣pk(xj , β̂full)− pk(xj , β̂
0
P )
∣∣∣

K−
1
2

(
1 +Keλ‖xi‖

)−1

≤
2
∑K
k=1 ‖ṗk(xj ,ϕ)‖‖β̂full − β̂0

P ‖‖xj‖
K−

1
2

(
1 +Keλ‖xi‖

)−1

≤ 2K3/2‖β̂full − β̂0
P ‖
(

1 +Keλ‖xj‖
)
‖xj‖, (A.64)

where ϕ = uβ̂full + (1−u)β̂0
P , u ∈ [0, 1], ṗk(xj ,β) is the gradient of pk(xj ,β) with respect to β

and the last inequality is from the fact that ‖ṗk(xj ,β)‖ ≤ 1. Thus based on (A.37) and (A.64),

∆1 =

∑N
j=1

∣∣∣toptL
j (β̂full)− toptL

j (β̂0
P )
∣∣∣

toptL
i (β̂full)

≤ 1

toptL
i (β̂full)

2K3/2‖β̂full − β̂0
P ‖

N∑
j=1

(
1 +Keλ‖xj‖

)
‖xj‖2


≤
√
K
(
1 +Keλ‖xi‖

)
‖xi‖

2K3/2‖β̂full − β̂0
P ‖

N∑
j=1

(
1 +Keλ‖xj‖

)
‖xj‖2


= 2K2‖β̂full − β̂0

P ‖
(
1 +Keλ‖xi‖

)
‖xi‖

N∑
j=1

(
1 +Keλ‖xj‖

)
‖xj‖2

and

∆2 =

∣∣∣∣∣ 1

toptL
i (β̂full)

− 1

toptL
i (β̂0

P )

∣∣∣∣∣
N∑
j=1

toptL
j (β̂0

P )

=

∣∣∣∣∣ toptL
i (β̂0

P )− toptL
i (β̂full)

toptL
i (β̂0

P )toptL
i (β̂full)

∣∣∣∣∣
N∑
j=1

toptL
j (β̂0

P )
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≤
2K3/2

(
1 +Keλ‖xi‖

)
‖β̂full − β̂0

P ‖‖xi‖2

toptL
i (β̂0

P )toptL
i (β̂full)

N∑
j=1

toptL
j (β̂0

P )

≤
2K3/2

(
1 +Keλ‖xi‖

)
‖β̂full − β̂0

P ‖‖xi‖2

‖xi‖2
K
(

1 +Keλ‖xi‖
)2 N∑

j=1

toptL
j (β̂0

P )

≤ 2K3‖β̂full − β̂0
P ‖
(

1 +Keλ‖xi‖
)3 N∑

j=1

‖xj‖. (A.65)

Thus combining with (A.63) and Lemma A.1.4, we have

‖VP β̂0
P

c −VP ‖ =
1

N2

N∑
i=1

‖ψi(β̂full)⊗ (xix
T
i )‖

∣∣∣∣∣1− nπi(β̂full)

πi(β̂full)
− 1− nπi(β̂0

P )

πi(β̂0
P )

∣∣∣∣∣
=

1

N2

N∑
i=1

‖si(β̂full)‖2‖xi‖2
∣∣∣∣∣ 1

πi(β̂full)
− 1

πi(β̂0
P )

∣∣∣∣∣
≤ K

N2

N∑
i=1

‖xi‖2
∣∣∣∣∣ 1

πi(β̂full)
− 1

πi(β̂0
P )

∣∣∣∣∣
≤ K

N2

N∑
i=1

‖xi‖2
{

2K2‖β̂full − β̂0
P ‖
(
1 +Keλ‖xi‖

)
‖xi‖

N∑
j=1

(
1 +Keλ‖xj‖

)
‖xj‖2

+ 2K3‖β̂full − β̂0
P ‖
(

1 +Keλ‖xi‖
)3 N∑

j=1

‖xj‖
}

= ‖β̂full − β̂0
P ‖OP (1)

= OP |DN
(n
−1/2
0 ).

Until now, we have proved that if S2 ∪ S3 ∪ S4 = Ø, ‖VP β̂0
P

c − VP ‖ → 0 in probability

conditionally on DN . Next, we release the condition S2 ∪ S3 ∪ S4 = Ø. Note that under

assumption 5 and Law of Large Numbers, we have

1
1
N

∑N
i=1K

−1/2(1 +Keλ‖xi‖)−1‖xi‖
− 1

1
N

∑N
i=1 E{K−1/2(1 +Keλ‖xi‖)−1‖xi‖}

→ 0 (A.66)

in probability. Noting that n = o(N/ lnN) and combining with Lemma A.1.1, (A.37) and

(A.66), for any β ∈ Θ, we have

πo(N) −
1

n
=

toptL
(N) (β)∑N

i=1 t
optL
(i) (β)

− 1

n

≤
√
K‖x‖(N)/N

1
N

∑N
i=1K

−1/2(1 +Keλ‖xi‖)−1‖xi‖
− 1

n

= OP

(
lnN

N

)
− 1

n
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=
1

n
{oP (1)− 1} , (A.67)

where πo(N) is the largest order statistic of {πoi }Ni=1, which is defined in Theorem 3.1 except

treating H as infinity and replacing β̂full to β. The result indicates that P{πo(N) −
1
n < 0} → 1

and then we get g → 0 in probability. Therefore, P(S2 ∪ S3 ∪ S4 = Ø)→ 1. Thus, we obtain

‖VP β̂0
P

c −VP ‖ = OP |DN
(n
−1/2
0 ). (A.68)

Finally, from (A.43) and (A.59) in Lemma A.1.3, we have

β̂adaP − β̂full = −
{

῭∗ada
P (β̂full)

}−1
˙̀∗ada
P (β̂full) + oP |DN

(1), (A.69){
῭∗ada
P (β̂full)

}−1

−M−1
N = −M−1

N

[{
῭∗ada
P (β̂full)

}
−MN

]{
῭∗ada
P (β̂full)

}−1

= OP |DN
(n−1/2)

(A.70)

and

V−1/2M−1
N

(
V
P β̂0

P
c

)1/2
[
V−1/2M−1

N

(
V
P β̂0

P
c

)1/2
]T

= V−1/2M−1
N V

P β̂0
P

c M−1
N V−1/2

= V−1/2M−1
N VPM

−1
N V−1/2 +OP |DN

(n
−1/2
0 )

= I +OP |DN
(n
−1/2
0 ). (A.71)

Finally gathering (A.59), (A.62), (A.68), (A.69) and (A.70), by Slutsky’s Theorem [Theorem

6 of 2], we have

√
nV−1/2

(
β̂adaP − β̂full

)
= −V−1/2

{
῭∗ada
P (β̂full)

}−1√
n ˙̀∗ada
P + oP |DN

(1)

= −V−1/2M−1
N

√
n ˙̀∗ada
P (β̂full)−V−1/2

[{
῭∗ada
P (β̂full)

}
−M−1

N

]√
n ˙̀∗ada
P + oP |DN

(1)

= −V−1/2M−1
N

(
V
P β̂0

P
c

)1/2 (
V
P β̂0

P
c

)−1/2√
n ˙̀∗ada
P (β̂full) + oP |DN

(1)

→ N(0, I).

A.2 Asymptotic Properties of β̂ada
sub

Here, we present the asymptotic properties of β̂ada
sub , which is the final estimator of optimal

subsampling with replacement algorithm in [4].

Theorem A.2.1 Under Assumptions 1, 2 and 5, if n0/
√
n→ 0, then as n0, n,N →∞,

√
nV
−1/2
S

(
β̂ada

sub − β̂full

)
→ N(0, I) (A.72)
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in distribution conditionally on DN and β̂0
sub, in which VS = M−1

N VNcM
−1
N with VNc having

the expression of

VNc =
1

N2

[
N∑
i=1

ψi(β̂full)⊗ (xix
T
i )

‖si(β̂full)‖‖xi‖

] N∑
j=1

‖sj(β̂full)‖‖xj‖

 .
Proof of Theorem A.2.1

First, we clarify some notations which are going to use in this proof. For optimal subsampling

with replacement algorithm, the sample size is non-random. We use n0 to denote the first stage

sample size and n to denote the second stage sample size. The first stage subsample estimator

is defined as β̂0
sub and the optimal subsampling probabilities under L-optimality are

πoptL
s,i =

‖si(β̂full)‖‖xi‖∑N
j=1 ‖sj(β̂full)‖‖xj‖

, i = 1, 2, ..., N. (A.73)

Assume n0/
√
n→ 0, the contribution of the first step subsample to the likelihood function

is a small term with an order oP |DN
(
√
n) relative to the likelihood function. Thus, we can focus

on the second step subsample only. Denote the log-likelihood function as

`∗ada
s (β) =

1

n

n∑
i=1

1

Nπ∗s,i(β̂
0
sub)

[
K∑
k=1

δ∗i,kβ
T
k x
∗
i − log

{
1 +

K∑
l=1

eβ
T
l x∗i

}]
, (A.74)

where πs,i(β̂
0
sub) has the same expression as πoptL

s,i except that β̂full is replaced by β̂0
sub. All

quantities with ∗ in (A.74) are from the second stage sample. For example, {x∗i }ni=1 mean the

covariates of the second stage sample and {π∗s,i(β̂0
sub)}ni=1 are the corresponding approximated

optimal subsampling probabilities.

Before proofing, we need several lemmas.

Lemma A.2.2 Under Assumptions 1 and 5, for k2 ≥ 1 and k1 − k2 ≥ −1,

1

Nk2+1

N∑
i=1

‖xi‖k1

πk2s,i(β̂
0
sub)

≤ Kk2

{
1

N

N∑
i=1

‖xi‖k1−k2
(

1 +Keλ‖xi‖
)k2}( 1

N

N∑
i=1

‖xi‖k2
)

= OP (1),

(A.75)

where λ = supβ∈Θ ‖β‖.

Proof (Lemma A.2.2) Firstly, it is seen that

[
K∑
k=1

{δi,k − pk(xi,β)}2
]1/2

≥ K− 1
2

K∑
k=1

|δi,k − pk(xi,β)|

= K−
1
2

1 +
∑K
l=1 e

xT
i βlI(l 6= j)

1 +
∑K
k=1 e

xT
i βk

+

∑K
k=1
k 6=j

ex
T
i βk

1 +
∑K
k=1 e

xT
i βk


19



= K−
1
2

{
1 + 2

∑K
l=1 e

xT
i βl(1− δi,l)

1 +
∑K
k=1 e

xT
i βk

}

≥ K− 1
2

1

1 +
∑K
k=1 e

xT
i βk

≥ K− 1
2

(
1 +Keλ‖xi‖

)−1

. (A.76)

With Assumption 5 and Law of Large Numbers, we have

1

N

N∑
i=1

‖xi‖k1−k2
(

1 +Keλ‖xi‖
)k2

≤ 1

N

N∑
i=1

‖xi‖k1−k2
(

2Keλ‖xi‖
)k2

≤ (2K)k2

(
1

N

N∑
i=1

‖xi‖2(k1−k2)

)1/2(
1

N

N∑
i=1

e2k2λ‖xi‖

)1/2

= OP (1), (A.77)

where the last inequality is derived according to Cauchy-Schwarz inequality.

When k2 > 1, combining with (A.76), Lemma 5 and Hölder inequality, we have

1

Nk2+1

N∑
i=1

‖xi‖k1

πk2s,i(β̂
0
sub)

=
1

Nk2+1

N∑
i=1

‖xi‖k1−k2

[
∑K
k=1{δi,k − pk(xi, β̂0

sub)}]k2/2

 N∑
i=1

√√√√ K∑
k=1

{δi,k − pk(xi, β̂0
sub)}2‖xi‖

k2

≤ Kk2/2

Nk2+1

N∑
i=1

‖xi‖k1−k2
(

1 +Keλ‖xi‖
)k2  N∑

i=1

[
K∑
k=1

{
δi,k − pk(xi, β̂

0
sub)

}2
]α/2k2/α

N∑
i=1

‖xi‖k2

≤ Kk2/2

Nk2+1

N∑
i=1

‖xi‖k1−k2
(

1 +Keλ‖xi‖
)k2 (

NKα/2
)k2/α N∑

i=1

‖xi‖k2

= Kk2

{
1

N

N∑
i=1

‖xi‖k1−k2
(

1 +Keλ‖xi‖
)k2}( 1

N

N∑
i=1

‖xi‖k2
)

= OP (1), (A.78)

where α = k2
k2−1 .

When k2 = 1,

1

N2

N∑
i=1

‖xi‖k1

πs,i(β̂0
sub)
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=
1

N2

N∑
i=1

‖xi‖k1−1

[
∑K
k=1{δi,k − pk(xi, β̂0

sub)}]1/2

N∑
i=1

√√√√ K∑
k=1

{δi,k − pk(xi, β̂0
sub)}2‖xi‖

≤ K

N2

N∑
i=1

‖xi‖k1−1
(

1 +Keλ‖xi‖
) N∑
i=1

‖xi‖

=
K

N

N∑
i=1

‖xi‖k1−1
(

1 +Keλ‖xi‖
) 1

N

N∑
i=1

‖xi‖

= OP (1). (A.79)

Finally, (A.75) is obtained due to (A.77), (A.78) and (A.79).

Lemma A.2.3 If Assumptions 1, 2 and 5 hold, then

M
∗β̂0

sub
n −MN = OP |DN

(n−1/2) (A.80)

and

˙̀∗ada
s (β̂full) = OP |DN

(n−1/2), (A.81)

where

M
∗β̂0

sub
n =

∂2`∗ada
s (β̂full)

∂β∂βT
=

1

nN

n∑
i=1

φ∗i (β̂full)⊗ (x∗ix
∗
i

T)

π∗s,i(β̂
0
sub)

.

Proof (Lemma A.2.3) Firstly, by directly calculation,

E
(
M
∗β̂0

sub
n |DN

)
= Eβ̂0

sub

{
E(M

∗β̂0
sub

n |DN , β̂0
sub)

}
= Eβ̂0

sub
(MN |DN ) = MN , (A.82)

where Eβ̂0
sub

means the expectation is taken with respect to the distribution of β̂0
sub given DN .

For any element [M
∗β̂0

sub
n ]j1j2 of M

∗β̂0
sub

n where 1 ≤ j1, j2 ≤ dK,

V
(

[M
∗β̂0

sub
n ]j1j2 |DN , β̂0

sub

)
=

1

nN2

N∑
i=1

[{φi(β̂full)⊗ (xix
T
i )}j1j2 ]2

πs,i(β̂0
sub)

− 1

n
(Mj1j2

N )2

≤ 1

nN2

N∑
i=1

‖xi‖4

πs,i(β̂0
sub)

, (A.83)

where the last inequality holds by the fact that all elements of φi are between 0 and 1.

From Lemma A.2.2 and (A.83),

V
(

[M
∗β̂0

sub
n ]j1j2 |DN

)
= Eβ̂0

sub

{
V
(
M
∗β̂0

sub
n |DN , β̂0

sub

)}
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+ Vβ̂0
sub

{
E
(
M
∗β̂0

sub
n |DN , β̂0

sub

)}
(A.84)

≤ Eβ̂0
sub

{
1

nN2

N∑
i=1

‖xi‖4

πs,i(β̂0
sub)

}

≤ Eβ̂0
sub

{
K

n

(
1

N

N∑
i=1

‖xi‖3
(

1 +Keλ‖xi‖
))( 1

N

N∑
i=1

‖xi‖

)}

=
K

n

(
1

N

N∑
i=1

‖xi‖3
(

1 +Keλ‖xi‖
))( 1

N

N∑
i=1

‖xi‖

)
= OP (n−1). (A.85)

Using Markov’s inequality, (A.80) follows from (A.82) and (A.85).

Similarly, we can achieve that

E

{
∂`∗ada
s (β̂full)

∂β

∣∣∣DN} = 0, (A.86)

V

{
∂`∗ada
s (β̂full)

∂β

∣∣∣DN} = OP (n−1). (A.87)

Finally, (A.81) is obtained combined with (A.86), (A.87) and Markov’s inequality.

Lemma A.2.4 If Assumptions 1, 2 and 5 hold, then

β̂ada
sub − β̂full = OP |DN ,β̂0

sub
(n−1/2) (A.88)

Proof (Lemma A.2.4) Firstly, according to Lemma A.2.2, for any β ∈ Θ, we have

E
{
`∗ada
s (β)− `f (β)

∣∣∣DN , β̂0
sub

}2

=
1

n

{
1

N2

N∑
i=1

q2
i (β)

πs,i(β̂0
sub)
− `2f (β)

}

≤ 1

n

{
1

N2

N∑
i=1

2C2
1‖xi‖2 + C2

2

πs,i(β̂0
sub)

}

≤ 2C2
1

nN2

N∑
i=1

‖xi‖2

πs,i(β̂0
sub)

+
2C2

2

nN2

N∑
i=1

1

πs,i(β̂0
sub)

= OP (1), (A.89)

where C1 = λ(K + 1), C2 = 1 + logK, λ = supβ∈Θ ‖β‖ and

|qi(β)| =

∣∣∣∣∣
K∑
k=1

δi,kx
T
i βk − log

{
1 +

K∑
l=1

ex
T
i βl

}∣∣∣∣∣
≤

K∑
k=1

‖xi‖‖βk‖+ log
{

1 +

K∑
l=1

e‖xi‖‖βl‖
}
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≤ K‖xi‖‖β‖+ log
(

1 +Ke‖xi‖‖β‖
)

≤ K‖xi‖‖β‖+ 1 + logK + ‖xi‖‖β‖

≤ λ(K + 1)‖xi‖+ 1 + logK

= C1‖xi‖+ C2.

Therefore, from Lemma A.2.2 and (A.89),

E
{
`∗ada
s (β)− `f (β)|DN , β̂0

sub

}2

= OP (n−1). (A.90)

Now, from (A.90), we have `∗ada
s (β)− `f (β)→ 0 in conditional probability given DN and β̂0

sub.

Note that the parameter space is compact, and β̂ada
sub and β̂full are the global maximus of the

continuous concave functions `∗ada
s (β) and `f (β), respectively. Thus, conditionally on DN ,

‖β̂ada
sub − β̂full‖ = oP |DN ,β̂0

sub
(1), (A.91)

which ensures that β̂ada
sub is close to β̂full as long as n is large enough.

Secondly, using Taylor’s theorem (c.f. Chapter 4 of Ferguson 1996),

0 = ˙̀∗ada
s,j (β̂ada

sub ) = ˙̀∗ada
s,j (β̂full) +

∂ ˙̀∗ada
s,j (β̂full)

∂βT
(β̂ada

sub − β̂full) +R
β̂0
sub
j , (A.92)

where ˙̀∗ada
s,j (β) is the partial derivative of `∗ada

s (β) with respect to βj , and

R
β̂0
sub
j = (β̂ada

sub − β̂full)
T

∫ 1

0

∫ 1

0

∂2 ˙̀∗ada
s,j {β̂full + uv(β̂sub − β̂ada

sub )}
∂β∂βT

vdudv (β̂ada
sub − β̂full). (A.93)

The second derivative of ˙̀∗ada
s,j (β) satisfies the following condtion∥∥∥∥∥∂2 ˙̀∗ada

s,j (β)

∂β∂βT

∥∥∥∥∥ ≤ 2

n

n∑
i=1

L‖x∗i ‖3

Nπ∗s,i(β̂
0
sub)

= OP (1),

where L is a positive constant and the last equality is valid because, by Markov’s Inequality

and Assumption 5,

P

(
1

n

n∑
i=1

‖x∗i ‖3

Nπ∗s,i(β̂
0
sub)

≥ τ

∣∣∣∣∣DN , β̂0
sub

)
≤ 1

nNτ

n∑
i=1

E

(
‖x∗i ‖3

π∗s,i(β̂
0
sub)

∣∣∣∣∣DN , β̂0
sub

)

=
1

Nτ

N∑
i=1

‖xi‖3 → 0 (A.94)
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as τ →∞. Thus from (A.93) we have

R
β̂0
sub
j = OP |DN ,β̂0

sub

(
‖β̂ada

sub − β̂full‖2
)
. (A.95)

Finally, from (A.92) and (A.95),

β̂ada
sub − β̂full = −

(
M
∗β̂0

sub
n

)−1 {
˙̀∗ada
s (β̂full) +OP |DN ,β̂0

sub
(‖β̂ada

sub − β̂full‖2)
}
. (A.96)

From Lemma A.2.3,
(
M
∗β̂0

sub
n

)−1

= OP |DN
(1). Combining this with (A.82), (A.91) and (A.96)

β̂ada
sub − β̂full = OP |DN ,β̂0

sub
(n−1/2) + oP |DN ,β̂0

sub
(‖β̂ada

sub − β̂full‖),

which implies that

β̂ada
sub − β̂full = OP |DN ,β̂0

sub
(n−1/2). (A.97)

Proof (Theorem A.2.1) Denote

˙̀∗ada
s (β̂full) =

1

n

n∑
i=1

s∗i (β̂full)⊗ x∗i

Nπ∗s,i(β̂
0
sub)

≡ 1

n

n∑
i=1

η
β̂0

sub
i . (A.98)

Given DN and β̂0
sub, η

β̂0
sub

i (i = 1, 2, ..., n) are independent random variables, with mean 0 and

variance

V
β̂0

sub
c ≡ V(η

β̂0
sub

i |DN , β̂0
sub) =

1

N2

N∑
i=1

ψi(β̂full)⊗ (xix
T
i )

πs,i(β̂0
sub)

= OP (1), (A.99)

where the last equality holds because each element of V
β̂0

sub
c is bounded byN−2

∑N
i=1 π(β̂0

sub)−1‖xi‖2

and N−2
∑N
i=1 π(β̂0

sub)−1‖xi‖2 is of order OP (1) from Lemma A.2.2. Meanwhile, for every ε > 0

and some ρ > 0,

n∑
i=1

E{‖n−1/2η
β̂0

sub
i ‖2I(‖ηβ̂0

sub
i ‖ > n1/2ε)|DN , β̂0

sub}

≤ 1

n1+ρ/2ερ

n∑
i=1

E{‖ηβ̂0
sub

i ‖2+ρI(‖ηβ̂0
sub

i ‖ > n1/2ε)|DN , β̂0
sub}

≤ 1

n1+ρ/2ερ

n∑
i=1

E(‖ηβ̂0
sub

i ‖2+ρ|DN , β̂0
sub)

=
1

nρ/2
1

N2+ρ

1

ερ

N∑
i=1

‖si(β̂full)‖2+ρ‖xi‖2+ρ

π1+ρ
s,i (β̂0

sub)
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≤ 1

nρ/2
1

N2+ρ

1

ερ

N∑
i=1

K2+ρ‖xi‖2+ρ

π1+ρ
s,i (β̂0

sub)
= oP (1),

where the last equality is from Lemma A.2.2. From (A.98) and (A.99), by the Lindeberg-Feller

central limit theorem [Proposition 2.27 of 1],

√
n(V

β̂0
sub

c )−1/2 ˙̀∗ada
s (β̂full) =

1√
n

[
V(η

β̂0
sub

i |DN , β̂0
sub)

]−1/2 n∑
i=1

η
β̂0

sub
i → N(0, I)

in distribution conditionally on DN and β̂0
sub.

On the other hand, we exam the distance between V
β̂0

sub
c and VNc. For clarity, we use

{πs,i(β̂full)}Ni=1 to indicate {πoptL
s,i }Ni=1 whose expression are shown in (A.73). First, it is seen

that

‖Vβ̂0
sub

c −VNc‖ =
1

N2

N∑
i=1

‖ψi(β̂full)⊗ (xix
T
i )‖

∣∣∣∣∣ 1

πs,i(β̂full)
− 1

πs,i(β̂0
sub)

∣∣∣∣∣
=

1

N2

N∑
i=1

‖si(β̂full)⊗ xi‖2
∣∣∣∣∣ 1

πs,i(β̂full)
− 1

πs,i(β̂0
sub)

∣∣∣∣∣
=

1

N2

N∑
i=1

‖si(β̂full)‖2‖xi‖2
∣∣∣∣∣ 1

πs,i(β̂full)
− 1

πs,i(β̂0
sub)

∣∣∣∣∣
≤ K2

N2

N∑
i=1

‖xi‖2
∣∣∣∣∣ 1

πs,i(β̂full)
− 1

πs,i(β̂0
sub)

∣∣∣∣∣ . (A.100)

For the last term in the above inequality,∣∣∣∣∣ 1

πs,i(β̂full)
− 1

πs,i(β̂0
sub)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑N
j=1

√∑K
k=1{δj,k − pk(xj , β̂full)}2‖xj‖√∑K

k=1{δi,k − pk(xi, β̂full)}2‖xi‖
−
∑N
j=1

√∑K
k=1{δj,k − pk(xj , β̂0

sub)}2‖xj‖√∑K
k=1{δi,k − pk(xi, β̂full)}2‖xi‖

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑N
j=1

√∑K
k=1{δj,k − pk(xj , β̂0

sub)}2‖xj‖√∑K
k=1{δi,k − pk(xi, β̂full)}2‖xi‖

−
∑N
j=1

√∑K
k=1{δj,k − pk(xj , β̂0

sub)}2‖xj‖√∑K
k=1{δi,k − pk(xi, β̂0

sub)}2‖xi‖

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑N
j=1

(√∑K
k=1[δj,k − pk(xj , β̂full)]2 −

√∑K
k=1[δj,k − pk(xj , β̂0

sub)]2
)
‖xj‖√∑K

k=1{δi,k − pk(xi, β̂full)}2‖xi‖

∣∣∣∣∣∣∣∣
+

√
K
∑N
j=1 ‖xj‖
‖xi‖

∣∣∣∣∣∣ 1√∑K
k=1{δi,k − pk(xi, β̂full)}2

− 1√∑K
k=1{δi,k − pk(xi, β̂0

sub)}2

∣∣∣∣∣∣
(A.101)
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Note that, by (A.76),∣∣∣∣∣∣
√√√√ K∑
k=1

{δi,k − pk(xi, β̂full)}2 −

√√√√ K∑
k=1

{δi,k − pk(xi, β̂0
sub)}2

∣∣∣∣∣∣
=

∣∣∣∑K
k=1{δi,k − pk(xi, β̂full)}2 −

∑K
k=1{δi,k − pk(xi, β̂

0
sub)}2

∣∣∣√∑K
k=1{δi,k − pk(xi, β̂full)}2 +

√∑K
k=1{δi,k − pk(xi, β̂0

sub)}2

≤

∑K
k=1

∣∣∣∣{δi,k − pk(xi, β̂full)
}2

−
{
δi,k − pk(xi, β̂

0
sub)

}2
∣∣∣∣

2K−
1
2

(
1 +Keλ‖xi‖

)−1

=

∑K
k=1

∣∣∣{pk(xi, β̂full)− pk(xi, β̂
0
sub)

}{
2δi,k − pk(xi, β̂full)− pk(xi, β̂

0
P )
}∣∣∣

2K−
1
2

(
1 +Keλ‖xi‖

)−1

≤
2
∑K
k=1

∣∣∣pk(xi, β̂full)− pk(xi, β̂
0
sub)

∣∣∣
K−

1
2

(
1 +Keλ‖xi‖

)−1

≤
2
∑K
k=1 ‖ṗk(xj ,ϕ)‖‖β̂full − β̂0

sub‖‖xi‖
K−

1
2

(
1 +Keλ‖xi‖

)−1

≤ 2K3/2
(

1 +Keλ‖xi‖
)
‖β̂full − β̂0

sub‖‖xi‖, (A.102)

where ϕ = uβ̂full +(1−u)β̂0
sub, u ∈ [0, 1], and ṗk(xj ,β) is the gradient of pk(xj ,β) with respect

to β. The last inequality is from the fact that ‖ṗk(xj ,β)‖ ≤ 1. Combning (A.76) and (A.102),

we have ∣∣∣∣∣∣ 1√∑K
k=1{δi,k − pk(xi, β̂full)}2

− 1√∑K
k=1{δi,k − pk(xi, β̂0

sub)}2

∣∣∣∣∣∣
=

∣∣∣∣√∑K
k=1{δi,k − pk(xi, β̂full)}2 −

√∑K
k=1{δi,k − pk(xi, β̂0

sub)}2
∣∣∣∣√∑K

k=1{δi,k − pk(xi, β̂full)}2
√∑K

k=1{δi,k − pk(xi, β̂0
sub)}2

≤ 2K3/2
(

1 +Keλ‖xi‖
)∥∥∥β̂full − β̂0

sub

∥∥∥ ‖xi‖√K (1 +Keλ‖xi‖
)√

K
(

1 +Keλ‖xi‖
)

≤ 2K5/2
(

1 +Keλ‖xi‖
)3 ∥∥∥β̂full − β̂0

sub

∥∥∥ ‖xi‖. (A.103)

Thus, from (A.100), (A.101), (A.102) and (A.103),

‖Vβ̂0
sub

c −VNc‖ ≤ ‖β̂full − β̂0
sub‖C = OP |DN

(n
−1/2
0 ), (A.104)
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where

C = 2K5/2

{
1

N

N∑
i=1

‖xi‖√∑K
k=1[δi,k − pk(xi, β̂full)]

�
1

N

N∑
i=1

(
1 +Keλ‖xi‖

)
‖xi‖2

+K3/2 1

N

N∑
i=1

(
1 +Keλ‖xi‖

)3

‖xi‖2 �
1

N

N∑
i=1

‖xi‖

}

≤ 2K3

{
1

N

N∑
i=1

(
1 +Keλ‖xi‖

)
‖xi‖ �

1

N

N∑
i=1

(
1 +Keλ‖xi‖

)
‖xi‖2

+
K

N

N∑
i=1

(
1 +Keλ‖xi‖

)3

‖xi‖2 �
1

N

N∑
i=1

‖xi‖

}
= OP (1),

and the last equality follows from (A.77) and Lemma 5.

Finally, from (A.96), (A.97) and Lemma A.2.3,

β̂ada
sub − β̂full = −

(
M
∗β̂0

sub
n

)−1
˙̀∗ada
s (β̂full) +OP |DN

(n−1), (A.105)(
M
∗β̂0

sub
n

)−1

−M−1
N = −M−1

N

(
M
∗β̂0

sub
n −MN

)(
M
∗β̂0

sub
n

)−1

= OP |DN
(n−1/2) (A.106)

and

V
−1/2
S M−1

N

(
V

β̂0
sub

c

)1/2
[
V
−1/2
S M−1

N

(
V

β̂0
sub

c

)1/2
]T

= V
−1/2
S M−1

N V
β̂0

sub
c M−1

N V
−1/2
S

= V
−1/2
S M−1

N VNcM
−1
N V

−1/2
S +OP |DN

(n
−1/2
0 )

= I +OP |DN
(n
−1/2
0 ). (A.107)

Further, based on Lemma A.2.3, (A.104), (A.105), (A.106), (A.107) and Slutsky’s Theorem

[Theorem 6 of 2], we achieve

√
nV
−1/2
S

(
β̂ada

sub − β̂full

)
= −V−1/2

S

(
M
∗β̂0

sub
n

)−1√
n ˙̀∗ada
s +OP |DN

(n−1/2)

= −V−1/2
S M−1

N

√
n ˙̀∗ada
s −V

−1/2
S

{(
M
∗β̂0

sub
n

)−1

−M−1
N

}√
n ˙̀∗ada
s +OP |DN

(n−1/2)

= −V−1/2
S M−1

N

(
V

β̂0
sub

c

)1/2 (
V

β̂0
sub

c

)−1/2√
n ˙̀∗ada
s +OP |DN

(n−1/2)

→ N(0, I)

in distribution conditionally on DN and β̂0
sub.
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