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Abstract

Subsampling is a practical strategy for analyzing vast survival data, which are
progressively encountered across diverse research domains. While the optimal sub-
sampling method has been applied to inferences for Cox models and parametric
accelerated failure time (AFT) models, its application to semi-parametric AFT mod-
els with rank-based estimation have received limited attention. The challenges arise
from the non-smooth estimating function for regression coefficients and the seem-
ingly zero contribution from censored observations in estimating functions in the
commonly seen form. To address these challenges, we develop optimal subsampling
probabilities for both event and censored observations by expressing the estimating
functions through a well-defined stochastic process. Meanwhile, we apply an induced
smoothing procedure to the non-smooth estimating functions. As the optimal sub-
sampling probabilities depend on the unknown regression coefficients, we employ a
two-step procedure to obtain a feasible estimation method. An additional benefit of
the method is its ability to resolve the issue of underestimation of the variance when
the subsample size approaches the full sample size. We validate the performance of
our estimators through a simulation study and apply the methods to analyze the sur-
vival time of lymphoma patients in the Surveillance, Epidemiology, and End Results
program.
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1 INTRODUCTION6

The rapid growth of storage and surveillance technologies, along with advancements in data collection, have empowered the7

medical industry to gather and utilize extensive datasets containing survival outcomes for their research and development activ-8

ities. Nevertheless, the size of these datasets often surpasses the computational capacities of researchers’ computers. To tackle9

the computational burden that arises due to large datasets, various subsampling methods have been proposed. In the context of10

logistic models, Wang et al. 1 introduced an optimal subsampling technique, which aimed to approximate the inferences derived11

from the entire dataset by utilizing a carefully weighted subsample. For each observation, the optimal subsampling probability12

(SSP) is proportional to its contribution to the estimating function2. In survival models, this method has been applied to, for13

example, the additive hazard model3, the Cox model4,5, and the Cox model when dealing with rare event data6.14
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Accelerated failure time (AFT) models characterize the survival times directly, where the regression coefficients correspond15

to multiplicative effects on the survival time. As a useful and more intuitive alternative to the Cox model7, AFT models have16

gained more popularity recently with the advancement in inferences, computational strategies, and software packages8. For17

big survival data, Yang et al. 9 investigated the optimal subsampling method with parametric AFT models, where the optimal18

subsampling procedure is similar to that of a generalized linear model10. Semi-parametric AFT models with unspecified error19

distributions are more desired in practice. Two commonly used estimation approaches for semi-parametric AFT models are the20

least-squares approach11,12,13,14 and the rank-based approach15,16,17,18,19. For the least-squares approach, Yang et al. 20 studied21

the optimal subsampling method with the optimal SSPs intuited from Wang et al. 2 .22

Despite its widespread use, the least-squares approach requires a consistent estimate as the initial value for optimization,23

and the rank-based approach is often used for this purpose. Both the rank-based approach and the least-squares approach face24

challenges in optimization due to the non-smooth nature of their estimating functions. Nevertheless, the induced smoothed25

method can be applied to smooth the estimating function for the rank-based approach21. In contrast, no solutions have been26

proposed to smooth the estimating function for the least-squares approach. Additionally, the rank-based approach outperforms27

the least-squares approach when the error distribution has a heavy tail. This corresponds to the empirical observation that the28

median (or more general quantile) regression outperforms mean regression with heavy-tailed error distributions in non-censored29

scenarios. Moreover, a significant gap exists in the literature regarding subsampling for the rank-based approach. This method30

involves a time complexity of 𝑂(𝜉𝑛𝑛2𝑝) to derive the estimator from a full sample of size 𝑛 with 𝑝 covariates, where 𝜉𝑛 represents31

the number of iterations needed for convergence. Given this computational burden, the development of an optimal subsampling32

method for rank-based estimation is imperative.33

Developing optimal subsampling probabilities for the rank-based AFT modeling is challenging. The optimal SSP of an obser-34

vation depends on its contribution to the estimation function2. The rank-based estimating functions in their most commonly used35

form15 seemingly suggest zero weight for censored observations. Of course, a careful investigation reveals that censored observa-36

tions contribute implicitly. We address this challenge by expressing the estimating functions in terms of a well-defined stochastic37

process17,22. The contributions of censored observations can then be explicitly assessed. Further, rank-based estimating func-38

tions are non-smooth in regression coefficients, which present general computational challenges in finding their root. We employ39

an induced smoothing procedure8,21,23,24 that effectively renders the non-smooth part of the estimating function smooth with-40

out altering the asymptotic properties of the resulting estimator. The variance matrix of the resulting estimator is estimated by a41

sandwich estimator that accounts for both the uncertainty of the subsampling process and the uncertainty of the full-data estima-42

tor. This is in contrast to existing literature9,20 where the uncertainty in the full-data estimator has been discarded as negligible.43

Our implementation is part of an R package aftosmac, which is publicly available at https://github.com/YEnthalpy/aftosmac.44

The rest of the paper is organized as follows. Section 2 introduces the model and the general subsampling procedure for45

semi-parametric AFT models based on the rank-based approach. Section 3 first presents two optimal SSPs based on two criteria46

that are motivated by the optimal design of experiments, and then proposes a feasible two-step procedure along with a bias-47

corrected sandwich estimator for the asymptotic variance. Section 4 reports the performance of the proposed estimator through48

a simulation study. In section 5, we illustrate the usage of the proposed method in a case study of the survival time of lymphoma49

patients in the Surveillance, Epidemiology, and End Results (SEER) program. Section 6 concludes with a discussion.50

2 SUBSAMPLING ESTIMATION FOR RANK-BASED AFT MODELING51

2.1 Full Sample Estimation52

Consider a full sample consisting of 𝑛 subjects. For subject 𝑖 = 1,… , 𝑛, let 𝑇𝑖, 𝐶𝑖, and 𝐗𝑖 represent the log-transformed failure53

time, the log-transformed censoring time, and a 𝑝 × 1 covariate vector, respectively. We assume that 𝑇𝑖 and 𝐶𝑖 are independent54

conditional on 𝐗𝑖. The semi-parametric accelerated failure time model specifies that55

𝑇𝑖 = 𝐗⊤
𝑖 𝜷 + 𝜖𝑖, 𝑖 = 1, 2,… , 𝑛,

where 𝜷 is a 𝑝×1 vector of regression coefficients and 𝜖𝑖’s are independent error terms with identical but unspecified distribution.56

Due to right censoring, the observed data are 𝑛 = (𝑌𝑖, 𝛿𝑖,𝐗𝑖)
𝑛
𝑖=1, where 𝑌𝑖 = min(𝑇𝑖, 𝐶𝑖) and 𝛿𝑖 = 𝐼(𝑇𝑖 < 𝐶𝑖), with 𝐼(⋅)57

denoting the indicator function. Observations across subjects are independent and identically distributed. Let 𝝅 = {𝜋𝑖}
𝑛
𝑖=1 be a58

subsampling distribution so that
∑𝑛

𝑖=1 𝜋𝑖 = 1 and 𝜋𝑖 > 0 for all 𝑖’s.59

https://github.com/YEnthalpy/aftosmac
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The estimating function induced by the linear rank test16,17 is defined based on the ranks of {𝑒𝑖(𝜷)}
𝑛
𝑖=1, where 𝑒𝑖(𝜷) = 𝑌𝑖−𝐗⊤

𝑖 𝜷.60

Let 𝑁𝑖(𝑡, 𝜷) = 𝛿𝑖𝐼
{

𝑒𝑖(𝜷) ≤ 𝑡
}

be the counting process on the time scale of the residual. Define61

𝑆 (0)(𝑡, 𝜷) = 1
𝑛

𝑛
∑

𝑖=1
𝐼{𝑡 ≤ 𝑒𝑖(𝜷)} and 𝑆 (1)(𝑡, 𝜷) = 1

𝑛

𝑛
∑

𝑖=1
𝐼{𝑡 ≤ 𝑒𝑖(𝜷)}𝐗𝑖.

According to Tsiatis 17 , the rank-based estimating function of 𝜷 for the semi-parametric AFT model is62

𝐔(𝜷) = 1
𝑛

𝑛
∑

𝑖=1

∞

∫
−∞

𝜑(𝑡; 𝜷)
[

𝐗𝑖 − 𝐗̄(𝑡; 𝜷)
]

d𝑁𝑖(𝑡; 𝜷), (1)

where 𝜑(𝑡; 𝜷) is a possibly data-dependent weight function. 𝐗̄(𝑡; 𝜷) = 𝑆 (1)(𝑡; 𝜷)∕𝑆 (0)(𝑡; 𝜷).63

Among the various options of the weight 𝜑(𝑡; 𝜷), we focus on Gehan’s weight25 𝜑(𝑡; 𝜷) = 𝑆 (0)(𝑡; 𝜷). This weight has the64

advantage of canceling the denominator of 𝐗̄ Equation (1). The resulting estimating function takes the form65

𝐔𝐺(𝜷) =
1
𝑛

𝑛
∑

𝑖=1

∞

∫
−∞

1
𝑛

𝑛
∑

𝑗=1
𝐼{𝑡 ≤ 𝑒𝑖(𝜷)}(𝐗𝑖 − 𝐗𝑗)d𝑁𝑖(𝑡; 𝜷) =

1
𝑛

𝑛
∑

𝑖=1

1
𝑛

𝑛
∑

𝑗=1
𝛿𝑖(𝐗𝑖 − 𝐗𝑗)𝐼{𝑒𝑖(𝜷) ≤ 𝑒𝑗(𝜷)} (2)

This estimating function is discontinuous in 𝜷, so finding its root is computationally challenge and sometimes convergence in66

iterative root-finding algorithms may not be possible. The form of this estimating function, however, facilitates the application67

of the induced smoothing approach21,23.68

The induced smooth approach replaces the non-smooth estimating function (2) with a smooth version whose solution is69

asymptotically equivalent to the direct solution to (2). Define a 𝑝×1 standard normal random vector 𝐙 that is independent of the70

data. The induced smoothing procedure replaces 𝐔𝐺(𝜷) with 𝔼
[

𝐔𝐺(𝜷 + 𝑛−1∕2𝐙)
]

, where the expectation is taken concerning 𝐙.71

The smoothed version of Equation (2) is 𝐔̃𝐺(𝜷) = 𝑛−1
∑𝑛

𝑖=1 𝐔̃𝐺,𝑖(𝜷), where72

𝐔̃𝐺,𝑖(𝜷) =
𝛿𝑖
𝑛

𝑛
∑

𝑗=1
(𝐗𝑖 − 𝐗𝑗)Φ[𝜅𝑖𝑗(𝜷)], (3)

and 𝜅𝑖𝑗(𝜷) =
√

𝑛[𝑒𝑗(𝜷) − 𝑒𝑖(𝜷)]∕𝑟𝑖𝑗 , with 𝑟2𝑖𝑗 = (𝐗𝑖 − 𝐗𝑗)⊤(𝐗𝑖 − 𝐗𝑗)∕𝑛. The slope matrix of 𝐔̃𝐺(𝜷) takes the form73

𝐌𝑛(𝜷) =
𝜕𝐔̃𝐺(𝜷)
𝜕𝜷

= 1
𝑛

𝑛
∑

𝑖=1

𝛿𝑖
𝑛

𝑛
∑

𝑗=1

𝜙[𝜅𝑖𝑗(𝜷)]
𝑟𝑖𝑗

(𝐗𝑖 − 𝐗𝑗)
⊗2, (4)

where 𝐀⊗2 = 𝐀𝐀⊤ for vector 𝐀 and 𝜙(⋅) is the probability density function of the standard normal distribution.74

2.2 Subsampling Estimation75

Finding the solution 𝜷̂𝑛 to 𝐔̃𝐺(𝜷) = 0 is time-consuming, because it requires evaluating 𝐔̃𝐺(𝜷) which takes 𝑂(𝑛2𝑝) time in each76

iteration of traditional optimization methods. In situations where the dataset’s enormity is truly massive, this endeavor might77

even be unattainable. Therefore, it is imperative to utilize subsampling methods to reduce the time complexity. Let 𝝅 = {𝜋𝑖}
𝑛
𝑖=178

be a subsampling distribution so that
∑𝑛

𝑖=1 𝜋𝑖 = 1 and 𝜋𝑖 > 0 for all 𝑖’s. Suppose we draw a subsample of size 𝑟 with replacement79

through 𝝅. The subsample is denoted by ∗
𝑟 =

{

𝑌 ∗
𝑖 , 𝛿

∗
𝑖 ,𝐗

∗
𝑖 , 𝜋

∗
𝑖

}𝑟
𝑖=1, where 𝑌 ∗

𝑖 , 𝛿∗𝑖 , 𝐗∗
𝑖 , and 𝜋∗

𝑖 are the responses, censoring80

indicators, covariates, and subsampling probabilities (SSPs) of the subsample, respectively. Define 𝑒∗𝑖 (𝜷) = 𝑌 ∗
𝑖 − (𝐗∗

𝑖 )
⊤𝜷. With81

the subsample ∗
𝑟 , the smoothed estimating function of the subsample under Gehan’s weight takes the form82

𝐔̃∗
𝐺(

∗
𝑟 , 𝜷) =

1
𝑟

𝑟
∑

𝑖=1

𝛿∗𝑖
𝑟𝑛𝜋∗

𝑖

𝑟
∑

𝑗=1

1
𝑛𝜋∗

𝑗
(𝐗∗

𝑖 − 𝐗∗
𝑗 )Φ[𝜅∗

𝑖𝑗(𝜷)] (5)

and 𝜅∗
𝑖𝑗(𝜷) =

√

𝑟[𝑒∗𝑗 (𝜷) − 𝑒∗𝑖 (𝜷)]∕𝑟
∗
𝑖𝑗 with 𝑟∗2𝑖𝑗 = (𝐗∗

𝑖 − 𝐗∗
𝑗 )

⊤(𝐗∗
𝑖 − 𝐗∗

𝑗 )∕𝑟. The slope matrix of (5) is83

𝐌∗(∗
𝑟 , 𝜷) =

𝜕𝐔̃∗
𝐺(𝜷;𝐹

∗
𝑟 )

𝜕𝜷
= 1

𝑟

𝑟
∑

𝑖=1

𝛿∗𝑖
𝑟𝑛𝜋∗

𝑖

𝑟
∑

𝑗=1

𝜙[𝜅∗
𝑖𝑗(𝜷)]

𝑛𝜋∗
𝑖 𝑟

∗
𝑖𝑗

(𝐗∗
𝑖 − 𝐗∗

𝑗 )
⊗2, (6)

which plays an important role in estimating the variance and defining optimal SSPs.84
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Let 𝜉𝑟 represent the number of iterations required to compute the subsample estimator. The time complexity of the subsample85

estimator 𝜷̃𝑟 is 𝑂(𝜉𝑟𝑟2𝑝) when using given SSPs, which is much more computationally efficient than obtaining the full sample86

estimator 𝜷̂𝑛 when 𝑟 ≪ 𝑛. Nevertheless, the estimating efficiency of 𝜷̃𝑟 heavily depends on SSPs.87

3 FEASIBLE OPTIMAL SUBSAMPLING88

We consider two types of optimal SSPs based on criteria from optimal design of experiments2. The first type of SSP is based89

on the A-optimal criteria which seeks to minimize the trace of the asymptotic variance of the subsample estimator. Wang et al. 2
90

showed a general form to define the A-optimal SSPs. For the 𝑖th observation, the A-optimal SSP is proportional to the Euclidean91

norm of the full data slope matrix multiplied by the 𝑖th observation’s contribution to the full data estimating function. For the92

rank-based semi-parametric AFT model, the A-optimal SSP for the 𝑖th observation takes the form93

‖

‖

‖

𝐌−1
𝑛 (𝜷̂𝑛)𝐔̃𝐺,𝑖(𝜷̂𝑛)

‖

‖

‖

∑𝑛
𝑖=1

‖

‖

‖

𝐌−1
𝑛 (𝜷̂𝑛)𝐔̃𝐺,𝑖(𝜷̂𝑛)

‖

‖

‖

.

That is, the above A-optimal SSP is proportional to the observation’s contribution to 𝐔̃𝐺(𝜷̂). Since 𝐔̃𝐺,𝑖(𝜷̂) = 0 when 𝛿𝑖 = 0, the94

formula above seemingly suggests that censored observations should have zero optimal SSPs which is not true. To reveal the95

contributions of censored observations to 𝐔̃𝐺(𝜷̂), we adopt the standard approach where the estimating function is expressed by96

a well-defined counting process. Tsiatis 17 used this approach to prove the asymptotic normality of the estimator derived from97

the linear rank test for censored data. The detailed derivation of the A-optimal SSPs is shown below.98

Given 𝜷, let 𝐻̂(⋅) be the Nelson-Aalen-type estimator of the cumulative hazard function for {𝑒𝑖(𝜷)}
𝑛
𝑖=1, where99

𝐻̂(𝑡; 𝜷) = 1
𝑛

𝑛
∑

𝑖=1

𝑡

∫
−∞

d𝑁𝑖(𝑢; 𝜷)
𝑆 (0)(𝑢; 𝜷)

= 1
𝑛

𝑛
∑

𝑖=1

𝛿𝑖𝐼
{

𝑒𝑖(𝜷) ≤ 𝑡
}

𝑆 (0)[𝑒𝑖(𝜷); 𝜷]
.

By some algebraic manipulations22, Equation (2) can be written as100

𝐔𝐺(𝜷) =
1
𝑛

𝑛
∑

𝑖=1

∞

∫
−∞

1
𝑛

𝑛
∑

𝑗=1
𝐼{𝑡 ≤ 𝑒𝑖(𝜷)}(𝐗𝑖 − 𝐗𝑗)d𝑀̂𝑖(𝑡; 𝜷)

= 1
𝑛

𝑛
∑

𝑖=1

{

1
𝑛

𝑛
∑

𝑗=1
𝛿𝑖(𝐗𝑖 − 𝐗𝑗)𝐼{𝑒𝑖(𝜷) ≤ 𝑒𝑗(𝜷)} −

1
𝑛

𝑛
∑

𝑗=1
𝛿𝑗𝐼{𝑒𝑗(𝜷) ≤ 𝑒𝑖(𝜷)}

[

𝐗𝑖 − 𝐗̄[𝑒𝑗(𝜷); 𝜷]
]

}

,

(7)

where 𝑀̂𝑖(𝑡; 𝜷) = 𝑁𝑖(𝑡; 𝜷)−∫ 𝑡
−∞ 𝐼{𝑢 ≤ 𝑒𝑖(𝜷)}d𝐻̂(𝑢; 𝜷). The smoothed version of (7) takes the form of 𝑛−1

∑𝑛
𝑖=1 𝐕̃𝐺,𝑖(𝜷), where101

𝐕̃𝐺,𝑖(𝜷) =
1
𝑛

{

𝛿𝑖
𝑛
∑

𝑗=1

(

𝐗𝑖 − 𝐗𝑗
)

Φ[𝜅𝑖𝑗(𝜷)] −
𝑛
∑

𝑗=1
𝛿𝑗Φ[𝜅𝑗𝑖(𝜷)]

[

𝐗𝑖 −
∑𝑛

𝑘=1 𝐗𝑘Φ[𝜅𝑗𝑘(𝜷)]
∑𝑛

𝑘=1 Φ[𝜅𝑗𝑘(𝜷)]

]}

,

and it can be shown that 𝐔̃𝐺(𝜷) = 𝑛−1
∑𝑛

𝑖=1 𝐔̃𝐺,𝑖(𝜷) = 𝑛−1
∑𝑛

𝑖=1 𝐕̃𝐺,𝑖(𝜷). Similarly, 𝐔̃∗
𝐺(

∗
𝑟 , 𝜷) in (5) can be written as102

𝐔̃∗
𝐺(

∗
𝑟 , 𝜷) =

1
𝑟

𝑟
∑

𝑖=1

1
𝑟𝑛𝜋∗

𝑖
𝐕̃∗

𝐺,𝑖(𝐷
∗
𝑟 , 𝜷), (8)

where103

𝐕̃∗
𝐺,𝑖(

∗
𝑟 , 𝜷) =

𝑟
∑

𝑗=1

𝛿∗𝑖
𝑛𝜋∗

𝑗

(

𝐗∗
𝑖 − 𝐗∗

𝑗

)

Φ[𝜅∗
𝑖𝑗(𝜷)] −

𝑟
∑

𝑗=1

𝛿∗𝑗
𝑛𝜋∗

𝑗
Φ[𝜅∗

𝑗𝑖(𝜷)]

[

𝐗∗
𝑖 −

∑𝑟
𝑘=1 (𝜋

∗
𝑘)

−1𝐗∗
𝑘Φ[𝜅∗

𝑗𝑘(𝜷)]
∑𝑟

𝑘=1 (𝜋
∗
𝑘)

−1Φ[𝜅∗
𝑗𝑘(𝜷)]

]

. (9)

Note that the expression in Equation (8) helps us find an appropriate estimator of the variance matrix of the subsample estimator.104

We will still use Equation (5) to calculate the subsample point estimate.105

Since 𝐕̃𝐺,𝑖(𝜷) ≠ 0 for all observations, we should use it to define the contribution of the 𝑖th observation to 𝐔̃𝐺(𝜷) and the106

optimal SSP of the 𝑖th observation. The A-optimal SSPs, denoted by 𝝅optA = {𝜋optA
𝑖 }

𝑛
𝑖=1, takes the form107

𝜋optA
𝑖 =

‖

‖

‖

𝐌−1
𝑛 (𝜷̂𝑛)𝐕̃𝐺,𝑖(𝜷̂𝑛)

‖

‖

‖

∑𝑛
𝑖=1

‖

‖

‖

𝐌−1
𝑛 (𝜷̂𝑛)𝐕̃𝐺,𝑖(𝜷̂𝑛)

‖

‖

‖

.
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The A-optimal SSP 𝝅optA dependents on 𝜷̂𝑛 which is not feasible in practice. To resolve this issue, we used 𝜷̃𝑟0 , a subsample108

estimator derived from a small pilot sample ∗
𝑟0

of size 𝑟0 where 𝑟0 ≪ 𝑛, to replace 𝜷̂𝑛. The pilot sample is derived by sampling109

with replacement through uniform SSPs. The time complexity of calculating 𝜷̃𝑟0 is 𝑂(𝜉𝑟0𝑟
2
0𝑝) with 𝜉𝑟0 being the iteration for110

convergence. The slope matrix 𝐌𝑛(𝜷̂𝑛) is approximated by 𝐌∗(∗
𝑟0
, 𝜷̃𝑟0) with a time complexity of 𝑂(𝑟20𝑝

2). The time complexity111

to calculate the inverse of 𝐌∗(∗
𝑟0
, 𝜷̃𝑟0) is 𝑂(𝑝3). Instead of using the full data to calculate 𝐕̃𝐺,𝑖(𝜷̂𝑛), we use the pilot subsample112

to approximate it by113

1
𝑟0

𝑟0
∑

𝑗=1
𝛿𝑖
(

𝐗𝑖 − 𝐗∗
𝑗

)

Φ[𝜅∗∗
𝑖𝑗 (𝜷̃𝑟0)] −

1
𝑟0

𝑟0
∑

𝑗=1
𝛿∗𝑗Φ[𝜅∗∗

𝑗𝑖 (𝜷̃𝑟0)]

[

𝐗𝑖 −

∑𝑟0
𝑘=1 𝐗

∗
𝑘Φ[𝜅∗

𝑗𝑘(𝜷̃𝑟0)]
∑𝑟0

𝑘=1 Φ[𝜅∗
𝑗𝑘(𝜷̃𝑟0)]

]

,

where 𝜅∗∗
𝑖𝑗 =

√

𝑛[𝑒∗𝑗 (𝜷) − 𝑒𝑖(𝜷)]∕
√

(𝐗𝑖 − 𝐗∗
𝑗 )⊤(𝐗𝑖 − 𝐗∗

𝑗 ). The above formula is equivalent to the evaluation of (9), considering114

∗
𝑟0

and 𝜷̃𝑟0 , while substituting 𝐗∗
𝑖 and 𝑌 ∗

𝑖 for 𝐗𝑖 and 𝑌𝑖. We need to calculate
∑𝑟0

𝑗=1 Φ[𝜅∗∗
𝑖𝑗 (𝜷̃𝑟0)] and

∑𝑟0
𝑗=1 𝐗𝑗Φ[𝜅∗∗

𝑖𝑗 (𝜷̃𝑟0)] which115

both take 𝑂(𝑟0𝑝) time to approximate 𝐕̃𝐺,𝑖(𝜷̂𝑛). The matrix multiplication between a 𝑝× 𝑝 matrix and a 𝑝× 1 vector takes 𝑂(𝑝2)116

time. Calculating the norm of a 𝑝 × 1 vector takes 𝑂(𝑝) time. The overall time complexity to approximate ‖

‖

‖

𝐌−1
𝑛 (𝜷̂𝑛)𝐕̃𝐺,𝑖(𝜷̂𝑛)

‖

‖

‖

117

with given 𝜷̃𝑟0 and 𝐌−1
𝑛 (𝜷̂𝑛) is 𝑂(𝑟0𝑝 + 𝑝2 + 𝑝) = 𝑂(𝑟0𝑝). Since we have 𝑛 observations, approximating {𝜋optA

𝑖 }
𝑛
𝑖=1 takes118

𝑂(𝑛𝑟0𝑝 + 𝜉𝑟0𝑟
2
0𝑝 + 𝑟20𝑝

2 + 𝑝3) = 𝑂(𝑛𝑟0𝑝 + 𝜉𝑟0𝑟
2
0𝑝) time.119

To avoid approximating 𝐌𝑛 and reduce the computing time, the second optimal SSPs are based on the L-optimal criteria,120

which is denoted by 𝝅optL = {𝜋optL
𝑖 }

𝑛
𝑖=1, with121

𝜋optL
𝑖 =

‖

‖

‖

𝐕̃𝐺,𝑖(𝜷̂𝑛)
‖

‖

‖

∑𝑛
𝑖=1

‖

‖

‖

𝐕̃𝐺,𝑖(𝜷̂𝑛)
‖

‖

‖

.

Since 𝜷̂𝑛 is not feasible in practice, it needs to be substituted with the pilot estimator 𝜷̃𝑟0 which takes 𝑂(𝜉𝑟0𝑟
2
0𝑝) time to derive. It122

takes 𝑂(𝑟0𝑝+ 𝑝) = 𝑂(𝑟0𝑝) time to approximate ‖‖
‖

𝐕̃𝐺,𝑖(𝜷̂𝑛)
‖

‖

‖

. The overall time complexity to approximate {𝜋optL
𝑖 }

𝑛
𝑖=1 is 𝑂(𝑛𝑟0𝑝+123

𝜉𝑟0𝑟
2
0𝑝).124

Since the approximated SSPs are derived by a random pilot subsample, there might exist additional disturbance. For instance,125

the approximated SSP of a censored observation 𝑖 will be zero if 𝑒𝑖(𝜷̃𝑟0) is smaller than 𝑒∗𝑗 (𝜷̃𝑟0) for all 𝑗 in the pilot subsample.126

Furthermore, the variance of the subsample estimator could be inflated by observations whose approximated optimal SSPs127

are close to zero2. To resolve these issues, we adopt the idea of defensive sampling26,27. That is, the practically used adjusted128

optimal SSPs, denoted by 𝝅opt
𝛼 (𝜷̃𝑟0) =

{

𝜋opt
𝛼𝑖 (𝜷̃𝑟0)

}𝑛
𝑟=1

, is a weighted average of the approximated optimal SSPs, denoted by129

𝝅opt(𝜷̃𝑟0) =
{

𝜋opt
𝑖 (𝜷̃𝑟0)

}𝑛
𝑖=1

, and the uniform SSP, with 𝛼 controlling the weight of the uniform SSP. The adjusted optimal SSPs130

take the following form:131

𝜋opt
𝛼𝑖 (𝜷̃𝑟0) = (1 − 𝛼)𝜋opt

𝑖 (𝜷̃𝑟0) +
𝛼
𝑛
, 𝑖 = 1,… , 𝑛,

where 0 < 𝛼 < 1. This adjustment aims to prevent 𝝅opt
𝛼 (𝜷̃𝑟0) from being too close to zero, which can occur in practice and132

result in excessively high inverse probability weights. A smaller 𝛼 results in less distortion of the 𝝅opt
𝛼 (𝜷̃𝑟0) but increases the133

risk of explosive weights. We chose 𝛼 = 0.2 in the simulation and real data analysis as a conservative value to ensure that the134

adjusted inverse probability weights remain within a reasonable range, which already led to better results relative to those from135

the uniform SSP. We by no means want to indicate that 𝛼 = 0.2 is optimal. It is possible that a smaller 𝛼 yields better results.136

To explore the types of observations favored by optimal SSPs, we used simulated datasets of size 100, 000 to calculate adjusted137

optimal SSPs. The covariates in the simulated datasets follow a multivariate t-distribution with 3 degrees of freedom. Detailed138

information about the simulated datasets is provided in Section 4. Nine configurations involving three censoring rates and three139

error distributions were considered. For each of the nine configurations, we generated 1000 different datasets and we calculated140

adjusted A-optimal SSPs based on the Weibull parametric AFT model, the semi-parametric AFT model by the rank-based141

approach and the least-squares approach. The pilot samples are different for different datasets. Table 1 displays the average means142

and average sums of the adjusted A-optimal SSPs for both censored and uncensored observations over 1000 datasets for each143

configuration. The table indicates that the least-squares approach has less preference for uncensored observations compared to144

the rank-based approach. These differences in preference for uncensored observations are more significant at higher censoring145

rates. For the Weibull parametric AFT model, the performance of A-optimal SSPs aligns closely with that of the semi-parametric146

AFT model by the rank-based approach.147

Based on the adjusted optimal SSPs derived in the first step, a subsample of size 𝑟, denoted by ∗
𝑟 , is selected by sampling with148

replacement in the second step. The second-step subsample estimator denoted as 𝜷̃𝑟 is derived by solving (5). The information149
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from the pilot sample should not be wasted. We make use of it by borrowing insights from the aggregation step in the divide-150

and-conquer strategy28 and the online updating approach29. The aggregated estimator 𝜷̌𝑟 is derived by combining 𝜷̃𝑟0 and 𝜷̃𝑟151

through a linear combination, where152

𝜷̌𝑟 = (𝑟 + 𝑟0)𝐌∗−1
𝑟,𝑟0

{

𝑟0𝐌∗(∗
𝑟0
, 𝜷̃𝑟0)𝜷̃𝑟0 + 𝑟𝐌∗(∗

𝑟 , 𝜷̃𝑟)𝜷̃𝑟

}

,

and 𝐌∗
𝑟,𝑟0

= [𝑟0𝐌∗(∗
𝑟0
, 𝜷̃𝑟0) + 𝑟𝐌∗(∗

𝑟 , 𝜷̃𝑟)]∕(𝑟 + 𝑟0). In contrast to the optimal subsampling procedure employed in Yang153

et al. 9,20 where the pilot subsample and the second-step subsample are combined to obtain the final estimator, aggregating 𝜷̃𝑟0154

and 𝜷̃𝑟 is less time-consuming since this procedure avoids using the pilot subsample twice. Since the final estimator is aggregated155

by the pilot and second-step estimators and we aim for the second-step estimator to play a dominant role, we favor a significantly156

smaller pilot sample size 𝑟0 compared to the second-step subsample size 𝑟. The pilot subsample should not be too small either.157

A sufficient amount of data is necessary to derive good estimates of the optimal subsampling probabilities. In our simulation158

study, we selected 𝑟0 = 500. In practical applications, users are advised to select larger pilot samples when dealing with higher159

censoring rates to obtain more accurate estimates of optimal subsampling probabilities.160

Most existing subsampling studies focus on using 𝜷̌𝑟 to approximate 𝜷̂𝑛. The asymptotic variance matrix of the approximation161

error 𝜷̌𝑟 − 𝜷̂𝑛 given the full data can be estimated by162

1
𝑟 + 𝑟0

𝐌∗−1
𝑟,𝑟0

Λ̌𝑟,𝑟0𝐌
∗−1
𝑟,𝑟0

, (10)

where163

Λ̌𝑟,𝑟0 =
1

(𝑟0 + 𝑟)3

𝑟0+𝑟
∑

𝑖=1

1
(𝑛𝜋∗

𝑖 )
2
𝐕̃∗⊗2

𝐺,𝑖 (𝐷
∗
𝑟,𝑟0

, 𝜷̌𝑟),

is a moment estimator of 𝑛−2
∑𝑛

𝑖=1 𝐕̃
⊗2
𝐺,𝑖(𝜷)∕𝜋𝑖 and 𝜋∗

𝑖 is the corresponding SSP of the 𝑖th observation in the combined subsample164

which is denoted by 𝐷∗
𝑟,𝑟0

. The formula in (10) does not take into account the variation of the full data estimator 𝜷̂𝑛, so it is165

not appropriate to use it for inference on the true regression coefficient 𝜷0. In this scenario, we proposed an estimator for the166

asymptotic variance of 𝜷̌𝑟 − 𝜷0:167

1
𝑟 + 𝑟0

𝐌∗−1
𝑟,𝑟0

(

𝑟 + 𝑟0
𝑛

Λ̃𝑟 + Λ̌𝑟,𝑟0

)

𝐌∗−1
𝑟,𝑟0

, (11)

where168

Λ̃𝑟 =
1

(𝑟0 + 𝑟)3

𝑟0+𝑟
∑

𝑖=1

1
𝑛𝜋∗

𝑖
𝐕̃∗⊗2

𝐺,𝑖 (𝐷
∗
𝑟,𝑟0

, 𝜷̌𝑟),

and Λ̃𝑟 is the estimator of 𝑛−1
∑𝑛

𝑖=1 𝐕̃
⊗2
𝐺,𝑖(𝜷) based on the combined subsample. Equation (11) is constructed by adding (10) with169

the estimated asymptotic variance of 𝜷̂𝑛 − 𝜷0 which is 𝑛−1𝐌∗−1
𝑟,𝑟0

Λ̃𝑟𝐌∗−1
𝑟,𝑟0

. Note that when the subsampling ratio (𝑟+ 𝑟0)∕𝑛 is not170

close to zero, the impact of 𝜷̂𝑛 to (11) becomes substantial.171

Now we consider the time complexity of the two-step procedure. As mentioned in Section 3, it takes 𝑂(𝑛𝑟0𝑝+ 𝜉𝑟0𝑟
2
0𝑝) time to172

derive the optimal SSPs in step one. Calculating the second step subsample estimator costs𝑂{𝜉𝑟𝑟2𝑝} time. Evaluating𝐌∗−1
𝑟,𝑟0

takes173

𝑂{𝑟2𝑝2} time and calculating Λ̃𝑟 and Λ̌𝑟 both take 𝑂{(𝑟 + 𝑟0)
2𝑝} time. The overall time complexity of the two-step procedure174

is 𝑂{𝑛𝑟0𝑝 + 𝜉𝑟𝑟2𝑝 + (𝑟 + 𝑟0)
2𝑝 + 𝑟2𝑝2}.175

4 SIMULATION STUDY176

The performances of the two-step procedure were evaluated through a simulation study. In this investigation, we employed177

three distinct error distributions, the standard normal distribution, the standard logistic distribution, and the centered Gumbel178

distribution with a shape parameter of zero and a scale parameter of one. The covariates followed a multivariate normal distri-179

bution with a mean of zero and a covariance matrix denoted by 𝚺𝑖𝑗 = 0.5𝐼(𝑖≠𝑗). Additionally, we incorporated a multivariate 𝑡180

distribution with 3 degrees of freedom and the same covariance matrix as the multivariate normal distribution. The dimension181

of covariates was seven, and the true coefficients, including the intercept, were set to values of ones. To emulate censoring in182

our study, we generated censoring times from a Uniform distribution, with the minimum and maximum values set at 0 and 𝑐183

respectively. The value of 𝑐 was tuned to achieve three levels of censoring rates 𝑐𝑟 ∈ {0.25, 0.50, 0.95}.184
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The simulation design led to eighteen configurations, each involving the generation of 1000 large datasets with the sample185

size of 𝑛 = 10, 000. It is worth noticing that the rank-based approach requires less subsample size to get a converging estimator186

compared to the least-squares approach. This arises from the non-smooth nature of the least-squares approach’s estimating187

function, which is harder to solve than the smoothed estimating function of the rank-based approach. In analyzing each dataset,188

we used a pilot sample size of 𝑟0 = 500 and explored different second-step subsample sizes of 𝑟 ∈ {1000, 2000, 4000}. Three189

SSP schemes were applied: 𝝅optA, 𝝅optL, and the uniform SSPs. To assess and compare the performance of the two-step procedure190

across different SSPs, we calculated the root mean square error (RMSE) from 𝑠 = 1000 estimators:191

RMSE =

(

1
𝑠

𝑠
∑

𝑖=1
‖𝜷̌ (𝑖)

𝑟 − 𝜷0‖
2

)1∕2

,

where 𝜷̌ (𝑖)
𝑟 is the estimate from the 𝑖th replicate. We omitted some simulation results when covariates followed the multivari-192

ate t distribution with 3 degrees of freedom as they showed similar patterns to those observed when covariates followed the193

multivariate normal distribution.194

The RMSEs of the final estimator under three SSP schemes are compared in Figure 1. Across all the configurations, both 𝝅optL
195

and 𝝅optA exhibit lower RMSEs compared to uniform SSPs. The A-optimal SSPs, 𝝅optA, yielded the smallest RMSE, which is as196

expected since the A-optimality minimizes the summand of asymptotic variances. As the censoring rate increases, the number197

of informative observations decreases, resulting in higher RMSE values for all methods due to a reduction in information. At the198

0.95 censoring rate, the advantage of optimal subsampling methods in terms of RMSE compared to the uniform subsampling199

method was more significant than at low censoring rates. Regardless of the configuration, the RMSE values decrease as the200

subsample size 𝑟 increases. Note that for covariates with heavier tails, the optimal SSPs demonstrated a more pronounced201

advantage in terms of estimation at low censoring rates. This observation echoes the results obtained from optimal subsampling202

in the context of the quantile regression model30, which could be seen as the extreme case of our model when the censoring rate203

is 0.204

Figure 2 presents the results of the variance estimator given by equation (10) and (11) when the covariates followed a multi-205

variate normal distribution. To illustrate the accuracy, we calculated the average of the square root of the trace for the estimated206

variance matrix over 1000 replicates and compared it with the empirical RMSE based on 𝝅optA. They demonstrated close agree-207

ment across all six settings for 0.25 and 0.50 censoring rates, indicating that the formula in (11) fixed the underestimating issue208

and offers a reliable estimate of the variance. For the 0.95 censoring rate, the underestimating issue persisted when 𝑟 = 1000 but209

gradually diminished as 𝑟 increased to 4000. This could be due to the limited informative observations with a small subsample210

at a high censoring rate.211

To further evaluate the performance of the proposed method in statistical inference, we considered the coverage probabili-212

ties of confidence intervals using the estimated variance matrix in (11). Figure 3 shows the average coverage probabilities for213

regression coefficients at different subsample sizes, censoring rates, and error distributions when covariates followed the mul-214

tivariate normal distribution. The confidence interval for each regression coefficient was calculated by 𝜷̌ (𝑖)
𝑟 ± 1.96 × 𝑠𝑒(𝜷̌ (𝑖)

𝑟 ),215

where 𝜷̌ (𝑖)
𝑟 is the 𝑖th element of 𝜷̌𝑟 and 𝑠𝑒(𝜷̌ (𝑖)

𝑟 ) is the corresponding standard error. The confidence interval worked well for all216

three error distributions in our consideration. The coverage rates for the 0.95 censoring rates when 𝑟 = 1000 were lower than217

0.95, because (11) underestimated the standard errors at very high censoring rates and low subsample sizes. This issue would218

disappear as the subsample size increases.219

Finally, we evaluated the computational efficiency of the optimal subsampling methods. We performed the computation on a220

Mac Studio with 32GB memory and M2 Max chip. Figure 4 summarizes the average CPU time in seconds of the second-step221

procedure and the average number of iterations to derive the final estimator over 50 experiments for different error distributions,222

covariate distributions, censoring rates, and subsample sizes, when covariates followed the multivariate normal distribution.223

For the 0.25 and 0.50 censoring rates, the CPU time is mainly affected by the subsample size, rather than other factors. The224

CPU times for both the uniform subsampling method and optimal subsampling methods are similar. This is because solving the225

second-step estimator took a longer time than calculating the subsampling probabilities, given the full sample size of 10,000.226

Nevertheless, the optimal subsampling methods have a significantly higher computing efficiency than the uniform subsampling227

method at the 0.95 censoring rate. The lower plot of Figure 4 and Table 1 in Section 3 help to explain this observation. They228

show that the optimal subsampling methods had a higher preference for selecting uncensored observations at the 0.95 censoring229

rate, which makes deriving the second-step estimator require much fewer iterations. Table 2 shows the CPU time for obtaining230

full sample estimates under each configuration. Deriving the full sample estimator takes half the time for cases with censoring231

rates of 0.25 and 0.50 compared to a censoring rate of 0.95. This indicates the difficulty of solving the estimating function at232
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FIGURE 1 Empirical RMSEs for different SSPs, error distribution, subsample sizes 𝑟 and censoring rates when covariates
follow the multivariate 𝑡 distribution with 3 degrees of freedom (upper) and the multivariate normal distribution (lower) based
on the two-step procedure.
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FIGURE 2 Comparison between the empirical RMSE and square roots of the trace for the estimated variance matrix calculated
by formula (10) and (11) based on 𝝅optA for different error distribution, subsample sizes 𝑟 and censoring rates when covariates
follow the multivariate normal distribution using the two-step procedure.

high censoring rates. Compared with optimal subsampling methods, full sample estimates take a significantly longer time to233

calculate, which shows the advantage of optimal subsampling in terms of computational efficiency.234

5 SURVIVAL OF LYMPHOMA235

We employed the subsampling procedure to model the survival time of patients diagnosed with lymphoma in the SEER program.236

The dataset contained information on 159,149 lymphoma patients diagnosed between 1973 and 2012, with a censoring rate of237

58.3%. The event time was the survival time of lymphoma patients after being diagnosed with cancer. Four risk factors were238

considered, including age which was measured in years, nonwhite race indicator (1 = nonwhite), male indicator (1 = male), and239

the diagnostic year. Additionally, interactions between age with the male indicator, and age with the nonwhite indicator were240

included. The pilot sample size was set as 𝑟0 = 500, and second-step subsample sizes were chosen from 𝑟 ∈ {1000, 2000, 4000}.241

Three types of SSPs were used, the uniform SSPs, the L-optimal SSPs (𝝅optL), and the A-optimal SSPs (𝝅optA).242

Figure 5 displays the RMSEs obtained from 1000 replicates under three subsample sizes and three SSP types. 𝝅optA and243

𝝅optL, as well as the uniform SSPs. It is observed that the RMSEs decrease as the subsample size 𝑟 increases, indicating the244

consistency of the two-step procedure. As expected, both optimal SSPs exhibit higher estimation efficiency compared to the245

uniform SSPs. Nevertheless, for risk factors such as ‘Age’ and ‘Diagnostic Year’ and the interaction term ‘Age×Male’, the A-246

optimal subsampling method does not yield lower RMSEs compared to the L-optimal method. This is because 𝝅optA is designed247

to minimize overall RMSEs for all risk factors and interactions, rather than specifically targeting individual risk factors or248

interactions.249

Table 3 summarizes the average estimates (EST) and their average empirical standard errors (ESE) and average estimated250

standard error (ASE) for all subsampling methods when 𝑟 = 4000 over 1000 replicates. The estimated standard errors were251
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FIGURE 3 Empirical coverage probabilities with confidence intervals for different second step subsample size 𝑟, subsampling
probabilities and error distributions when covariates follow the multivariate normal distribution.

calculated based on formula (10) since the 1000 replicates were carried out on a single full sample. We also included the full252

sample estimator in the table. The subsample estimators are close to the full sample estimator which shows that a small subsample253

is sufficient. The standard errors of the full data estimates are smaller than those of the subsample estimators. This is because254

the standard errors of the full data estimates are of order 𝑂(𝑛−1∕2), while the standard errors of subsample estimators are of255

order 𝑂{(𝑟+ 𝑟0)−1∕2}. Compared to the uniform subsampling method, the optimal subsampling methods yield a quarter smaller256

standard errors. The estimated and empirical standard errors are close, indicating that the variance estimator (10) is accurate.257

The results show that males and patients who were diagnosed later lived longer, while elder and nonwhite patients had less258

survival time. Moreover, the slope of age for white patients and male patients was steeper.259

Table 4 presents the CPU times for using different subsampling probabilities and subsample sizes. The computations were260

done on a Mac Studio with 32 GB of memory and M2 Max CPU. The uniform subsampling method has the shortest computing261

time since it requires no additional calculations for subsampling probabilities. The computing time for the uniform subsampling262

method and optimal subsampling methods are getting closer as the subsample size increases. This is because deriving the second-263

step estimator dominates the computing time when the subsample size becomes large. Nevertheless, computing the full sample264

estimator requires 8.55 hours, with an additional 1.82 hours needed for the variance calculation on the same computer.265

6 DISCUSSION266

The optimal subsampling method for the rank-based fitting of the semi-parametric AFT model for massive survival data has not267

been extensively studied. We expressed the estimating function by a well-defined stochastic process, which manifests non-zero268

optimal SSPs for censored observations. To overcome the numerical convergence issue when solving a non-smooth estimating269

function, we used the induced smoothing approach8,21,23,24 to smooth the estimating function. For the variance estimation, we270

introduced a new sandwich estimator that accounts for the uncertainty of the full-data estimator, such that it can be used for271
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FIGURE 4 Average CPU time in seconds (upper) and average number of iterations to derive the second-step estimator (lower)
obtained by different SSPs for different subsample sizes, error distributions and censoring rates when covariates follow the
multivariate normal distribution over 50 experiments.
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FIGURE 5 Empirical RMSEs of different risk factors for different SSPs and different second-step subsample sizes 𝑟 when fixing
the pilot sample size 𝑟0 = 500 over 1000 replicates of the two-step procedure.

inferences about the true regression coefficients. This is in contrast to the estimator in most existing works where the inference272

target is the full-data estimator instead of the true parameters. The effectiveness of the proposed methods is validated in a273

comprehensive simulation study and a real data analysis, providing close approximations to the inferences obtained based on274

the full data with much more feasible computational resources.275

Further investigation is in need for optimal subsampling methods with semi-parametric AFT models using Poisson sam-276

pling. Sampling without replacement avoids duplicate observations in the resulting subsample and may have a higher estimation277

efficiency when the subsampling ratio is high31. Nevertheless, with nonuniform subsampling probabilities, sampling without278

replacement becomes time-consuming due to the need to re-calculate subsampling probabilities after each selection. Recent liter-279

ature on subsampling for big data focuses on sampling with replacement1,5,10,30. Poisson sampling can resolve both the problem280

of duplicate observations in sampling with replacement and the time-consuming issue of sampling without replacement2. This281

sampling approach considers each data point in one pass of the data and determines its inclusion in the subsample by generating282

a random number from a uniform distribution. Compared with sampling with replacement, Poisson sampling does not require283

calculating SSPs for all observations simultaneously. This means that the data can be read and processed line-by-line or chunk-284

by-chunk, which reduces the memory requirements and is more computationally efficient for big data. Unlike sampling with285

replacement, which allows for a predetermined subsample size, the subsample size from Poisson sampling is random. Wang286

et al. 2 show that Poisson sampling is more efficient than sampling with replacement for models with uncensored data. An opti-287

mal subsampling procedure via Poisson sampling for censored data is expected to be more efficient than that via sampling with288

replacement.289
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293

APPENDIX294

COMPARISON WITH THE LEAST-SQUARES APPROACH295

We dove into comparing the rank-based approach and the least-squares approach by a simulation study. The covariates distri-296

butions have two levels: the multivariate normal distribution and the multivariate t distribution with 3 degrees of freedom. The297

mean and variance matrix of the error distributions adhere to the configuration outlined in Section 4. Three levels of censor-298

ing rates are considered, 0.25, 0.5, and 0.95. The censoring distribution aligns with the specifications detailed in Section 4. For299

error distributions, we considered the standard normal distribution, standard logistic distribution, centered Gumbel distribution300

with shape parameter 0 and scale parameter 1, and the t distribution with 3 degrees of freedom. The four error distributions301

are ordered in terms of kurtosis, with the first distribution having the least kurtosis and the subsequent distributions exhibiting302

larger kurtosis.303

The simulation design led to twenty-four configurations, each involving the generation of 1000 large datasets with the sample304

size of 𝑛 = 100, 000. For each configuration, we used a pilot sample size of 𝑟0 = 4000 and explored different second-step sub-305

sample sizes of 𝑟 ∈ {4000, 8000}. We chose large sizes of the pilot sample and second-step subsample to ensure the convergence306

of the least-squares approach. Two types of optimal SSPs and the uniform SSPs are considered. We collected the subsample307

estimator estimated by the rank-based approach and least-squares approach and compare the estimation efficiency via RMSE.308

The RMSEs of the final estimator under the rank-based approach and the least-squares approach by different error distributions309

and censoring rates when covariates followed the multivariate normal distribution are shown in Figure A.1. The plot illustrates310

the superiority of the rank-based approach over the least-squares approach when errors follow the t distribution with 3 degrees311

of freedom. This aligns with empirical findings that the mean regression outperforms the quantile regression for heavy-tailed312

error distributions in non-censored scenarios30. The optimal subsampling methods for the least-squares approach perform stably313

at low censoring rates. Nevertheless, the estimates generated by the least-squares approach exhibit some outliers at the 0.95314

censoring rate.315

Figure A.2 illustrates the numerical stability of the rank-based approach compared to the least-squares approach. Notably,316

when the covariate distribution has heavier tails, the estimates generated by the least-squares approach exhibit instability, espe-317

cially under optimal subsampling methods. This instability is shown by the boxplot of Euclidean errors, with 1.5% of the largest318

values trimmed for clarity. The boxplot reveals that there exist more outliers for the least-squares method in comparison to the319

rank-based approach. The prevalence of outliers in the least-squares approach can be attributed to the non-smooth nature of its320

estimating function which is hard to solve.321
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FIGURE A.1 Bar charts of RMSEs obtained from the least-squares approach and the rank-based approach when covariates
follow the multivariate normal distribution and the error terms follow different error distributions over different censoring rates.
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FIGURE A.2 Bar charts of RMSEs (Upper) and trimmed boxplot of Euclidean errors (lower) obtained from the least-squares
approach and the rank-based approach when covariates follow multivariate 𝑡 distribution with 3 degrees of freedom and the error
terms follow different distributions over different censoring rates.
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TABLE 1 Means and summations of uniform SSPs and adjusted A-optimal SSPs for censored and uncensored observations
with Gumbel (G), Logistic (L) and Normal (N) distributions as the error distributions and different censoring rates 𝑐𝑟 when
covariates follow the multivariate t distribution with 3 degrees of freedom and using different AFT models.

Observation 𝑐𝑟: 25% 𝑐𝑟: 50% 𝑐𝑟: 95%

uniform G L N uniform G L N uniform G L N

Semiparametric AFT Model - Rank-based Approach
summation

Censored 0.250 0.121 0.149 0.112 0.500 0.226 0.261 0.207 0.950 0.349 0.379 0.305
Uncensored 0.750 0.879 0.851 0.888 0.500 0.774 0.739 0.793 0.050 0.651 0.621 0.695

mean (×𝑛)
Censored 1.000 0.495 0.606 0.456 1.000 0.457 0.527 0.417 1.000 0.368 0.401 0.322
Uncensored 1.000 1.164 1.128 1.177 1.000 1.534 1.465 1.573 1.000 12.208 11.332 13.405

Semiparametric AFT Model - Least-squares Approach
summation

Censored 0.250 0.319 0.305 0.346 0.500 0.443 0.433 0.471 0.950 0.748 0.718 0.780
Uncensored 0.750 0.681 0.695 0.654 0.500 0.557 0.567 0.529 0.050 0.252 0.282 0.220

mean (×𝑛)
Censored 1.000 1.299 1.244 1.410 1.000 0.895 0.874 0.950 1.000 0.790 0.759 0.823
Uncensored 1.000 0.903 0.921 0.866 1.000 1.103 1.124 1.049 1.000 4.724 5.157 4.234

Weibullc parametric AFT Model
summation

Censored 0.250 0.127 0.186 0.126 0.500 0.242 0.301 0.233 0.950 0.335 0.330 0.302
Uncensored 0.750 0.873 0.814 0.874 0.500 0.758 0.699 0.767 0.050 0.665 0.670 0.698

mean (×𝑛)
Censored 1.000 0.515 0.757 0.513 1.000 0.488 0.607 0.470 1.000 0.354 0.349 0.318
Uncensored 1.000 1.158 1.079 1.158 1.000 1.502 1.386 1.521 1.000 12.460 12.226 13.466
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TABLE 2 Average CPU time (s) obtained by full sample estimates for different censoring rates, error distributions when covari-
ates follow the multivariate normal distribution over 10 different full samples for each setting.

Gumbel Normal Logistic

0.25 17.98 16.43 18.47
0.50 16.57 16.23 16.57
0.95 33.66 32.63 32.61
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TABLE 3 Estimates (EST) and their empirical standard errors (ESE) and average estimated standard errors (ASE) from different
subsampling approaches for 𝑟 = 4000 and 𝑟0=500 over 1000 replicates. The standard errors (SE) of the full sample estimates
are estimated by the sandwich form.

uniform optL optA Full

EST ESE ASE EST ESE ASE EST ESE ASE EST SE

Age −1.075 0.078 0.081 −1.071 0.066 0.068 −1.070 0.065 0.067 −1.076 0.013
Male 0.724 0.111 0.110 0.720 0.096 0.097 0.723 0.097 0.096 0.724 0.018

Nonwhite −0.711 0.154 0.151 −0.707 0.108 0.112 −0.711 0.125 0.128 −0.709 0.025
Age×Nonwhite 0.297 0.157 0.160 0.297 0.104 0.107 0.296 0.120 0.122 0.298 0.027

Age×Male −0.517 0.120 0.121 −0.512 0.094 0.095 −0.515 0.092 0.094 −0.516 0.020
Diagnostic Year 0.517 0.047 0.049 0.514 0.045 0.046 0.514 0.040 0.042 0.515 0.008
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TABLE 4 Average CPU time (s) obtained by different subsampling methods for different subsample sizes with 𝑟0 = 500 over
50 experiments.

𝑟 ∶ 1000 𝑟 ∶ 2000 𝑟 ∶ 4000

optA 1.45 1.84 3.21
optL 1.43 1.83 3.25

uniform 0.43 0.87 2.27
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