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Abstract5

Subsampling is an effective way to deal with big data problems and many subsampling6

approaches have been proposed for different models, such as leverage sampling for lin-7

ear regression models and local case control sampling for logistic regression models. In8

this article, we focus on optimal subsampling methods, which draw samples according to9

optimal subsampling probabilities formulated by minimizing some function of the asymp-10

totic distribution. The optimal subsampling methods have been investigated to include11

logistic regression models, softmax regression models, generalized linear models, quantile12

regression models, and quasi-likelihood estimation. Real data examples are provided to13

show how optimal subsampling methods are applied.14
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1 Introduction16

As we step into the big data era, more and more attention is focused on how to deal17

with data with enormous size and complex frame under limited computational resources.18

In the field of statistics, various techniques were developed to analyze massive datasets,19

such as divide-and-conquer method (Lin and Xie, 2011), online updating for streaming20

data (Schifano et al., 2016), stochastic gradient descent (Toulis et al., 2017), random21

projection (Drineas et al., 2011; Mahoney, 2011) and subsampling (Drineas et al., 2006;22

Ma et al., 2015; Wang et al., 2018, 2019).23

Subsampling method draws a subdata set from the full dataset and estimates the in-24

terested parameters by the chosen subdata. The fundamental concern of the subsampling25

method is how to select the subdata. The more informative observations we choose, the26
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better approximation performance we could expect. Hence, uniform subsampling is not1

preferred because every observations are treated equally no matter how much information2

one observation carries. For linear regression, leverage sampling has been detailed dis-3

cussed by Drineas et al. (2006); Mahoney (2011), and was named as algorithm leveraging4

in Ma et al. (2015); Ma and Sun (2015). The subsamples obtained by this method are5

drawn from the full dataset with replacement based on the normalized leverage scores or6

their variants. The asymptotic normality and asymptotic unbiasedness of the leveraging7

sampling estimator were studied in Ma et al. (2020). The leveraged volume sampling8

was proposed by Derezinski et al. (2018) for linear regression, which yields an unbiased9

coefficient estimator and has the same tail bonds as leverage sampling. Besides these10

probabilistic methods for linear models, a deterministic method named information-based11

optimal subdata selection (IBOSS) was proposed by Wang et al. (2019) aiming at finding12

a subdata that has maximal information matrix under D-optimality. This method is13

also applicable under divide-and-conquer setting, which was discussed in (Wang, 2019a).14

The IBOSS approach was extended to include the logistic regression in Cheng et al.15

(2020). The local case control sampling for logistic regression was proposed by Fithian16

and Hastie (2014), which draws samples by Poisson subsampling and determine whether17

one observation is in or not in the sample using information from both the response and18

covariates. By extending the idea of the local case control sampling, a local uncertainty19

sampling algorithm was introduced by Han et al. (2020) for softmax regression. Pron-20

zato and Wang (2020) proposed an algorithm for steaming dataset where the subdata is21

selected sequentially based on the estimated quantile.22

Optimal subsampling method is a probabilistic approach where subsamples are ex-23

pected to be drawn based on the optimal subsampling probabilities, which are derived24

by minimizing the asymptotic covariance matrix of the random sampling based estima-25

tors under certain optimality criterion. The optimal subsampling method for logistic26

regression was introduced by Wang et al. (2018), which formulates the optimal sub-27

sampling probabilities by minimizing the asymptotic mean squared error (MSE) of the28

subsample estimator. Since the expressions of the optimal subsampling probabilities in-29
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volves the maximum likelihood estimator (MLE) of the full data, the authors proposed1

a two-stage adaptive algorithm which uses a pilot sample estimator to substitute the2

full data MLE. This method was named as optimal subsampling methods motivated3

from the A-optimality criterion (OSMAC), and was improved in Wang (2019b) by adopt-4

ing unweighted target functions for subsamples and Poisson subsampling. In addition5

to logistic regression, OSMAC was investigated to include softmax regression (Yao and6

Wang, 2018), generalized linear models (Ai et al., 2019), quantile regression (Wang and7

Ma, 2020) and quasi-likelihood (Yu et al., 2020). This article aims at introducing the8

optimal subsampling method and illustrates its practical implements with the following9

real data examples in R (R Core Team, 2020).10

– Income dataset (Dua and Graff, 2017). This dataset was extracted from 199411

Census database and aimed at predicting whether one person’s annual income is12

over 50000 or not based on various personal information such as age, education13

level, gender and financial situation.14

– Bike sharing dataset (Fanaee-T and Gama, 2013). Bike sharing system monitors15

bike rental situation hourly. It records the hourly weather information and working16

day information. This dataset intends to modeling the hourly bike rental numbers17

under different conditions.18

– Physicochemical properties of protein tertiary structure dataset (Dua and Graff,19

2017). This dataset was extracted from Critical Assessment of protein Structure20

Prediction and provides information of the protein structure. We are going to model21

the size of the residue based on the given information, which is ranging from 0 to22

22.23

The rest of the paper is organized as follows. Section 2 talks about the adaptive24

optimal subsampling method for logistic regression and softmax regression. Section 325

presents more efficient algorithms for logistic regression by introducing unweighted esti-26

mator and Poisson subsampling into the adaptive optimal subsampling method. Section 427

discusses the adaptive optimal subsampling method for generalized linear models. Sec-28

tion 5 shows the application of optimal subsampling for quantile regression. A brief29
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summary is presented in Section 6.1

2 Optimal subsampling methods motivated from the2

A-optimality criterion3

Suppose that {xi, yi}Ni=1 are N independent and identically distributed observations,4

where xi ∈ Rd, i = 1, 2, ..., N , are covariates, and yi, i = 1, 2, ..., N , are responses. For a5

logistic regression, yi ∈ {0, 1} is a binary variable. Given xi, the response yi satisfies that6

P (yi = 1|xi) = p(xi,β) =
exp(xT

i β)

1 + exp(xT
i β)

, i = 1, 2, ..., N,7

8

where β ∈ Rd is the unknown regression coefficient, and can be estimated by the MLE9

β̂MLE, which is the maximizer of10

`(β) =
N∑
i=1

[
yix

T
i β − log{1 + exp(xT

i β)}
]
.11

12

This optimization problem can be solved by the Newton-Raphson method in O(ηNd2)13

time where η is the number of iterations for the Newton-Raphson method to converge.14

To reduce the computational burden when N is large, an optimal subsampling method15

named OSMAC targeting at approximating the full data MLE β̂MLE was proposed inWang16

et al. (2018). To begin with, we introduce the general subsample estimator obtained by a17

subsample drawing from the full dataset with arbitrary subsampling probabilities {πi}Ni=118

in Algorithm 1.

Algorithm 1 General Subsampling Algorithm
Subsampling with replacement:

– Assign subsampling probabilities {πi}Ni=1 to each observation.
– Draw n data points with replacement based on {πi}Ni=1, and denoted the subsam-

ple as {x∗
i , y

∗
i , π

∗
i }ni=1.

Estimation: Obtain the regression coefficient estimator β̂sub by maximizing

`∗(β) =
n∑
i=1

y∗iβ
Tx∗

i − log{1 + exp(βTx∗
i )}

π∗
i

. (1)

19

It has been proved that β̂sub is consistent to β̂MLE and the approximation error β̂sub−20

β̂MLE is asymptotically normal conditional on the full data. The underlying idea of the21
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OSMAC is to find the optimal subsampling probabilities which minimize the asymptotic1

variance-covariance matrix of β̂sub − β̂MLE, denoted as VN . To compare matrices, A-2

optimality criterion is adopted, which minimizes the trace of this asymptotic variance-3

covariance matrix. The optimal subsampling probabilities under A-optimality criterion4

are5

πoptA
i =

|yi − p(xi, β̂MLE)|‖M−1
L xi‖∑N

j=1 |yj − p(xj, β̂MLE)|‖M−1
L xj‖

, i = 1, ..., N, (2)6

7

where ML = N−1
∑N

i=1 p(xi, β̂MLE){1 − p(xi, β̂MLE)}xixT
i . To reduce the computational8

burden, L-optimality is also considered, intending to minimize the trace of the asymp-9

totic variance-covariance matrix of ML(β̂sub − β̂MLE). Thus, the L-optimal subsampling10

probabilities minimize tr(MT
LVNM

T
L ) and have expressions11

πoptL
i =

|yi − p(xi, β̂MLE)|‖xi‖∑N
j=1 |yj − p(xj, β̂MLE)|‖xj‖

, i = 1, ..., N. (3)12

13

Both A- and L- optimal subsampling probabilities depend on the responses and covariates,14

and contain β̂MLE, which is the quantity that we are approximating. To solve this problem,15

a pilot sample estimator is used to substitute β̂MLE in (2) and (3). The pilot sample can be16

drawn from the full dataset by uniform subsampling or case control subsampling whose17

subsampling probabilities are π0
i = N−1 and π0

i = (2
∑N

i=1 yi)
−yi(2N − 2

∑N
i=1 yi)

yi−1,18

respectively. Furthermore,ML can be approximated by the pilot sample and pilot sample19

estimator to reduce the computational complexity. It takes O(Nd2) time to compute20

πoptA
i , and O(Nd) time to compute πoptL

i . The OSMAC is summarized in Algorithm 2.21

Theorem 6 in Wang et al. (2018) has proved the asymptotical normality of β̃OS
22

conditionally on the full data and pilot sample estimator. The convergence rate is at23

the order of n−1/2
1 , which is not related to the full data size. This means that even the24

full data size increases, the information contained by the subsample may not change. In25

addition, Algorithm 2 is an adaptive algorithm in that the approximately optimal sub-26

sample probabilities rely on the pilot sample estimator. Thus an inaccurate pilot sample27

estimator may affect the accuracy of the final estimator. Algorithm 2 greatly reduces28

the computational cost compared with the full data computation, but still needs to pro-29
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Algorithm 2 Adaptive optimal subsampling algorithm for logistic regression
Pilot sampling:

– Run Algorithm 1 with subsample size n0 and subsampling probabilities π0
i . Ob-

tain the pilot subsample estimator β̂sub,0.
– Store the pilot subsample and the corresponding subsampling probabilities
{x∗0

i , y
∗0, π∗0

i }
n0
i=1.

Second step sampling:
– Calculate the approximate optimal subsampling probabilities

π̂optA
i =

|yi − p(xi, β̂sub,0)|‖M̂L(β̂
sub,0)−1xi‖∑N

j=1 |yj − p(xj, β̂MLE)|‖M̂L(β̂sub,0)−1xj‖
, or (4)

π̂optL
i =

|yi − p(xi, β̂sub,0)|‖xi‖∑N
j=1 |yj − p(xj, β̂MLE)|‖xj‖

(5)

under selected optimality criterion, where

M̂L(β̂
sub,0) =

1

n0N

n0∑
i=1

p(x∗0
i , β̂

sub,0){1− p(x∗0
i , β̂

sub,0)}x∗0
i (x∗0

i )T

π∗0
i

.

– Run Algorithm 1 with subsample size n1 and subsampling probabilities {π̂optA
i }Ni=1

or {π̂optL
i }Ni=1.

– Record the second step subsample and the corresponding subsampling probabil-
ities {x∗1

i , y
∗1
i , π

∗1
i }

n1
i=1.

Estimation: Combine pilot sample and second step sample, and denote the combined
sample as {x∗

i , y
∗
i , π

∗
i }

n0+n1
i=1 . Obtain the final estimator β̃OS by maximizing

`∗sub(β) =

n0+n1∑
i=1

y∗βTx∗
i − log{1 + exp(βTx∗

i )}
π∗
i

.

cess every observation in the full dataset when calculating the approximately optimal1

subsampling probabilities, making the computational time at the order of N .2

For faster calculation, the variance-covariance matrix of β̃OS can be estimated by3

Ṽ OS = (M ∗
L)

−1V ∗
Nc(M

∗
L)

−1, (6)4
5

where6

M ∗
L =

1

(n0 + n1)N

n0+n1∑
i=1

p(x∗
i , β̃

OS){1− p(x∗
i , β̃

OS)}x∗
i (x

∗
i )

T

π∗
i

, and7

V ∗
Nc =

1

(n0 + n1)2N2

n0+n1∑
i=1

{y∗i − p(x∗
i , β̃

OS)}2x∗
i (x

∗
i )

T

(π∗
i )

2
.8

9
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Note that the Algorithm 2 is built under the circumstance that the regression model1

is correctly specified. Thus the model selection or the covariate transformation should be2

done in advance. Another thing is that, when practically implementing Algorithm 2, the3

second stage sample size should be always much larger than pilot sample size. This is4

a theoretical assumption ensuring the asymptotic normality of β̃OS, and guarantees the5

contribution of the second stage sample to the final estimator far beyond the first stage6

sample. These two statements are applicable to all optimal subsampling methods in this7

article.8

2.1 Optimal subsampling method for softmax regression9

The OSMAC was investigated to include softmax regression, which is also called multi-10

nomial logistic regression, in Yao and Wang (2018). Suppose that the response of the11

softmax regression, which is a categorical variable, contains K +1 distinct outcomes, say12

yi ∈ {0, 1, ..., K}. The softmax regression has the following form13

P (yi = k|xi) =
exp(xT

i βk)∑K
j=0 exp(x

T
i βj)

, k = 0, 1, ..., K, (7)14

15

where βk is the unknown coefficient for category k. Let β0 = 0 for identifiability. The16

unknown parameter for the whole model is denoted as β = (βT
1 ,β

T
2 , ...,β

T
K)

T, and (7)17

becomes18

P (yi = 0|xi) = p0(xi|β) =
1

1 +
∑K

j=1 exp(x
T
i βj)

,19

P (yi = k|xi) = pk(xi|β) =
exp(xT

i βk)

1 +
∑K

j=1 exp(x
T
i βj)

.20

21

Under this model, the log-likelihood function for the observed dataset {xi, yi}Ni=1 is22

`so(β) =
N∑
i=1

[
K∑
k=1

I(yi = k)xT
i β − log

{
1 +

K∑
j=1

exp(xT
i βj)

}]
.23

24

Maximizing this log-likelihood function, we can obtain the full data MLE β̂MLE though25

Newon-Raphson method. By deriving the variance-covariance matrix of a general sub-26
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sample estimator for softmax regression, the optimal subsampling probabilities are1

πoptA
so,i (β̂MLE) =

‖M−1
S {si(β̂MLE)⊗ xi}‖∑N

j=1 ‖M
−1
S {sj(β̂MLE)⊗ xj}‖

, under A-optimality criterion, and (8)2

πoptL
so,i (β̂MLE) =

‖si(β̂MLE)‖‖xi‖∑N
j=1 ‖sj(β̂MLE)‖‖xj‖

, under L-optimality criterion, (9)3

4

where MS = N−1
∑N

i=1 Ψi(β̂MLE) ⊗ (xix
T
i ); Ψi(β) is a K × K matrix whose k-th di-5

agonal element is Ψi,(k,k)(β) = pk(xi,β) − p2k(xi,β) and k1k2-th off-diagonal element is6

Ψi,(k1,k2)(β) = −pk1(xi,β)pk2(xi,β); and si(β) ∈ RK with k-th element being si,k(β) =7

I(yi = k) − pi(k,β). With the strategy that uses pilot sample estimator to replace8

β̂MLE when calculating optimal subsampling probabilities, we have the adaptive optimal9

subsampling algorithm for softmax regression.10

2.2 Income dataset11

The behavior of Algorithm 2 is illustrated by the income dataset (Dua and Graff, 2017),12

which contains 48842 observations in total. The response is an indicator variable which13

shows whether one person’s income is over 50K or not, and around 24% of participants14

have income exceeding 50K. We use 5 continuous covariates to build the logistic model,15

which are age, final weight (fnlwgt), education (edu), capital loss (loss) and working16

hours per week (hours). The original dataset was partitioned into training dataset and17

test dataset. We combined these two datasets, selected variables involving in the logistic18

model, and name this newly generated data as adult1. Applying glm function in stats19

package (R Core Team, 2020) to adult1, we can obtain the coefficient estimator for the20

covariates using the following chunk of code.21

adult <- read.table("Code/adult.data", sep = ",")



A Review on Optimal Subsampling Methods for Massive Datasets 9

test <- read.table("Code/adult.test", sep = ",", skip = 1)
test$V15 <- gsub("\\.", "", test$V15)
adult <- rbind(adult, test)
adult1 <- subset(adult, select = c("V1", # age

"V3", # fnlwgt
"V5", # edu
"V12", # loss
"V13", # hours
"V15", # income
NULL))

adult1$V15 <- as.numeric(adult1$V15 == " >50K")
income.glm <- glm(V15 ~ ., data = adult1, family = "binomial")
summary(income.glm)

##
## Call:
## glm(formula = V15 ~ ., family = "binomial", data = adult1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0587 -0.6890 -0.4364 -0.1376 3.0926
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -8.587e+00 9.436e-02 -91.009 < 2e-16 ***
## V1 4.594e-02 9.518e-04 48.266 < 2e-16 ***
## V3 6.007e-07 1.148e-07 5.231 1.68e-07 ***
## V5 3.410e-01 5.315e-03 64.156 < 2e-16 ***
## V12 5.616e-04 2.643e-05 21.244 < 2e-16 ***
## V13 4.202e-02 1.033e-03 40.669 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 53751 on 48841 degrees of freedom
## Residual deviance: 42995 on 48836 degrees of freedom
## AIC: 43007
##
## Number of Fisher Scoring iterations: 5

It is seen that every covariates is statistically significant, and as any covariate in-1

creases, the probability for a person with an income larger than 50K increases.2
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In the following, we implemented Algorithm 2 to adult1 by function AdpOptSubLog,1

in which the subsample estimator is calculated through svyglm function from survey2

package (Lumley, 2020) along with weights option.3

X <- cbind(1, as.matrix(adult1[, -dim(adult1)[2]]))
y <- adult1$V15
set.seed(123)
AdpOptSubLog(X, y, r0 = 500, r = 1000, optmethod = "A", data = adult1,

covariate = "V1 + V3 + V5 + V12 + V13")

## coefficients stdErr Zvalue Pvalue
## intercept -8.791713e+00 3.895829e-01 -22.566987 9.147120e-113
## beta1 4.269838e-02 5.432964e-03 7.859132 3.868057e-15
## beta2 1.528809e-06 5.649197e-07 2.706241 6.804961e-03
## beta3 3.535131e-01 2.817009e-02 12.549236 4.013658e-36
## beta4 8.640746e-04 1.386894e-04 6.230288 4.655796e-10
## beta5 4.168246e-02 5.534931e-03 7.530801 5.043002e-14

In the function AdpOptSubLog, X is the covariate matrix, y is the response variable4

with numerical format, r0 stands for the pilot sample size, r stands for the second step5

sample size, and optmethod indicates the optimality criterion, which can be “A” and “L”.6

The output gives coefficient estimators and estimated standard errors, along with the7

z statistics and p values used to test whether the MLE for the corresponding covariate8

equals to 0 or not. For an arbitrary βj, the z statistic is calculated by9

zj =
β̃OS
j√
Ṽ OS
jj

,10

11

where
√
Ṽ OS
jj is the estimated standard error and the estimated standard error is the12

squared root of j-th diagonal element of Ṽ OS in (6).13

3 Efficient optimal subsampling for logistic regression14

In this section, we introduce two approaches proposed by Wang (2019b) to improve the15

OSMAC, where the first one is to use unweighted subsample estimators and the other16

one is to adopt Poisson subsampling.17
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3.1 Efficient optimal subsampling with unweighted estimator1

In Algorithm 2, β̃OS is obtained by maximizing weighted target function because the2

expression of the optimal subsampling probabilities involves yi. From (1), we can see3

that data points with higher subsampling probabilities contribute relatively less towards4

the weighted target function. Note that the higher subsampling probability one data5

point has, the more information that observation carries. Thus, the weighted target6

function cannot utilize the information of a sample as efficient as an unweighted target7

function. Given a subsample {x∗
i , y

∗
i }ni=1, the general unweighted subsample estimator8

β̂sub
uw proposed by Wang (2019b) is obtained by maximizing9

`∗uw(β) =
n∑
i=1

[
y∗iβ

Tx∗
i − log{1 + exp(βTx∗

i )}
]
.10

11

The β̂sub
uw is biased and a bias correction procedure is needed. Algorithm 3 summarizes12

how to implement unweighted estimator in the optimal subsampling method and how to13

correct the bias.14

3.2 Efficient optimal subsampling using Poisson subsampling15

Besides subsampling with replacement, Poisson subsampling was considered in Wang16

(2019b). For Poisson subsampling, each observation is assigned to a subsampling proba-17

bility and we decide to include a data point into a sample by conducting a Bernoulli trail18

with the assigned subsampling probability as the successful rate. The observations in the19

subsample drawn by Poisson subsampling can be independent to each other uncondition-20

ally to the full data. That means, we can calculate the subsampling probabilities for i-th21

observation and decide whether to include i-th observation into subsample only based on22

the information of the i-th data point. Whereas for the subsampling with replacement,23

we have to draw a large indexes of samples from N numbers with pre-specified subsam-24

pling probabilities. For enormously large N such that N exceeding the memory limit of25

the computer, the subsampling with replacement fails to be applied. Another advantage26

of Poisson subsampling is that no replicate observation exists in the subsample. Further-27

more, the sample size is a random variable for Poisson subsampling, and we need to use28
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Algorithm 3 Efficient adaptive optimal subsampling algorithm
Pilot sampling:

– Assign subsampling probabilities π0
i = c1−yi0 cyi1 to each data point, where c0 =

c1 =
1
N

for uniform subsampling and c0 = 1/(2N − 2
∑N

i=1 yi), c1 = 1/(2
∑N

i=1 yi)
for case control subsampling.

– Draw n0 data points with replacement based on {π0
i }Ni=1 and denote the sampled

dataset as {x∗0
i , y

∗0
i }

n0
i=1.

Estimation for pilot sampling:
– Obtain the unweighted estimator β̂sub,0

uw by maximizing

`∗0uw(β) =

n0∑
i=1

[
y∗0i β

Tx∗0
i − log{1 + exp(βTx∗0

i )}
]
.

– Correct bias and the pilot sample estimator is β̃sub,0
uw = β̂sub,0

uw +
(log(c0/c1), 0, ..., 0︸ ︷︷ ︸

d−1

)T.

Second step sampling:
– Calculate the approximate optimal subsampling probabilities {π̃i}Ni=1 based on

(4) or (5) with β̂sub,0 being substituted by β̃sub,0
uw .

– Sample n1 data points with replacement based on {π̃i}Ni=1 and denote the sampled
dataset as {x∗1

i , y
∗1
i }

n1
i=1.

Estimation for second step sampling:
– Obtain the unweighted estimator β̂sub,1

uw for second step sample by maximizing

`∗1uw(β) =

n1∑
i=1

[
y∗1i β

Tx∗1
i − log{1 + exp(βTx∗1

i )}
]
.

– The second step estimator is obtained by correcting bias, say β̃sub,1
uw = β̂sub,1

uw +
β̃sub,0
uw .

Combination: The final estimator β̃sub
uw is obtained by

β̃sub
uw =

{
῭∗0
uw(β̂

sub,0
uw ) + ῭∗1

uw(β̂
sub,1
uw )

}−1 {
῭∗0
uw(β̂

sub,0
uw )β̃sub,0

uw + ῭∗1
uw(β̂

sub,1
uw )β̃sub,1

}
,

where

῭∗0
uw(β) =

n0∑
i=1

p(x∗0
i ,β){1− p(x∗0

i ,β)}x∗0
i (x∗0

i )T;

῭∗1
uw(β) =

n1∑
i=1

p(x∗1
i ,β){1− p(x∗1

i ,β)}x∗1
i (x∗1

i )T.

The variance-covariance matrix of β̃sub
uw can be estimated by

Ṽ sub
uw =

{
῭∗0
uw(β̂

sub,0
uw ) + ῭∗1

uw(β̂
sub,1
uw )

}−1
[ n0∑
i=1

{y∗0i − p(x∗0
i , β̂

sub,0
uw )}2x∗0

i (x∗0
i )T

+

n1∑
i=1

{y∗1i − p(x∗1
i , β̂

sub,1
uw )}2x∗1

i (x∗1
i )T

]{
῭∗0
uw(β̂

sub,0
uw ) + ῭∗1

uw(β̂
sub,1
uw )

}−1

. (10)
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the expected sample size to control it. The procedure of a general Poisson subsampling1

is described in Algorithm 4.2

Algorithm 4 Poisson subsampling
Input: {xi, yi, πi}Ni=1, n is the expected sample size, πi ≤ 1/n
Output: Sample set S
Initialization: S ← ∅
for i in {1, 2, ..., N} do
u ∼ Unif(0, 1),
if u < nπi then
S ← S ∪ (xi, yi, πi),

end if
end for

To keep all those features of Poisson subsampling, given a pilot sample with corre-3

sponding subsampling probabilities {x∗0
i , y

∗0
i , π

∗0
i }

n∗
0
i=1 and the pilot coefficient estimator4

β̃ps,0, the approximated optimal subsampling probabilities under A-optimality and L-5

optimality criteria are6

πoptA
ps,i (β̃ps,0) =

|yi − p(xi, β̃ps,0)|‖M−1
P (β̃ps,0)xi‖

φoptA(β̃ps,0)
, i = 1, ..., N, and (11)7

πoptL
ps,i (β̃

ps,0) =
|yi − p(xi, β̃ps,0)|‖xi‖

φoptL(β̃ps,0)
, i = 1, ..., N, respectively, (12)8

9

where10

φoptA(β̃ps,0) =

n∗
0∑

j=1

|y∗0j − p(x∗0
j , β̃

ps,0)|‖M−1
P (β̃ps,0)x∗0

j ‖
(n0π∗0

j ) ∧ 1
,11

φoptL(β̃ps,0) =

n∗
0∑

j=1

|y∗0j − p(x∗0
j , β̃

ps,0)|‖xj‖
(n0π∗0

j ) ∧ 1
,12

MP (β̃
ps,0) =

1

N

n∗
0∑

i=1

p(x∗0
i , β̃

ps,0){1− p(x∗0
i , β̃

ps,0)}x∗0
i (x∗0

i )T

(n0π∗0
j ) ∧ 1

,13

14

and n1 is the expected sample size. The adaptive optimal subsampling methods with15

Poisson subsampling is described in Algorithm 5.16

3.3 Income dataset17

Algorithm 3 is realized by function AdpOptUWLog. The following code applies the function18

AdpOptUWLog to the income dataset. The standard errors are calculated from (10).19
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Algorithm 5 Efficient adaptive optimal subsampling algorithm using Poisson subsam-
pling
Pilot sampling:

– Run Algorithm 4 with expected sample size n0 and subsampling probabilities π0
i .

– Obtain a pilot sample with sample size n∗
0, say {x∗0

i , y
∗0
i , π

∗0
i }

n∗
0
i=1.

Estimation for pilot sampling:
– Obtain β̂ps,0

uw by maximizing

`∗0ps,uw(β) =

n∗
0∑

i=1

(n0π
∗0
i ∨ 1)

[
y∗0i β

Tx∗0
i − log{1 + exp(βTx∗0

i )}
]
.

– Correct bias and the pilot sample estimator is β̃ps,0
uw = β̂ps,0

uw +(log(c0/c1), 0, ..., 0︸ ︷︷ ︸
d−1

)T.

Second step sampling:
– Calculate the approximate optimal subsampling probabilities {πoptA

ps,i (β̃ps,0
uw )}Ni=1 or

{πoptL
ps,i (β̃

ps,0
uw )}Ni=1 based on (11) or (12).

– Run Algorithm 4 with expected sample size n1 and subsampling probabilities
{πoptA

ps,i (β̃ps,0
uw )}Ni=1 or {πoptL

ps,i (β̃
ps,0
uw )}Ni=1 to obtain the second step sample, denoted

as {x∗1
i , y

∗1
i , π

∗1
i }

n∗
1
i=1, where n∗

1 is the true sample size.
Estimation for second step sampling:

– Obtain β̂ps,1
uw for second step sample by maximizing

`∗1ps,uw(β) =

n∗
1∑

i=1

(n1π
∗1
i ∨ 1)

[
y∗1i β

Tx∗1
i − log{1 + exp(βTx∗1

i )}
]
.

– The second step estimator can be obtained by correcting bias, say β̃ps,1
uw = β̂ps,1

uw +
β̃ps,0
uw .

Combination: The final estimator β̃ps
uw is obtained by

β̃ps
uw =

{
῭∗0
ps,uw(β̂

ps,0
uw ) + ῭∗1

ps,uw(β̂
ps,1
uw )

}−1 {
῭∗0
ps,uw(β̂

ps,0
uw )β̃ps,0

uw + ῭∗1
ps,uw(β̂

ps,1
uw )β̃ps,1

uw

}
,

where

῭∗0
ps,uw(β) =

n∗
0∑

i=1

p(x∗0
i ,β){1− p(x∗0

i ,β)}x∗0
i (x∗0

i )T;

῭∗1
ps,uw(β) =

n∗
1∑

i=1

p(x∗1
i ,β){1− p(x∗1

i ,β)}x∗1
i (x∗1

i )T.

The variance-covariance matrix of β̃ps
uw can be estimated by

Ṽ ps
uw =

{
῭∗0
ps,uw(β̂

ps,0
uw ) + ῭∗1

ps,uw(β̂
ps,1
uw )

}−1
[ n∗

0∑
i=1

{y∗0i − p(x∗0
i , β̂

ps,0
uw )}2x∗0

i (x∗0
i )T

+

n∗
1∑

i=1

{y∗1i − p(x∗1
i , β̂

ps,1
uw )}2x∗1

i (x∗1
i )T

]{
῭∗0
ps,uw(β̂

ps,0
uw ) + ῭∗1

ps,uw(β̂
ps,1
uw )

}−1

. (13)
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AdpOptUWLog(X, y, r0 = 500, r = 1000, optmethod = "A", data = adult1,
covariate = "V1 + V3 + V5 + V12 + V13")

## coefficients stdErr Zvalue Pvalue
## intercept -8.474380e+00 3.510944e-01 -24.137046 1.021383e-128
## beta1 4.719963e-02 4.355923e-03 10.835736 2.330840e-27
## beta2 5.618032e-07 4.707567e-07 1.193405 2.327110e-01
## beta3 3.268313e-01 2.371188e-02 13.783442 3.206122e-43
## beta4 8.420474e-04 1.227689e-04 6.858799 6.944199e-12
## beta5 3.945990e-02 4.427490e-03 8.912477 4.990482e-19

Function AdpOptPosLog is coded according to Algorithm 5, and apply this function1

to the income dataset using the code below.2

AdpOptPosLog(X, y, r0 = 500, r = 1000, optmethod = "A", data = adult1,
covariate = "V1 + V3 + V5 + V12 + V13")

## [[1]]
## coefficients stdErr Zvalue Pvalue
## intercept -8.662216e+00 3.204785e-01 -27.0290055 6.743402e-161
## beta1 5.055410e-02 4.467591e-03 11.3157404 1.096725e-29
## beta2 4.838215e-07 5.175832e-07 0.9347705 3.499066e-01
## beta3 3.597660e-01 2.232577e-02 16.1143842 2.021679e-58
## beta4 7.112636e-04 1.103245e-04 6.4470131 1.140759e-10
## beta5 3.299479e-02 3.512693e-03 9.3930180 5.830516e-21
##
## [[2]]
## pilot.sample.size second.sample.size
## 1 493 1107

Because the sample size for Poisson sampling is random, we record the true sample3

size in both stages. In AdpOptPosLog, r0 and r, which are the expected pilot sample4

size and expected second stage sample size, respectively, are set to be 500 and 1000. We5

can see, in this example, the true pilot sample size is 493 and true second stage sample6

size is 1107. The optmethod could be “A”, “L” and “LCC”, where “LCC” represents the7

local case control sampling introduced in Fithian and Hastie (2014), and the second step8

estimator is used as the final estimator. When selecting optmethod = "LCC", r is not9

meaningful since the subsampling probabilities at second stage become |yi− p(xi, β̃ps,0
uw )|.10

The expected sample size is determined by the discrepancy between the real value and11
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estimated probabilities, and is at the same order of N .1

Table 1: MSE, averaged second step sample size and running time of different methods
for the income data when n0 = 500 and n1 = 1000 are fixed for 1000 replications. The
sample size for uniform subsampling is n0 + n1 for fair comparison. A.S. Sample Size
means the averaged second step sample size used for each algorithm.

Method MSE A.S. Sample Size CPU Seconds
Algorithm 2 optA 0.170 1000 41.598
Algorithm 2 optL 0.271 1000 39.590
Algorithm 3 optA 0.127 1000 33.067
Algorithm 3 optL 0.271 1000 31.369
Algorithm 5 optA 0.106 1041.478 38.790
Algorithm 5 optL 0.238 1020.293 36.681
LCC 0.0176 13824.657 153.129
Uniform 0.317 NA 6.860
Full data CPU seconds: 230.116

Table 1 compares the statistical efficiency and computing efficiency of the proposed2

algorithms with uniform subsampling and local case control sampling for the income3

dataset. The statistical efficiency is measured by MSE, where MSE is calculated by4

S−1
∑S

i=1 ‖β̃∗
i − β̂MLE‖2 with S being the number of replications and β̃∗

i being the final5

estimator of the targeted algorithm for i-th replication. All computations are processed6

on a MacBook Pro with a 2.5 GHz Intel Core i7 processor and 16 GB memory. Table 17

shows that the uniform subsampling takes the least time since only one sampling step8

is involved and no need to compute the subsampling probabilities. The performances of9

all proposed algorithms in estimation efficiency are better than the uniform subsampling.10

Among these approaches, the local case control sampling is the most efficient one in11

approximating β̂MLE because this method draws greatly more second step samples than12

others. As a consequence, the local case control sampling has a heavier computational13

burden than the proposed algorithms. Obviously, directly calculating β̂MLE with the full14

data is the most time consuming method. For the statistical efficiency of these three15

proposed algorithms, Algorithm 5 outperforms the other two, and Algorithm 2 is the16

least efficient one, indicating that using unweighted estimator and Poisson subsampling17

helps improve the estimation accuracy. In addition, it can be seen that Algorithms18
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under L-optimality are less efficient in coefficient estimation but more efficient in terms1

of computing time than Algorithms under A-optimality.2

4 Optimal subsampling method for generalized linear3

models4

Consider a generalized linear model with expression5

f(yi|xi,β) = h(yi) exp
[
yig(x

T
i β)− c{g(xT

i β)}
]
, (14)6

7

where h(·), g(·) and c(·) are known functions. The β̂MLE can be obtained by maximizing8

`glm(β) =
N∑
i=1

log f(yi|xi,β)9

10

through the Newton-Raphson method, which can be achieved in O(ηNd2) time, where11

η is the number of iterations for the Newton-Raphson method to converge. Assign sub-12

sampling probabilities to each observation. Draw n observations with replacement and13

denote them as {x∗
i , y

∗
i , π

∗
i }ni=1. The subsample estimator β̂glm

sub is obtained by maximizing14

the weighted target function15

`∗glm(β) =
n∑
i=1

log f(y∗i |x∗
i ,β)

π∗
i

. (15)16

17

By minimizing the asymptotic MSE of β̂glm
sub , the optimal subsampling probabilities under18

A-optimality criterion are19

πoptA
glm,i(β̂MLE) =

|yi − ċ{g(xT
i β̂MLE)}|‖M−1

G (β̂MLE)ġ(x
T
i β̂MLE)xi‖∑N

j=1 |yj − ċ{g(xT
j β̂MLE)}|‖M−1

G (β̂MLE)ġ(xT
j β̂MLE)xj‖

, (16)20

21

where ċ(·) and ġ(·) are the first-order derivatives of c(·) and g(·); and22

MG(β̂MLE) =
1

n

n∑
i=1

{
g̈(xT

i β̂MLE)xix
T
i [ċ{g(xT

i β̂MLE)} − yi] + c̈{g(xT
i β̂MLE)}ġ2(xT

i β̂MLE)xix
T
i

}
,23

24
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with c̈(·) and g̈(·) being the second-order derivatives of c(·) and g(·). The optimal sub-1

sampling probabilities under L-optimality criterion are2

πoptL
glm,i(β̂MLE) =

|yi − ċ{g(xT
i β̂MLE)}|‖ġ(xT

i β̂MLE)xi‖∑N
j=1 |yj − ċ{g(xT

j β̂MLE)}|‖ġ(xT
j β̂MLE)xj‖

. (17)3

4

We need O(Nd2) time to compute πoptA
glm,i(β̂MLE) and O(Nd) time to compute πoptL

glm,i(β̂MLE).5

From (15), we can see that the weighted target function is easily inflated by extreme small6

subsampling probabilities. To solve this, the authors in Ai et al. (2019) used a threshold7

to constraint the value of |yi− ċ{g(xT
i β)}| from below. In such way, given a pilot sample8

estimator β̂glm,0 and a pre-specified threshold δ, the approximated optimal subsampling9

probabilities are10

π̂optA
glm,i(β̂

glm,0) =
max{|yi − ċ{g(xT

i β̂
glm,0)}|, δ}‖M−1

G (β̂glm,0)ġ(xT
i β̂

glm,0)xi‖∑N
j=1max{|yi − ċ{g(xT

i β̂
glm,0)}|, δ}‖M−1

G (β̂glm,0)ġ(xT
j β̂

glm,0)xj‖
(18)11

12

under A-optimality criterion and13

π̂optL
glm,i(β̂

glm,0) =
max{|yi − ċ{g(xT

i β̂
glm,0)}|, δ}‖ġ(xT

i β̂
glm,0)xi‖∑N

j=1max{|yi − ċ{g(xT
i β̂

glm,0)}|, δ}‖ġ(xT
j β̂

glm,0)xj‖
(19)14

15

under L-optimality criterion. The adaptive optimal subsampling algorithm for generalized16

linear regression is summarized in Algorithm 6. It has been proved in Ai et al. (2019)17

that the resultant estimator of Algorithm 6 is asymptotically normal and the rate of18

convergence is O(n−1/2
1 ) under some mild assumptions.19

4.1 Poisson Regression20

Poisson regression is widely used for modeling count data, and is one of the generalized21

linear models. Under (14), the poisson regression has h(yi) = 1/(yi!), g(xT
i β) = x

T
i β and22

c(·) = exp(·), and is of the form23

f(yi|xi,β) =
1

yi!
exp

{
yix

T
i β − exp(xT

i β)
}
. (21)24

25



A Review on Optimal Subsampling Methods for Massive Datasets 19

Algorithm 6 Adaptive optimal subsampling algorithm for generalized linear models
Pilot sampling:

– Assign π0
i = N−1 to each observation.

– Choose n0 data points with replacement and record the subsample as
{x∗0

i , y
∗0, π∗0

i }
n0
i=1.

– Obtain the pilot sample estimator β̂glm,0 by maximizing

`∗0glm(β) =

n0∑
i=1

log f(y∗0i |x∗0
i ,β)

π∗0
i

.

Second step sampling:
– Calculate the approximate optimal subsampling probabilities {π̂optA

glm,i(β̂
glm,0)}Ni=1

or π̂optL
glm,i(β̂

glm,0) based on (18) or (19).
– Draw n1 samples with replacement based on those approximate optimal subsam-

pling probabilities.
– Record the second step subsample and the corresponding subsampling probabil-

ities {x∗1
i , y

∗1, π∗1
i }

n1
i=1.

Estimation: Combine the pilot sample and second stage sample and denote it as
{x∗

i , y
∗, π∗

i }
n0+n1
i=1 . Obtain the final estimator β̃glm by maximizing

`∗glm(β) =

n0+n1∑
i=1

log f(y∗i |x∗
i ,β)

π∗
i

.

Estimate the variance-covariance matrix of β̃glm by

Ṽ = (M ∗
G)

−1V ∗
G(M

∗
G)

−1, (20)

where

M ∗
G =

n0+n1∑
i=1

g̈(β̃T
glmx

∗
i )x

∗
i (x

∗
i )

T[ċ{g(β̃T
glmx

∗
i )} − y∗i ] + c̈{g(β̃T

glmx
∗
i )}ġ2(β̃T

glmx
∗
i )x

∗
i (x

∗
i )

T

(n0 + n1)Nπ∗
i

,

V ∗
G =

n0+n1∑
i=1

[y∗i − ċ{g(β̃T
glmx

∗
i )}]2ġ2(β̃T

glmx
∗
i )x

∗
i (x

∗
i )

T

(n0 + n1)2N2(π∗
i )

2
.

Given a prior estimator β̂glm,0, the approximated optimal subsampling probabilities in1

(18) and (19) become2

π̂optA
pr,i (β̂glm,0) =

max{|yi − exp(xT
i β̂

glm,0)|, δ}‖M−1
P (β̂glm,0)xi‖∑N

j=1max{|yi − exp(xT
i β̂

glm,0)|, δ}‖M−1
P (β̂glm,0)xj‖

and (22)3

π̂optL
pr,i (β̂

glm,0) =
max{|yi − exp(xT

i β̂
glm,0)|, δ}‖xi‖∑N

j=1max{|yi − exp(xT
i β̂

glm,0)|, δ}‖xj‖
, respectively, (23)4

5
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where MP = 1
N

∑N
i=1 exp(x

T
i β̂

glm,0)xix
T
i . Plug in (21), (22) and (23) into Algorithm 6,1

and we can have the adaptive optimal subsampling algorithm for poisson regression.2

4.2 Bike sharing dataset3

The bike sharing dataset, which models the number of bikes rented hourly under different4

conditions, is used to demonstrate the effectiveness of the Algorithm 6 to the poisson5

regression. This dataset contains 17379 observations, and 4 covariates are included to6

the model, consisting of a binary variable “workingday” to indicate whether a certain day7

is a working day or not, 3 continuous variables which are “temp” (temperature), “hum”8

(humidity) and “windspeed” (windspeed). The organized dataset is named hour1 and9

the coefficient estimator for hour1 is computed by glm using family = "poisson". The10

following code shows how to obtain the MLE for the full dataset.11

hour <- read.csv("Code/hour.csv")
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hour1 <- subset(hour, select = c("workingday",
"temp",
"hum",
"windspeed",
"cnt",
NULL))

hour.glm <- glm(cnt ~ ., data = hour1, family = "quasipoisson")
summary(hour.glm)

##
## Call:
## glm(formula = cnt ~ ., family = "quasipoisson", data = hour1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -25.178 -10.343 -3.115 4.743 43.828
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.01970 0.03597 139.55 < 2e-16 ***
## workingday 0.03050 0.01393 2.19 0.028568 *
## temp 1.82930 0.03359 54.45 < 2e-16 ***
## hum -1.35761 0.03528 -38.48 < 2e-16 ***
## windspeed 0.19668 0.05418 3.63 0.000284 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasipoisson family taken to be 134.8556)
##
## Null deviance: 2891591 on 17378 degrees of freedom
## Residual deviance: 2158367 on 17374 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 5

We choose quasipoisson for the family option in glm function to deal with the1

over-dispersion problem for the bike sharing dataset. The small p values show that every2

covariate is significant to the model at 5% significance level. As we can see that the3

expected count of rented bikes in working days is greater than that in non-working days.4

The increase of temperature or windspeed has a positive influence to the number of rented5

bikes, and the increase of humidity has a negative effect on the number of rented bikes.6
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Next, we implement function AdpOptSubPoi, which is coded by Algorithm 6, to the1

bike sharing dataset using the following code.2

y <- hour1$cnt
X <- cbind(1, as.matrix(hour1[, -dim(hour1)[2]]))
AdpOptSubPoi(X, y, r0 = 200, r = 500, optmethod = "A",

delta.quant = 0.05)

## coefficients stdErr Zvalue Pvalue
## intercept 5.14630395 0.13783088 37.337816 3.997503e-305
## beta1 0.07447008 0.06144731 1.211934 2.255376e-01
## beta2 1.74470616 0.13251485 13.166118 1.374867e-39
## beta3 -1.56200797 0.15372749 -10.160889 2.963612e-24
## beta4 0.24731077 0.19582335 1.262928 2.066151e-01

The above result is given by setting the pilot sample size as 200 and the second3

stage sample size as 500 under A-optimality criterion. The option dalta.quant = 0.054

indicates that δ is chosen as the 5% quantile of |yi − exp(xT
i β̂

glm,0)|. The weighted5

subsample estimator is obtained by glm using weights option and the standard errors6

are estimated using (20).7

To demonstrate the effectiveness of the proposed algorithm, we compare the MSE and8

running time of different methods. Table 2 shows that Algorithm 6 is better than uniform9

subsampling in estimation accuracy, and is computationally more efficient compared with10

the full data computation.11

Table 2: MSE and running time of different methods for the bike sharing dataset when
n0 = 200 and n1 = 500 are fixed for 1000 replications.

Method MSE CPU Seconds
Algorithm 6 optA 0.103 11.184
Algorithm 6 optL 0.116 10.727
Uniform 0.149 9.516
Full data running time: 62.379
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5 Optimal subsampling method for quantile regression1

The adaptive optimal subsampling algorithm for quantile regression was discussed in2

Wang and Ma (2020). The quantile regression estimates a specified quantile of the re-3

sponse variable conditional on the covariate variable, and has form4

qτ (yi|xi) = xT
i β,5

6

where τ represents that the τ -th quantile of yi given xi is measured. The full data7

estimator can be solved in O(N5/2d3) time by interior point method (Portnoy et al.,8

1997). Draw a subsample with size n based on the probability distribution {πi}Ni=1,9

and record the sampled data with its subsampling probability as {x∗
i , y

∗
i , π

∗
i }ni=1. The10

subsample estimator β̂qr
sub is obtained by minimizing11

Q∗
sub(β) =

1

n

n∑
i=1

(y∗i − βTx∗
i ){τ − I(y∗i − βTx∗

i < 0)}
Nπ∗

i

. (24)12

13

The optimal subsampling probabilities under A-optimality are14

πoptA
qr,i =

|τ − I(yi − xT
i β < 0)|‖MQxi‖∑N

j=1 |τ − I(yj − xT
j β < 0)|‖MQxj‖

, i = 1, ..., N,15

16

where MQ = 1
N

∑N
i=1 fε(0,xi)xx

T
i and fε(0,xi) is the density function of yi − xT

i β at 017

given xi. The difficulty to estimate fε(0,xi) makes A-optimal subsampling probabilities18

hard to compute. Thus, for quantile regression, L-optimal subsampling probabilities are19

more favorable, which are20

πoptL
qr,i (β) =

|τ − I(yi − xT
i β < 0)|‖xi‖∑N

j=1 |τ − I(yj − xT
j β < 0)|‖xj‖

, i = 1, ..., N. (25)21

22

The time complexity for computing πoptL
qr,i (β) is O(Nd). Based on the L-optimal sub-23

sampling probabilities, the authors proposed an iteratively adaptive optimal algorithm24

to obtain the coefficient estimator and its estimated variance. This algorithm is stated in25

Algorithm 7. It has shown that the rate of convergence of the final estimator is (n1R)
−1/2

26

in Wang and Ma (2020).27
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Algorithm 7 Iteratively adaptive optimal subsampling algorithm for quantile regression
Pilot sampling:

– Assign π0
i = N−1 to each observation.

– Choose n0 data points with replacement and record the subsample and associated
subsampling probabilities as {x∗0

i , y
∗0, π∗0

i }
n0
i=1.

– Obtain the pilot sample estimator β̂qr,0 by minimizing (24) with {x∗0
i , y

∗0, π∗0
i }

n0
i=1

plugged in.
– Calculate the approximate optimal subsampling probabilities π̂optL

qr,i (β̂
qr,0) based

on (25).
Iterative second step sampling:

for r in {1, 2, ..., R} do
– Draw n1 samples with replacement based on π̂optL

qr,i (β̂
qr,0) and denote the

subsample and corresponding subsampling probabilities as {x∗1
r,i, y

∗1
r,i, π

∗1
r,i}

n1
i=1.

– Obtain the subsample estimator β̂qr
r by minimizing (24) with {x1

i , y
1
i , π

∗
i }ni=1

replaced by {x∗1
r,i, y

∗1
r,i, π

∗1
r,i}

n1
i=1.

end for
Estimation: The final estimator is

β̃qr =
1

R

R∑
r=1

β̂qr
r

and its estimated variance-covariance matrix is

Ṽ qr =
1

νR(R− 1)

R∑
r=1

(β̃qr − β̂qr
r )(β̃

qr − β̂qr
r )

T, (26)

where

ν = 1− n1R− 1

2

N∑
i=1

{π̂optL
qr,i (β̂

qr,0)}2.

5.1 Physicochemical properties of protein tertiary structure dataset1

We apply the Algorithm 7 to the physicochemical properties of protein tertiary struc-2

ture dataset (Dua and Graff, 2017), which contains 45730 observations and the response3

variable is the size of the residue ranging from 0 to 21 Armstrong. We use 8 covariates4

describing the features of the residue to build quantile regression model based on the5

dataset casp. The parameter estimators of casp are calculated with function rq from6

quantreg package (Koenker, 2020) by selecting option method = “pfn” by the following7

chunk of code.8
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casp <- read.csv("Code/CASP.csv")
casp <- casp[, -which(colnames(casp) == "F3")] # F3 = F2/F1
fit.full <- rq(RMSD ~ ., tau=0.75, data = casp, method="pfn")
summary(fit.full)

##
## Call: rq(formula = RMSD ~ ., tau = 0.75, data = casp, method = "pfn")
##
## tau: [1] 0.75
##
## Coefficients:
## Value Std. Error t value Pr(>|t|)
## (Intercept) 14.28730 0.44468 32.12969 0.00000
## F1 0.00135 0.00016 8.35146 0.00000
## F2 0.00363 0.00007 52.87650 0.00000
## F4 -0.14037 0.00232 -60.43679 0.00000
## F5 0.00000 0.00000 -3.92747 0.00009
## F6 -0.03302 0.00251 -13.16472 0.00000
## F7 -0.00011 0.00006 -1.79549 0.07258
## F8 0.02824 0.00094 29.91801 0.00000
## F9 -0.10077 0.00887 -11.35847 0.00000

From the result, we know that, at 5% significance level, the seventh covariate (Eu-1

clidian distance) is not significant to the model and all others are significant.2

Algorithm 7 is realized by QuanSub as follows, in which the option r0 and r are3

pilot sample size and second stage sample size, respectively, working as n0 and n1 in4

the Algorithm 7, and RR is the same as R in the Algorithm 7. The option tau = 0.755

indicates that we are modeling 75-th quantile of the size of the residue based on the6

covariates. The optmethod can be L and uniform, which implies optimal subsampling7

under L-optimality criterion and uniform subsampling, respectively.8

X <- cbind(1, as.matrix(casp[, -1]))
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y <- casp$RMSD
QuanSub(X, y, r0 = 200, r = 1000, RR = 10, tau = 0.75,

optmethod = "L")

## coefficients stdErr Zvalue Pvalue
## intercept 1.650621e+01 2.122373e+00 7.777244 7.412151e-15
## beta1 1.863738e-03 4.138735e-04 4.503158 6.695106e-06
## beta2 3.619006e-03 1.245316e-04 29.060951 1.119019e-185
## beta3 -1.414209e-01 6.622824e-03 -21.353567 3.612864e-101
## beta4 -7.255863e-06 2.649310e-06 -2.738774 6.166870e-03
## beta5 -3.774362e-02 8.541898e-03 -4.418645 9.932166e-06
## beta6 -4.081346e-04 1.372780e-04 -2.973052 2.948541e-03
## beta7 2.866351e-02 2.840549e-03 10.090833 6.065278e-24
## beta8 -1.329846e-01 3.951277e-02 -3.365611 7.637438e-04

The standard errors are obtained from (26), and z statistics and p values are to test1

whether the true value of corresponding parameter equals to 0 or not, where z statistics2

are acquired by dividing coefficient estimators by standard errors. All p values are small3

demonstrating that every parameter is significant under a relatively low significance level.4

We also compare the performance of Algorithm 7 with uniform subsampling. Table 35

indicates that, comparing with the uniform subsampling, Algorithm 7 is more efficient6

in estimation accuracy. Even though Algorithm 7 takes more time in computing than7

uniform subsampling, it is still computationally more efficient compared with full data8

calculation.9

Table 3: MSE and running time of different methods for physicochemical properties of
protein tertiary structure dataset when n0 = 200 and n1 = 1000 are fixed for 1000
replications.

Method MSE CPU Seconds
Algorithm 7 3.464 62.113
Uniform 4.718 41.921
Full data running time: 121.077
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6 Summary1

In this paper, we demonstrate the effectiveness of the optimal subsampling methods to2

reduce the computational burden for massive datasets, and illustrate the application of3

the optimal subsampling methods to logistic regression, generalized linear models and4

quantile regression by real data examples. The coefficient estimators obtained by the5

optimal subsampling methods always maintain nice statistical properties, such as con-6

sistency and asymptotic normality, making it possible to perform statistical inferences,7

including making hypothesis tests and constructing confidence intervals, based on the8

subsample.9

This review focuses on the application of optimal subsampling methods, and the10

discussion mainly focuses on presenting optimal subsampling probabilities and practical11

algorithms. Theoretical properties of the resultant coefficient estimators are not discussed12

in details. In practical applications, problems more complex than what we have discussed13

can occur, and further efforts are necessary to develop suitable sampling approaches. Sub-14

sampling for big data is a promising method for estimation efficiency and computational15

efficiency tradeoffs. It is quite now, and much work is needed. We hope this review can16

be a starting point for practitioners to use the optimal subsampling methods.17

Supplementary Information18

The R functions mentioned in the paper for the optimal subsampling algorithms and all19

datasets can be found on the Journal of Data Science website.20
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