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Abstract

Subsampling is an effective approach to address computational challenges associated

with massive datasets. However, existing subsampling methods do not consider model

uncertainty. In this paper, we investigate the subsampling technique for the Akaike

information criterion (AIC) and extend the subsampling method to the smoothed AIC

model-averaging framework in the context of generalized linear models. By correcting

the asymptotic bias of the maximized subsample objective function used to approximate

the Kullback–Leibler divergence, we derive the form of the AIC based on the subsample.

We then provide a subsampling strategy for the smoothed AIC model-averaging esti-

mator and study the corresponding asymptotic properties of the loss and the resulting

estimator. A practically implementable algorithm is developed, and its performance is

evaluated through numerical experiments on both real and simulated datasets.

Keywords: Big Data, Information Criterion, Nonuniform Subsampling, Smoothed AIC
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1 Introduction
Subsampling is a popular method to address big data challenges imposed by exponentially

growing data volumes. In many areas of analysis, it successfully alleviates the computational

burden brought by large-scale datasets. There are two basic approaches in current research

investigations. One approach is to find the most representative data points for the entire

dataset, which is model-free. Typical examples include Latin-hypercube-design-based sub-

sampling (Zhao et al., 2018; He et al., 2024), uniform-design-based subsampling (Shi and

Tang, 2021; Zhang et al., 2023; Zhou et al., 2023), and support-points-based subsampling

(Mak and Joseph, 2018; Joseph and Mak, 2021; Joseph and Vakayil, 2022). Another ap-

proach is model-assisted subsampling, which aims to find the most informative data points to

improve estimation efficiency for specific models. Important works include, but are not lim-

ited to, leverage score subsampling (Ma et al., 2015, 2022), Lowcon (Meng et al., 2021), and

information-based optimal subsampling (Wang et al., 2019; He et al., 2024) for linear mod-

els; local case-control subsampling (Fithian and Hastie, 2014; Han et al., 2020) and optimal

subsampling motivated by the A-optimality criterion (OSMAC, Wang et al., 2018) for logistic

regression; and optimal subsampling methods for other more complicated models (Wang and

Ma, 2021; Ai et al., 2021; Yu et al., 2022, 2024; Ye et al., 2024).

The aforementioned investigations focus on estimating the unknown parameters with a

given model. In practice, the true data-generating model is always unknown, and multiple

candidate models are often plausible. For example, in high-energy physics, scientists are

interested in determining if a process produces supersymmetric particles or not (Baldi et al.,

2014). The supersymmetric benchmark dataset1 in the UCI machine learning repository

was created to study the two classes of processes. Each record in the dataset represents

a hypothetical collision between particles with eight kinematic properties features such as

energy levels and momenta, along with some high-level features derived by physicists to help

distinguish the two classes. Researchers may build multiple candidate models with the eight

kinematic features, together with higher-order features, and possibly additional features such

as interactions among the eight kinematic features. Model averaging is usually regarded as

a powerful tool to achieve the smallest risk in estimation among the candidate models. See

1https://doi.org/10.24432/C54606
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Buckland et al. (1997); Hjort and Claeskens (2003); Hansen (2014); Yuan and Yang (2005);

Claeskens et al. (2008); Liang et al. (2011); Zhang (2015); Peng and Yang (2022), among

others, for the advantages of model averaging. Finding model averaging estimators with

massive data can be daunting due to the computing costs in both parameter estimation and

weight determination for all candidate models. To alleviate the computation burden, we

investigate the subsampling strategy for model averaging.

Compared to existing approaches, designing an efficient subsampling strategy for model

averaging estimators meets the following three challenges. Firstly, as shown in Wang (2019),

if the model is misspecified, then “optimal” subsampling probabilities are no longer optimal

and may even reduce the estimation efficiency. Thus, the basic question becomes how to

design subsampling probabilities that benefit the estimation of the candidate models with

larger model weights. This is unknown in the literature of subsampling. Secondly, due to

the non-uniform and data-dependent sampling approach, the selected subdata and the entire

data often have different distributions. Consequently, a model that is good for describing the

selected subdata may fail to summarize the entire data well. Subsample-based model weights

should reflect the model information distilled for the entire data. Thirdly, one may want to

explore a larger number of candidate models with a larger sample size, so it is necessary to

let the number of predictors and the number of candidate models grow with the subsample

size. In the language of asymptotic analysis, they are allowed to diverge as the subsample size

increases. Although some investigations, such as Wang et al. (2019); Ma et al. (2022), have

tried to address the challenges caused by a diverging number of predictors, their studies are

on linear models using least squares estimators with explicit expressions. Their results cannot

be easily extended to generalized linear models due to multiple technical difficulties, e.g., no

explicit forms of the estimators and multiple candidate models to consider simultaneously.

We address the aforementioned issues and study the subsampling strategy of the AIC-

based model averaging approach for generalized linear models. We opt to use smoothed

AIC (S-AIC) weights (Buckland et al., 1997) because they are computationally more efficient

than other weighted averaging methods, such as Mallows model averaging (Hansen, 2007;

Wan et al., 2010), optimal mean squared error averaging (Liang et al., 2011; Zhang et al.,

3



2016), and the jackknife model averaging (Hansen and Racine, 2012). In addition, the AIC

and S-AIC enjoy the asymptotic efficiency property that achieves the smallest estimation

loss/risk among all the candidate models (Claeskens et al., 2008, Chapter 4). To improve the

performance of the model averaging estimator, we propose amini-max asymptotic uncertainty

subsampling strategy (MASS). We derive the form of the subsampled AIC by correcting the

asymptotic bias in approximating a Kullback-Leibler type divergence caused by non-uniform

subsampling (9), and use it to define the subsample smoothed AIC model averaging estimator.

We also establish the uniform consistency of the subsample-based estimators to the full-data-

based estimator across candidate models with diverging dimensions for generalized linear

models (Proposition 1 and Theorem 4). The relative information loss of the subsample-based

estimator to the full-data estimator is studied (Theorem 3). To the best of our knowledge,

this has not been studied in the literature.

The rest of the paper is organized as follows. Section 2 describes the model setup of our

investigation. Section 3 derives the expression of the subsample-based AIC and shows its

asymptotic property in model selection. We introduce the subsample model averaging esti-

mator together with a subsampling strategy in Section 4, and derive its theoretical properties.

In Section 5, we present numerical studies on both simulated and real datasets. Technical

proofs are relegated to the Supplementary Material.

2 Preliminaries

2.1 Model Setup and Notations

Consider response distributions from the one-parameter natural exponential family with the

following density:

f(y|θ) = h(y) exp(yθ − ψ(θ))dµ(y), (1)

where θ satisfies that
∫
h(y) exp(yθ − ψ(θ))dµ(y) < ∞ under the dominating measure µ.

Suppose we have n independent observations {(yi,xT
i )

T, i = 1, . . . , n}, where yi’s ∈ R are the

responses and xi’s ∈ Rq are the covariates. The conditional distribution of yi given xi is linked

in the working model through the natural parameter θ in (1) by

θi = xT

i β, for i = 1, . . . , n. (2)
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Consider a set of m candidate models M1, . . . ,Mm which are used to capture the rela-

tionship between x and y through (2). Here, the kth candidate model Mk includes some (or

all) of variables in x.

To facilitate the presentation, let X = (x1, . . . ,xn)
T, Y = (y1, . . . , yn)

T, Fn = (X,Y ),

and qk be the number of parameters in model Mk. Let Pk ∈ Rqk×q be a selection (projection)

matrix associated with Mk such that Pk = (ej1 , . . . , ejqk
)T, where 1 ≤ j1 < · · · < jqk ≤ q are

a subset of the column indices of the model matrix X and ej ∈ Rq is a unit vector with the

jth element being one. With this notation, we can write βk = Pkβ. Motivated by the “bet

on sparsity” principle (Hastie et al., 2009), the largest number of features to consider in a

candidate model is not necessarily q. To distinguish the largest number of parameters for the

models in the candidate pool and the number of the features in X, we use q(L) to denote the

largest dimension of the candidate models among M1, . . . ,Mm.

Using the above notations, the kth candidate model Mk can be written as

fk(y|βk,x) = h(y) exp (yβT

kPkx− ψ(βT

kPkx)) , (3)

and the full-data-based maximum likelihood estimator β̂k with Fn under model Mk is the

maximizer of the log-likelihood function

ℓk(βk) =
1

n

n∑
i=1

(yiβ
T

kPkxi − ψ(βT

kPkxi)) . (4)

2.2 General Subsampling Framework

Let πi be the sampling probability for the ith data point in one sampling draw and de-

note π = (π1, π2, . . . , πn). Here the π may depend on the observed data. The subsample

{(y∗i ,x∗T
i , π

∗
i )

T, i = 1, . . . , r} is constructed by sampling with replacement for r times accord-

ing to the sampling distribution π. Here y∗i , x
∗
i , and π

∗
i denote the response, predictor, and

sampling probability of the ith data point in the subsample, respectively. Based on the sub-

sample, the quasi-likelihood estimator β̃k under model Mk is the maximizer of the following

objective function:

ℓ∗k(βk) =
1

nr

r∑
i=1

1

π∗i
(y∗i β

T
kPkx

∗
i − ψ(βT

kPkx
∗
i )) . (5)
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For ease of presentation, we call (5) a subsample-based log-likelihood function throughout this

paper, since it is an unbiased estimator of the full-data-based log-likelihood function under

model Mk.

To ensure the consistency and asymptotic normality of the resultant estimator β̃k with

respect to the full-data-based estimator under each candidate model, we assume the following

regularity conditions.

Assumption 1. For each candidate model Mk, the parameter βk lies in Λk = {βk : ∥βk∥ ≤ C},

and the full-data-based estimator β̂k is an inner point of Λk with probability one. Here C is a

constant and ∥ · ∥ denotes the l2 norm for a vector.

Assumption 2. Let ψ̇, ψ̈, and
...
ψ be the first, second, and third derivatives of ψ, respectively.

There exist integrable functions gl(x) for l = 0, . . . , 3, such that ψ2(
∑m

k=1 ωkβ
T
kPkx) < g0(x),

ψ̇6(
∑m

k=1 ωkβ
T
kPkx) < g1(x), ψ̈

6(
∑m

k=1 ωkβ
T
kPkx) < g2(x), and

...
ψ

2
(
∑m

k=1 ωkβ
T
kPkx) < g3(x).

Further assume that sup∥u∥=1E(∥uTx∥9) < ∞ and E(y6) < ∞. Here ωk ∈ [0, 1] denotes the

weight of the kth model, and
∑m

k=1 ωk = 1.

Assumption 3. Denote λmin(·) as the smallest eigenvalue and ∥A∥s as the spectral norm

of a matrix A (the largest eigenvalue for a non-negative definite matrix). Let A(βk) =

n−1
∑n

i=1 ψ̈(β
T
kPkxi)Pkxix

T
i P

T
k , and B(βk) = n−1

∑n
i=1(yi − ψ̇(βT

kPkxi))
2Pkxix

T
i P

T
k . With

probability one, it holds that 0 < limn→∞ infk,βk
λmin(A(βk)) ≤ limn→∞ supk,βk

∥A(βk)∥s <

∞, 0 < limn→∞ infk,βk
λmin(B(βk)) ≤ limn→∞ supk,βk

∥B(βk)∥s <∞.

Assumption 4. For δ ∈ (0, 1/2), the subsampling probabilities satisfy
∑n

i=1(n
2+δπ1+δ

i )−1y6i =

OP (1), sup∥u∥=1

∑n
i=1(n

2+δπ1+δ
i )−1∥uTxi∥9 = OP (1), and

∑n
i=1(n

2+δπ1+δ
i )−1gl(xi) = OP (1),

for l = 0, . . . , 3, where gl(xi)’s are defined in Assumption 2 and OP (1) means bounded in

probability.

Assumption 5. For some κ ∈ (0,∞),

sup
∥u∥=1

max
1≤i≤n

|uTxi|6 ∨ 1

nlogκ(n)πi
= OP (1), sup

k
max
1≤i≤n

ψ(β̂T
kPkxi)

nlogκ(n)πi
= OP (1),

where a ∨ b = max(a, b).
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Assumption 1 is often assumed for the maximum likelihood estimator such as in White

(1982). Assumption 2 imposes some moment conditions. Similar conditions are also assumed

in Ando et al. (2017). Assumption 3 indicates that the log-likelihood function is convex and

ensures that the maximum likelihood estimator is unique (Lv and Liu, 2014). Some tail

behaviors of the data are required in Assumptions 4 and 5 which mitigate the inflation of

the sampling variance. More precisely, it is used to ensure that the Hessian matrix of (5)

concentrates around −A(βk) (Chen et al., 2012), which implies that the ℓ∗k(βk) is concave and

the resultant estimator β̃k is unique for M1, . . . ,Mm. These assumptions are not restrictive.

Taking the logistic regression as an example, Assumptions 2, 4 and 5 are naturally satisfied

when the covariate distribution is sub-Gaussian for the proposed subsampling method and

the uniform subsampling method.

To capture the uniform convergence rate of the subsample-based estimator, we derive the

following proposition.

Proposition 1. If Assumptions 1–5 hold and (log(m) + q(L) log(q)) log
2κ(n)/r → 0 as n, r →

∞, then for any ϵ > 0, there exists a finite ∆ϵ and rϵ, such that for all r > rϵ,

pr

(
sup
k

∥β̃k − β̂k∥ ≥
√
q(L)log

κ(n) log(q)/r∆ϵ

∣∣∣Fn

)
< ϵ, (6)

with probability approaching one.

3 Subsample-based Information Criteria
In this section, we propose an appropriate definition of the AIC in the subsampling framework.

Let ftrue(y|x) be the true data generating conditional density of y given x and fk(y|βk,x) be a

parametric approximation under model Mk. We assume that the distribution of x is ancillary

to the regression parameter. The Kullback–Leibler (KL) divergence between the true model

ftrue(y|x) and candidate model Mk with fk(y|βk,x) is

KL (ftrue(y|x), fk(y|βk,x))

=

∫∫
log (ftrue(y|x)) ftrue(y|x)dydFx −

∫∫
log (fk(y|βk,x)) ftrue(y|x)dydFx, (7)

where dFx means the integration with respect to the marginal distribution of x. Let fk(y|βk,pop,x)

with βk,pop = argminβk
KL(ftrue(y|x), fk(y|βk,x)) be the least false approximating model,
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which achieves the smallest KL divergence under Mk. As mentioned in Sin and White

(1996), one primary purpose of information criteria is to select the model Mk with the small-

est KL(ftrue(y|x), fk(y|βk,pop,x)). We call this model the best model and denote it as MB.

If there are multiple models that achieve the minimum KL divergence, we define MB to be

the model with the fewest parameters, and we assume that MB is unique throughout this

paper. When the true data-generating model is included in the candidate pool, MB is the

true model. We call a model an underfitted model if it does not include all the predictors

of MB, and use U to denote the set of underfitted models. If the smallest model is the best

model, then U is empty; if the largest model is the best model, then U contains m−1 models.

Since βk,pop is unknown, it is estimated via the maximum likelihood estimator β̂k. The

AIC aims to select the model Mk that minimizes KL(ftrue(y|x), fk(y|β̂k,x)), i.e., the KL

divergence between the true model and the model estimated with the maximum likelihood

Akaike (1998). In the definition of (7), the first term is a constant across all candidate models.

The key to the success of model selection is to approximate the second term accurately. The

law of large numbers tells us that for each fixed value of βk,

ℓk(βk) → Eℓk(βk) = E(x,y) log fk(y|βk,x) =

∫∫
log(fk(y|βk,x))ftrue(y|x)dydFx, (8)

almost surely under appropriate integrability. However, since β̂k is the maximizer of ℓk(βk),

ℓk(β̂k) is not unbiased towards E(x,y) log fk(y|β̂k,x). Akaike (1998) showed that ℓk(β̂k) tends

to overestimate E(x,y) log fk(y|β̂k,x) and the asymptotic bias is qk/n where qk is the dimension

of βk. The AIC uses qk/n to correct the bias in ℓk(β̂k) with the goal to select the estimated

model that has the smallest KL divergence to the data-generating model.

In the subsampling framework with massive data, β̂k is hard to obtain due to the huge

computational cost and hence βk,pop is estimated by β̃k. To select a better working model,

we need to accurately approximate the KL divergence, KL(ftrue(y|x), fk(y|β̃k,x)). The key

is to accurately approximate E(x,y) log fk(y|β̃k,x) = E(xnew,ynew) log fk(ynew|β̃k,xnew), where

(ynew,xnew) means a new observation generated from the unknown true distribution. The

quantity E(x,y) log fk(y|β̃k,x) describes the goodness of the estimated model under Mk for

predicting a future response (Konishi and Kitagawa, 2007).

Again, ℓ∗k(β̃k) is biased towards E(x,y) log fk(y|β̃k,x) because the same subsample is used
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to estimate both the parameter and the KL divergence. Since β̃k is the maximizer of ℓ∗(βk),

using ℓ∗(β̃k) directly tends to overestimate E(x,y) log fk(y|β̃k,x), which implies that ℓ∗k(β̃k)

overestimates the model’s ability in prediction. If ℓ∗k(β̃k) is naively used for model selection, it

often ends up with a model that does not have the best prediction performance. The selected

model tends to overfit the subsample but does not have the best representation for the full

dataset.

To remove the influence of using the same subsample twice for estimating both the parame-

ter and the KL divergence, we derive the asymptotic mean ofDk := ℓ∗k(β̃k)−E(x,y) log fk(y|β̃k,x),

which provides a bias correction for estimating the KL divergence. Under Assumptions 1–5,

as r, n→ ∞, if qklog
κ(n)/r → 0, then

Dk =ℓ
∗
k(β̂k)− ℓk(β̂k)− (β̃k − β̂k)

TE(x,y)

(
∂ log fk(y|β̂k,x)/∂βk

)
(9)

+ ℓk(β̂k)− E(x,y)

(
log fk(y|β̂k,x)

)
+ (β̃k − β̂k)

TAk(β̃k − β̂k) + oP |Fn(qk/r),

where oP |Fn means convergence in conditional probability given the full data.

InDk, the term ℓ∗k(β̂k)−ℓk(β̂k) has a mean zero and (β̃k−β̂k)
TE(x,y)(∂ log fk(y|βk,x)/∂βk)

has an asymptotic mean zero conditional on Fn, so they do not contribute to the asymp-

totic bias. The rest terms can be decomposed into two parts. The first part ℓk(β̂k) −

E(x,y) log fk(y|β̂k,x) is the generalization bias from the full data to the population, which

has an unconditional asymptotic mean of qk/n according to the classical AIC theory. The

second part (β̃k − β̂k)
TAk(β̃k − β̂k) describes the bias from the subsample-based estimator

to the full-data-based estimator which has a conditional asymptotic mean of tr(Vk,cA
−1
k )/r

according to Proposition S.2. Therefore, conditionally on Fn, the asymptotic bias of ℓ∗k(β̃k)

in approximating E(x,y) log fk(y|β̃k,x) is tr(Vk,cA
−1
k )/r + qk/n. This becomes tr(Vk,cA

−1
k )/r if

r = o(n).

Based on Proposition S.2 and (9), we define the subsample-based AIC value for model Mk

as

AICsub(Mk) = −2rℓ∗k(β̃k) + 2tr
(
Vk,cA

−1
k

)
+ 2rqk/n. (10)

Remark 1. In the subsample-based AIC in (10), the first term describes the goodness of fit

for model Mk on the subsample and the bias correction terms (the second and third terms)
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penalize the model complexity. Here 2tr(Vk,cA
−1
k ) is the bias correction term for using 2rℓ∗k(β̃k)

to replace 2nℓk(β̂k)/r, and 2rqk/n is the bias correction term for 2nℓk(β̂k)/r. For oversampling

with r ≫ n, the term 2rqk/n dominates 2tr(Vk,cA
−1
k ). In this scenario, AICsub is just r/n times

the classical AIC, implying that oversampling does not give additional benefits in terms of

model selection. If r is of the same order as n, there is a clear trade-off between the epistemic

bias, 2nℓk(β̂k)/r − 2nℓk(βk,pop)/r = O(rqk/n), and the sampling variance, 2tr(Vk,cA
−1
k ) =

OP (r
−1). For the more practical scenario that the subsample size is much smaller than the full

sample size, tr(Vk,cA
−1
k ) ≫ rqk/n, so the bias term in subsample-based AIC mainly comes from

sampling volatility. Consequently, improving the quality of the subsample-based estimator

will also help identify the best model among the candidates. Although the relation between

informative subsampling and model selection is not surprising, it has not been well studied in

the literature.

Theorem 1. Under Assumptions 1–5, if (log(m) + q(L) log(q)) log
2κ(n)/r → 0 and lim r/n <

∞, then as r → ∞ and n → ∞, the AICsub defined in (10) selects an underfitted model

Mk ∈ U with probability going to zero, namely,

pr
(
argmin

Mk

AICsub(Mk) ∈ U
∣∣∣Fn

)
→ 0, (11)

in probability.

Although Theorem 1 is valid for the case that 0 < lim r/n < ∞, there is no essential

computational benefits to consider a subsample size of the same order of the full data. Despite

some insights on the variability of the AIC, this setting provides no significant improvement in

computation or statistical inference compared with the vanilla AIC Shibata (1997). Therefore,

we focus on the case r/n→ 0 in the rest of the paper.

4 Subsample Smoothed AIC Model Averaging
Besides using the information criteria to filter underfitted models, model averaging is usually

adopted as an alternative and the corresponding estimator can often improve the estimation

efficiency (Claeskens et al., 2006, 2008). The S-AIC is a popular weighting technique due to its

simplicity of implementation. When subsampling for computational efficiency, the subsample
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size is typically much smaller than the full data size, so we focus on this scenario and assume

r = o(n) in the following of the paper. In S-AIC, we construct a weighted average of the

estimators in the candidate pool. For each candidate model, we compute the weight as

ω̃k =
exp(−AICsub(Mk)/2)∑m
l=1 exp(−AICsub(Ml)/2)

, (12)

for k = 1, . . . ,m. The subsample-based S-AIC estimator is defined as β̃ =
∑m

k=1 ω̃kP
T
k β̃k,

where β̃k is the subsample-based estimator under Mk.

4.1 Model Averaging Subsampling Strategy

The key idea of the S-AIC estimator is to put more weight on candidate models that are

estimated to have better performance in predicting future responses. Thus, it is ideal to

find a subsample that can help better approximate the E(x,y) log fk(y|β̃k,x) for all candidate

models. From (9) and the discussion below it, we see that the terms ℓ∗k(β̂k) − ℓk(β̂k) and

(β̃k−β̂k)
TE(x,y)(∂ log fk(y|β̂k,x)/∂βk) are not used to define the subsample-based AIC in (10)

because their asymptotic means that given the full data are zero so they do not contribute to

the asymptotic bias. However, both terms are subject to the randomness of subsampling so

they do contribute to the variation of using ℓ∗k(β̃k) to define the AIC. An ideal subsampling

strategy should try to reduce this variation. The term ℓ∗k(β̂k)−ℓk(β̂k) is of order OP |Fn(r
−1/2).

Note that E(x,y)(∂ log fk(y|β̂k,x)/∂βk) is the population score function evaluated at the full-

data-based estimator under Mk, so its elements are of order OP (n
−1/2). Thus Proposition S.1

indicates that this term is of order OP |Fn(q
1/2
k /(nr)1/2) and it is a small term since qk is

much smaller than n. Recall that the asymptotic bias of ℓ∗k(β̃k) is of order OP |Fn(qk/r).

Combining the variance and bias, the overall uncertainty by the subsampling randomness is

of order OP |Fn(1/r + q2k/r
2). When qk = o(r3/4), the dominating term is ℓ∗k(β̂k)− ℓk(β̂k) and

other terms are negligible regarding the randomness caused by subsampling. Therefore, we

can focus on selecting an informative subsample that minimizes the conditional variance of

ℓ∗k(β̂k)− ℓk(β̂k) given Fn.

Thanks to Theorem 1, we know the weight assigned by the S-AIC weighting scheme in (12)

to an underfitted model in U is asymptotically zero. Thus we can focus on minimizing the
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asymptotic variance of ℓ∗k(β̂k) for Mk ∈ U c only, where U c is the complement set of U , i.e.,

the set of candidate models that includes all the predictors of the best model MB. Although

the set U c is unknown, the models in it can be embedded within the model that contains all

the predictors of x. We call this model the full model and denote it as Mfull. We recommend

finding the subsampling strategy that minimizes the asymptotic variance of ℓ∗full(β̂full) instead.

When there are no redundant variables and the full model Mfull is in the candidate pool,

this is a natural choice according to Theorem 1. If Mfull is not the best model, this is still

a reasonable choice because the asymptotic variance of ℓ∗full(β̂full) is an upper bound of the

asymptotic variances of ℓ∗k(β̂k) for any Mk ∈ U c. This is a type of mini-max asymptotic

uncertainty subsampling strategy, and we call it MASS.

Theorem 2. Assume that the maximum likelihood estimator under Mfull, say β̂full, exists

and Assumptions 1–2 also hold for the full model Mfull. The subsampling probabilities that

achieve the minimum asymptotic variance of ℓ∗full(β̂full) are

πMASS
i =

|yiβ̂T
fullxi − ψ(β̂T

fullxi)|∑n
l=1 |yiβ̂T

fullxi − ψ(β̂T
fullxi)|

, (13)

for i = 1, . . . , n.

Theorem 2 encourages us to select the data points with larger absolute values of the cor-

responding log-likelihood, i.e., |yiβ̂T
fullxi−ψ(β̂T

fullxi)|. Intuitively, data points with |yiβ̂T
fullxi−

ψ(β̂T
fullxi)| close to zero contribute less to the log-likelihood function, so it is reasonable to

assign smaller sampling probabilities on them. There are some potential risks of sampling

according to πMASS
i directly. For example, relying on the large absolute values of the log-

likelihood data points, the resultant estimator may be sensitive to outliers. In addition, if

the data points with extremely small πMASS
i are sampled, the subsample-based estimator will

become unstable. To make the estimator more stable and robust, we adopt the technique of

defensive importance sampling (Hesterberg, 1995; Owen and Associate, 2000). This approach

is also known as shrinkage subsampling (Ma et al., 2015). To be specific, we recommend using

the following subsampling probabilities

πSMASS
i = (1− ρ)πMASS

i + ρn−1, i = 1, . . . , n, (14)
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where ρ ∈ (0, 1). Mixing the MASS probabilities with the uniform probability improves the

stability of the subsample-based estimator. The empirical results suggest that the shrinkage

subsampling method is not sensitive to the selection of ρ and works well when ρ is not very

close to zero or one. In practice, it may not be feasible to obtain β̂full using the full data.

We take a pilot subsample of size r0 to explore the data and obtain a pilot estimator, say

β̃full,0, to be used for calculating the proposed sampling probabilities. We denote the resulting

sampling probabilities by π̃SMASS. We then use π̃SMASS to take a second subsample of size r

according to the computational capacity.

With the specific π̃SMASS
i , Assumption 4 is automatically satisfied under Assumptions 1–3,

and Assumption 5 can be refined by a sufficient tail condition presented in Assumption 6.

Assumption 6. For some κ ∈ (0,∞),

sup
∥u∥=1

max
1≤i≤n

|uTxi|6

logκ(n)
= OP (1), sup

Mk

max
1≤i≤n

ψ(β̂T
kPkxi)

logκ(n)
= OP (1).

4.2 Theoretical Properties

To measure the performance of the subsample-based S-AIC estimator β̃ under the proposed

subsampling procedure, we adopt the idea of Ando et al. (2017) and define the KL-divergence

based loss (normalized by the sample size) as

L̃(ω) = 1
n

∑n
i=1

{
yi

(
θi −

∑m
k=1 ωkβ̃

T
kPkxi

)
−
(
ψ(θi)− ψ

(∑m
k=1 ωkβ̃

T
kPkxi

))}
, (15)

where θi is the true parameter that generate yi through (1) and ω = (ω1, . . . , ωm) is a general

weight. It is worth mentioning that L̃(ω̃) with ω̃ calculated via (12) measures the general-

ization error of β̃ from the subsample to the full data. This reflects how well β̃ can be used

to describe the full data set. The following theorem shows that the subsample S-AIC weight

performs similarly to the full-data-based S-AIC weight in terms of the Kullback–Leibler loss.

Theorem 3. Let ζ = infω∈Cm L̂(ω), where Cm = {ω ∈ [0, 1]m :
∑m

k=1 ωk = 1} and L̂(ω)

has the same expression of (15) except that β̃k is replaced by the full-data-based estimator β̂k.

Under Assumptions 1–3 and 6, if as r → ∞, n→ ∞, (log(m)+ζ−2q(L) log(q)) log
2κ(n)/r → 0

and r/n→ 0, then
L̃(ω̃)

L̃(ω̂)
→ 1, and

L̃(ω̃)

L̂(ω̂)
→ 1, (16)
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in probability, where ω̃ = (ω̃1, . . . , ω̃m) and ω̂ = (ω̂1, . . . , ω̂m) are the subsample and full sample

S-AIC weights, respectively.

Theorem 3 indicates that the subsample S-AIC weight is asymptotically as good as the

full-data-based S-AIC weight in terms of the KL divergence loss. In the following, we show

the consistency of β̃ to the full-data-based S-AIC estimator β̂ =
∑m

k=1 ω̂kP
T
k β̂k.

Theorem 4. Let mc be the number of models in U c. Under Assumptions 1–3, and 6, if condi-

tions mcr/(n log(q)log
κ(n)) → 0 and (log(m)+ q(L) log(q)) log

2κ(n)/r → 0 holds as n, r → ∞,

then the S-AIC estimator β̃ is consistent to full-data-based S-AIC estimator β̂ in conditional

probability given Fn. More precisely, (i) when mc = O(log(q)logκ(n)), with probability ap-

proaching one, for any ϵ > 0, there exists a finite δϵ and rϵ such that for all r > rϵ,

pr
(
∥β̃ − β̂∥ ≥

√
mcq(L)/rδϵ

∣∣Fn

)
< ϵ; (17)

or (ii) when mc/(log(q)log
κ(n)) → ∞ and mcr/(n log(q)log

κ(n)) → 0, with probability ap-

proaching one, for any ϵ > 0, there exists a finite δϵ and rϵ such that for all r > rϵ,

pr

(
∥β̃ − β̂∥ ≥

√
q(L) log(q)log

κ(n)/rδϵ

∣∣∣∣Fn

)
< ϵ. (18)

Remark 2. In practice, prior information and subject knowledge are often helpful to identify

plausible candidate models so that the size of the candidate model set is much smaller than 2q.

An exhaustive search may be directly implemented in this case. When such information is not

available, an exhaustive search across m = 2q models is often computationally infeasible. To

reduce the computational burden, forward selection usually serves as an alternative approach

to an all-subset search. The forward selection procedure starts from the null model that

includes the intercept term only, and then it sequentially adds one variable at a time to

the model that yields the lowest value of the AIC. More precisely, in the first step, it adds

the variable that yields the lowest value of AIC among models with only one variable. In

the second step, it adds the variable that yields the lowest value of AIC when added to the

previously selected model with one variable. This process stops when q(L)+1 nested models are

obtained. Here, the maximum model size q(L) may be determined by some prior knowledge or

can be taken as q(L) = q when such knowledge is absent. After obtaining the q(L)+1 candidate

models, we calculate the corresponding S-AIC weights.
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5 Numerical Studies
We conduct numerical experiments to evaluate the finite sample performance of the proposed

method on two real datasets and two synthetic datasets. Further numerical results with more

synthetic datasets are relegated to the Supplementary Material. Computations are performed

in R.

5.1 Beijing Multi-site Air-quality Dataset

In the following, we experiment on a real dataset about Beijing’s air quality. This dataset

consists of hourly air pollutants records from twelve air-quality monitoring sites in Beijing

from March 1st, 2013 to February 28th, 2017. There are 420,768 records in the data. The

dataset is available in the UCI database at https://archive.ics.uci.edu/dataset/501/

beijing+multi+site+air+quality+data, and more information about it can be found in

Zhang et al. (2017). One research interest is predicting whether the air is currently polluted

using the PM2.5 data from the past 23 hours. According to the ambient air quality standard

in China, we call the air is polluted if the PM2.5 is greater than 75µg/m3. A logistic regression

model with the PM2.5 values from the past 23 hours is used to predict the air quality. After

removing the incomplete cases, a logistic regression is fitted.

Since the predictors are the PM2.5 values from the past 23 hours, we consider the candidate

model set that consists of the 23 nested models, each with the PM2.5 values in the past j

(j = 1, ..., 23) hours as predictors. More precisely, Mj is the model with the j predictors

being the PM2.5 values in the past j hours.

We evaluate the performance of the AICsub in (10) for model averaging with the proposed

MASS subsampling strategy. For comparison, we also implement the OSMAC subsampling

for which πi ∝ |yi − ψ̇(β̃full,0)|∥xi∥ under the L-optimality, and the uniform subsampling

(UNIF) for which πi = n−1. Here β̃full,0 denotes the pilot-sample-based estimator for the

full model. We use the L-optimality for OSMAC for the following two reasons. Firstly, the

number of predictors is usually large in a model averaging problem. Thus we need to control

the computational cost in calculating sampling probabilities within O(nq) instead of O(nq2).

Secondly, in order to achieve a consistent estimator of the full model’s information matrix, we
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need a much larger r0, which implies a large r0/(r+ r0) when the sampling budgets is limited.

As illustrated in Figure 3(b), a large r0/(r + r0) may lead to an inefficient subsample-based

estimator.

We measure the performance of a sampling strategy π via the empirical mean absolute

error (MAE) which is the average l1 distance between a subsample-based estimator β̃ and a

full-data-based estimator β̂. We repeated the simulation procedure for 500 times to calculate

the empirical MAE. To further demonstrate the advantage of the model averaging approach

over the full-model approach, the results of the full-model approach with MASS, OSMAC,

and UNIF subsampling probabilities are also presented as benchmarks. We fix r0 and ρ at

500 and 0.2, respectively. The empirical MAE, together with the accuracy on classifying the

full data are presented in Figure 1.

(a) log(MAE) (b) Classification accuracy

Figure 1: A graph showing the median of log MAE and prediction accuracy with different
subsample size r for the Beijing multi-site air-quality dataset based on the UNIF (grey lines
with circle), the MASS (yellow lines with triangle), and the OSMAC (blue lines with square)
subsampling methods. Here the solid lines stand for the full-model approach, and the dotted
lines stand for the averaging approach. The r0 and ρ are fixed at 500 and 0.2, respectively.

From Figure 1, one can see that the model averaging method always results in a smaller

MAE and a higher prediction accuracy compared with the full-model approach when the same

sampling probabilities are adopted. Judging from the selection results reported in Figure 2,

we believe this phenomenon comes from the fact that there are redundant variables in Mfull.

The MAE for all subsampling methods increases as r increases, which confirms the theoretical

result on the consistency of the subsampling methods.

Figure 2 reports the frequency that model Mj receives the highest weight. All methods

tend to select M2 as the best model, which implies that the air quality can be well predicted
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(a) Unif,r=1000 (b) MASS,r=1000 (c) OSMAC,r=1000

(d) Unif,r=2500 (e) MASS,r=2500 (f) OSMAC,r=2500

Figure 2: The times that model Mj enjoys the highest weight with r = 1000 (upper panel)
and r = 2500 (lower panel). Here we fixed r0 = 500, ρ = 0.2.

by the PM2.5 values in the last two hours. Compared with the OSMAC and the MASS, the

UNIF has a higher chance to select M1 as the best model when r = 1, 000. Comparing the

results in (a)-(c) with those in (d)-(f), we see that M1 is an underfitted model as discussed

in Theorem 1. This can be understood as using the PM2.5 value in the past one hour only is

not sufficient enough to explain the current air quality. OSMAC and MASS are more likely

to rule out the underfitted model compared with the uniform subsampling. This is a reason

why the two methods outperform the uniform subsampling.

In the following, we evaluate the impact of the tuning parameter ρ in (14) and the pilot

sample size r0 on the performance of the MASS. We present the results with r0 = 500 and

r = 2500 for the sensitivity analysis on ρ and fix r0 + r = 3000 for the sensitivity analysis on

r0. The log(MAE) against different ρ and r0/(r0 + r) are reported in Figure 3 (a) and (b),

respectively. It is seen that the proposed method performs well and are not very sensitive to

ρ when it is between 0.2 and 0.5; the relative variation is less than 10%. With a fixed ρ = 0.2,

one can see that MASS performs well when r0/(r0 + r) is between 0.15 and 0.3.

5.2 The SUSY dataset

We experiment on a real dataset about supersymmetric particles available on https://

archive.ics.uci.edu/dataset/279/susy. The task is to distinguish between a signal pro-
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(a) ρ (b) r0/(r + r0)

Figure 3: Median log MAE against different ρ values with r0 = 500, r = 2000 (left panel) and
median log MAE against different r0 values with r0 + r = 3000, ρ = 0.2 (right panel).

cess which produces supersymmetric particles and a background process which does not.

There are eight features that are kinematic properties measured by the particle detectors in

the accelerator, which are known as the low-level features. There are another ten features

that are derived by physicists based on the low-level features to help discriminate between

the two classes. More information about the data is available in Whiteson (2014). Here we

consider a class of logistic regressions with 46 possible covariates (features), consisting of the

original 18 features and 28 interactions of the eight low-level features.

Due to limited computational resources, it is infeasible for us to consider all the 246 possible

models. Thus, the forward selection method as discussed in Remark 2 is adopted. Again, we

report the results for model averaging with the proposed MASS subsampling strategy together

with OSMAC and uniform subsampling strategies. The r0 and ρ are fixed at 500 and 0.2,

respectively. Results for the full-model approaches are also reported for comparison.

Figure 4 shows that the model averaging method always leads to a smaller MAE compared

with the full-model approach when the same sampling probabilities are adopted. As expected

the MASS and OSMAC have better performances compared with uniform subsampling.

The S-AIC weights for models with less than 15 predictors are less than 10−38 when the

forward regression is implemented on the full data. The extremely small weights imply that

models with less than 15 predictors are likely to be underfitted models. We record the number

of predictors in the best model selected by the smallest AICsub, say dB, to reflect the model

selection performance. The number of times that dB < 15 for the UNIF, the OSMAC, and
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(a) log(MAE) (b) Prediction accuracy

Figure 4: A graph showing the median of log MAE and prediction accuracy with different
subsample size r for the SUSY dataset based on UNIF (grey lines with circle), MASS (yellow
lines with triangle) and OSMAC (blue lines with square) subsampling methods. Here the solid
lines stand for the full-model approach, and the dotted lines stand for the averaging approach.

the MASS, are 88, 73, and 68, respectively, out of the 500 replications when r = 1000. This

implies that the MASS is more effective than the OSMAC in excluding underfitted models,

and they are both better than the UNIF.

We close this section by evaluating the computational efficiency. We implemented all

methods using the R programming language and recorded the computing times of the three

subsampling strategies using the Sys.time() function. Computations were carried out on an

iMac (Retina 5K, 2020) with a 10-Core Intel Core i9 processor. We also record the computing

time on the full dataset as a benchmark. Results are presented in Table 1.

Table 1: Computational time (in seconds) of the S-AIC estimator on the Beijing multi-site
air-quality and SUSY datasets.

r 1000 1500 2000 2500 Full data

Air-quality dataset
UNIF 0.0817 0.1051 0.1277 0.1504

18.5777MASS 0.1037 0.1224 0.1432 0.2081
OSMAC 0.1139 0.1361 0.1609 0.1765

SUSY dataset
UNIF 6.5255 8.3666 10.6676 12.2237

24469.62MASS 6.9350 9.2282 10.8142 12.5163
OSMAC 7.3816 8.9530 10.6676 12.2237

It is seen that all subsampling methods are significantly faster than the full-data calculation

for the S-AIC estimator. The UNIF is faster than the MASS and the OSMAC, but the

difference is not significant. The main reason is that the computational time is mainly spent

on calculating the AIC values of the candidate models. The time complexity for calculating β̃k
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under Mk is O(rq2k). For nested models as in the air-quality dataset, the time complexity of

calculating the model averaging estimator based on a subsample isO(r
∑q−1

j=1(j+1)2) = O(rq3).

When forward selection is adopted, q+1− j models with j+1 covariates are calculated in the

jth iteration, leading to a time complexity of O(r
∑m

j=1(q+1−j)(j+1)2) = O(rq4). The MASS

and OSMAC only take O(nq) time to calculate the sampling probabilities. Therefore, the

additional time in calculating the subsampling probabilities may not be a leading order term

in the computational complexity. Consequently, our method has comparable computational

performance with the uniform subsampling method.

5.3 Simulation Results
It is known that model averaging estimators are impacted by candidate model specification. In

the following, we further validate the proposed method on the synthetic dataset with different

candidate models. The response is generated by a logistic regression with q = 30 potential

covariates. The full data size is set to be n = 500, 000. The nonzero components of β have

decreasing sizes as suggested in Zheng et al. (2019). Specifically, βj = 2/j for j = 1, . . . , 6,

and βj = 0 for the rest.

The following two distributions are used to generate covariates xi’s.

Case 1 Multivariate normal distribution N(0,Σ1) with the (i, j)th entry of Σ1 being 0.5|i−j|.

Case 2 The first 10 dimensions of the covariate come from N(0,Σ1), and the rest dimensions
consist of quadratic and cubic transformation of the first 10 dimensions.

We consider the following two scenarios for the candidate model specification.

Scenario 1 The Mj contains the first j predictors. In this case, there are 29 models in the
candidate set.

Scenario 2 The forward selection procedure is used to explore the candidate models with
prior knowledge on the largest number of predictors. Here we assume the number to be
eight where the largest model contains 30% more predictors than the best true model.

We fix r0 = 500 and ρ = 0.2 and set r to 1000, 1500, 2000, and 2500. The uniform

subsampling is implemented with a subsample size r+r0 for fair comparisons. The simulation

results are given in Figure 5. We opt to show the full-model approach and model averaging

approach in different panels since the scaling of log MAE in the two methods is different.

We see that the MAE for all subsampling methods decreases as r increases, which confirms

the theoretical consistency of the subsampling methods. As expected, the MASS always leads
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(a) Case 1, Scenario 1 (b) Case 1, Scenario 2 (c) Case 1, Full model

(d) Case 2, Scenario 1 (e) Case 2, Scenario 2 (f) Case 2, Full model

Figure 5: A graph showing the median of the log MAE with different subsample size r for
different distributions of covariates and different candidate models. Here we opt to show the
full-model approach and model averaging approach in different panels since the scaling of log
MAE in the two methods is different. The full-model approach is the same under Scenarios 1
and 2.

to a smaller MAE compared with the UNIF. Although the OSMAC outperforms the UNIF

with the full model, Figure 5(d) shows that it does not necessarily outperform the UNIF in

the model averaging framework due to model uncertainty. Similar phenomenon is observed

in Figures 5(a) and (c) that OSAMC outperforms MASS with the full-model approach while

MASS has a better performance under the model averaging framework.

6 Conclusion
In this paper, we have investigated the subsample-based S-AIC estimator and developed

a MASS subsampling strategy to improve the subsample-based model averaging method.

We have derived the asymptotic properties of the estimators under candidate models with

diverging dimensions and derived the appropriate expression of the subsample AIC. We have

also carried out numerical experiments on both simulated and real datasets to evaluate its

practical performance. Both theoretical results and numerical results demonstrate the great

potential of the proposed method in extracting useful information from massive datasets. Our

investigations have focused on the subsample-based AIC model averaging, and the technical

proofs are already complicated. We only considered averaging candidate models with different
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covariates in the linear predictor as studied in Ando et al. (2017). More complicated scenarios,

such as that when candidate models have different link functions and/or different distribution

assumptions are also important and need to be investigated in future research. We hope this

work will attract more attention to the promising technique of model averaging in subsampling

big data.

Supplementary Material
Narrative Supplement The pdf file contains an algorithm, distributional results on the

subsample-based S-AIC estimator, all the technical proofs, and additional simulation
results.

Code Supplement The zip file contains the R codes that were used for the numerical results
of the paper.
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S.1 Detailed Algorithm

For transparent presentation, we summarize the practical implementation procedure in

Algorithm S.1.

Algorithm S.1 Practical MASS implementation

1. Uniformly take a subsample of size r = r0 to obtain a pilot estimator β̃full,0, and use

it to calculate π̃SMASS
i .

2. Sample with replacement r times according to the sampling distribution π̃SMASS to

form the subsample set {(y∗i ,x∗T
i , π∗

i )
T , i = 1, . . . , r0, r0 + 1, . . . , r0 + r}.

3. On the subsample set, calculate the subsample log-likelihood estimator β̃k under

each candidate model Mk according to (5) and calculate the corresponding weight

ω̃k defined in (12).

4. Calculate the subsample-based S-AIC estimator β̃SMASS =
∑m

k=1 ω̃kP
T
k β̃k.

It is worth mentioning that the uniform subsampling is adopted to obtain a consis-

tent estimator of β̂full in the first step. Other efficient subsampling procedures can also

be applied here. For example, when the logistic regression is applied, the case-control

subsampling can be used to obtain the pilot estimator for Mfull when the responses are

2



imbalanced.

S.2 Asymptotic results for each candidate model

The following propositions show the consistency and asymptotic normality of the subsample-

based estimators under each candidate model.

Proposition S.1. Under Assumptions 1–5, if n, r → ∞ in a way that qklog
κ(n)/r → 0,

then for model Mk and any ϵ > 0, there exists a finite ∆ϵ and rϵ, such that for all r > rϵ,

pr
(
∥β̃k − β̂k∥ ≥

√
qk/r∆ϵ

∣∣∣Fn

)
< ϵ, (S.1)

with probability approaching one.

Proposition S.2. Under Assumptions 1–5, for any candidate model Mk and a nonrandom

unit vector u ∈ Rqk , if (logκ(n) + qk)qk/r → 0 as n, r → ∞, then conditional on Fn in

probability,

(uTVku)
−1/2uT(β̃k − β̂k) → N(0, 1), (S.2)

in distribution, where Vk = A−1
k (r−1Vk,c)A

−1
k , Ak = n−1

∑n
i=1 ψ̈(β̂

T
kPkxi)Pkxix

T
i P

T
k , and

Vk,c = n−2
∑n

i=1 πi
−1(yi − ψ̇(β̂T

kPkxi))
2Pkxix

T
i P

T
k .

Propositions S.1 and S.2 extend the results in Ai et al. (2021) to the scenario of a

diverging dimension of the model parameter. However, it is still a result based on a given

model and thus can not be applied directly to bound the uniform approximation error.

S.3 Distributional results on subsample-based Smoothed

AIC estimator

Besides consistency, the uncertainty of the subsample-based estimator β̃ is also of interest.

In the following, we consider the asymptotic distribution of β̃ conditional on Fn, when

πSMASS
i defined in (13) is adopted.
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Recall that U c is the set of candidate models that includes all the predictors of the

best model MB. If U c contains exactly one model MB, Theorem S.1 (to be presented

later in this section) indicates that the S-AIC weight on the best model goes to one in

probability. Now we consider a more interesting case that U c contains multiple models.

Following Lumley and Scott (2014, 2017), we define the subsample quasi (log) likelihood

ratio statistic for the full model Mfull to a model Mk ∈ U c\Mfull as

λk = r sup
βk∈Λk

ℓ∗k(βk)− r sup
βfull∈Λfull

ℓ∗full(βfull), (S.3)

where Λk and Λfull are the parameter spaces underMk andMfull, respectively, and U c\Mfull

consists of models in U c without Mfull. For model Mfull, we permutation and partition

βfull = (βT
full1,β

T
full2)

T with βfull1 being the qk entries corresponds to βk, partition the selec-

tion matrix Pfull,k = (P T
k , P

T
2k)

T comfortably to (βT
full1,β

T
full2)

T, and partition Pfull,kAfullP
T
full,k

defined in Proposition S.2 accordingly into four submatrices,

Pfull,kAfullP
T

full,k =

 Ãk,11 Ãk,12

Ãk,21 Ãk,22

 , (S.4)

with

Ãk,j1j2 = − 1

n

n∑
i=1

∂2 log ffull(yi|βfull,xi)

∂βfullj1∂β
T
fullj2

,

for j1, j2 = 1, 2. Denote the Schur complement of Ãk,22 as Ãk,22.1 = Ãk,22 − Ãk,21Ã
−1
k,11Ãk,21.

The following lemma states the asymptotic distribution of λk.

Lemma S.1. When U c contains multiple models, if Assumptions 1–3 and 6 still hold when

the full model Mfull is added to the candidate set, then for any Mk ∈ U c\Mfull as r, n→ ∞

in rates such that rlogκ(n)/n→ 0 and q(q2 + logκ(n))/r → 0, for any a ∈ R,

pr (−2λk ≤ a|Fn)− pr

(
νk∑
l=1

ck,lZ
2
l ≤ a

∣∣∣∣Fn

)
→ 0, (S.5)

in probability, where νk = q − qk; Zl’s are independent standard normal random variables;

and ck,1, . . . , ck,νk are the eigenvalues of rvara(β̃full2|Fn)Ãk,22.1 with vara(β̃full2|Fn) being the

asymptotic variance of β̃full2 under Mfull.

Based on Lemma S.1, the asymptotic distribution of β̃ is presented in the following

theorem. We use k ∈ U to denote that Mk ∈ U for notation simplicity.
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Theorem S.1. If Assumptions 1–3 and 6 still hold with the full model Mfull added to the

candidate set, and qrmclog
κ(n)/n→ 0, q(q2+logκ(n))/r → 0, andmcr/(n log(q)log

κ(n)) →

0 as n→ ∞, r → ∞, then for any given unit vector u ∈ Rq and a ∈ R,∣∣∣∣pr(√ruT(β̃ − β̂) ≤ a

∣∣∣∣Fn

)
−pr

(
uTQV

1/2
full,cξ ≤ a

∣∣∣∣Fn

)∣∣∣∣→ 0, (S.6)

in probability, where

Q =
∑
k∈Uc

Gk∑
l∈Uc Gl

P T

k (PkAfullP
T

k )
−1Pk,

Gk = exp
(
ξTV

1/2
full,cAk,proj.V

1/2
full,cξ/2− tr(Vk,cA

−1
k )
)
,

and Ak,proj. = A−1
fullP

T
2kÃk,22.1P2kA

−1
full. Here, Afull is defined in Proposition S.2 for Mfull,

ξ ∼ N(0, Iq) and

Vfull,c =
n∑

i=1

(yi − ψ̇(β̂T
fullxi))

2xix
T
i

n2πSMASS
i

,

with πSMASS
i given in (14). For the special case that U c contains exactly one model MB,

the S-AIC weight on MB goes to one and β̃ has the same asymptotic distribution as the

estimator under MB.

From the above theorem, we see that the S-AIC weight for an underfitted model con-

verges to zero, while the weight for a mode in U c goes to a non-degenerate random variable

Gk/
∑

Ml∈Uc Gl if U c contains multiple models. In this case, the asymptotic distribution of

the S-AIC estimator is not normal.

To evaluate the asymptotic distributions visually, we create normal Q-Q plots for pa-

rameter estimates from the 500 repetitions of the simulation. Figure S.1 reports the results

for parameter β6 in Case 1 when r0 = 200, r = 1500, and ρ = 0.2. The asymptotic dis-

tributions for estimators from model selection and model averaging are non-normal. This

confirms the results in Theorem S.1.
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(a) UNIF, Model averaging (b) MASS, Model averaging (c) OSMAC, Model averaging

(d) UNIF, Full model (e) MASS, Full model (f) OSMAC, Full model

Figure S.1: Q-Q plot for estimates of β6 for Case 1 Scenario 1 listed in Section 5.3 with

r = 2500, r0 = 500 and ρ = 0.2 based on UNIF, MASS, and OSMAC subsampling methods

under the S-AIC model averaging (top panel), and full-model (bottom panel) approaches.

S.4 Proofs

Before the proof, we summarize some frequently used notations in Table S.1.
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Table S.1: Notation table

Notation Interpretation

n Number of observations in the full data set.

r Subsample size.

m Number of candidate models.

q Number of the possible covariates.

qk The dimension of β̂k.

q(L) The dimension for the widest model.

Mk The kth candidate model.

Mfull The model which contains all possible variables.

MB The best model in the candidate set.

AICsub Subsample-based AIC value defined in (10).

Pk The projection matrix such that βk = Pkβ.

xi Covariate of the ith observation in the widest model.

xki, x
∗
ki xki = Pkxi, and x∗

ki = Pkx
∗
i .

βk,pop βk,pop = argmaxβk
E log fk(y|βk,x).

β̂(k),β̃(k) β̂(k) = P T
k β̂k, β̃(k) = P T

k β̃k.

β̃ Smoothed AICsub estimator.

β̂ Smoothed full-data-based AIC estimator.

U The set of underfitted models.

U c The complement set of U .

Recall that for a candidate model Mk, the subsample-based estimator β̃k is the maxi-

mizer of the following objective function,

ℓ∗k(βk) =
1

nr

r∑
i=1

1

π∗
i

(y∗iβ
T

kPkx
∗
i − ψ(βT

kPkx
∗
i )) ,

and β̂k is the full-data-based maximum likelihood estimator that maximizes

ℓk(βk) =
1

n

n∑
i=1

(yiβ
T

kPkxi − ψ(βT

kPkxi)) .
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S.4.1 Some useful lemmas

In the following, we will give some technical lemmas which are routinely used in proofs.

Lemma S.2. Under Assumptions 1–5, for any candidate model Mk, as n, r → ∞ with

logκ(n)/r → 0, the following result hold in probability∥∥∥∥∥ 1

nr

r∑
i=1

1

π∗i
ψ̈(β̂T

kx
∗
ki)x

∗
kix

∗T
ki −Ak

∥∥∥∥∥
s

=OP |Fn

(√
logκ(n)

r

)
.

(S.7)

Furthermore, if log(m)logκ(n)/r → 0, it holds that

sup
Mk

∥∥∥∥∥ 1

nr

r∑
i=1

1

π∗i
ψ̈(β̂T

kx
∗
ki)x

∗
kix

∗T
ki −Ak

∥∥∥∥∥
s

=OP |Fn

(√
log(m)logκ(n)

r

)
,

(S.8)

with probabilities approaching one.

Proof. Let uk be a qk dimensional unit vector, and u is a q dimensional unit vector. Under

Assumptions 2 and 4, for each candidate model Mk

E

(∥∥∥∥∥ 1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂T

kx
∗
ki)x

∗
kix

∗T
ki − Ak

∥∥∥∥∥
s

∣∣∣∣∣Fn

)

≤

√√√√E

(
sup
∥u∥=1

r∑
i=1

ψ̈2(β̂T
kx

∗
ki)|uTx∗

i |4
r2n2π∗2

i

∣∣∣∣∣Fn

)

≤

√√√√ sup
∥u∥=1

max
1≤i≤n

|uTxi|4
rnπi

E

(
r∑

i=1

ψ̈2(β̂T
kx

∗
ki)

rnπ∗
i

∣∣∣∣∣Fn

)

=

√
sup
∥u∥=1

max
1≤i≤n

|uTxi|4
rnπi

√√√√ n∑
i=1

ψ̈2(β̂T
kxki)

n

=OP (
√
logκ(n)/r), (S.9)

where (S.9) holds under Assumptions 2 and 5.

Recall β̂(k) = P T
k β̂k. Applying Lemma 14.24 in Bühlmann and van de Geer (2011), one

can see that

E

(
sup
Mk

∥∥∥∥∥ 1

nr

r∑
i=1

1

π∗
i

ψ̈(β̂T

kx
∗
ki)x

∗
kix

∗T
ki − Ak

∥∥∥∥∥
s

∣∣∣∣∣Fn

)
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≤
√

8 log(2m)

√√√√E

(
sup

k,∥u∥=1

r∑
i=1

ψ̈2(β̂T

(k)x
∗
i )∥uTx∗

i ∥4

r2n2π∗2
i

∣∣∣∣∣Fn

)

≤
√

8 log(2m)

r

√√√√E

(
sup

k,∥u∥=1

r∑
i=1

g
1/3
2 (x∗

i )∥uTx∗
i ∥4

rn2π∗2
i

∣∣∣∣∣Fn

)

=

√
8 log(2m)

r

√
sup
∥u∥=1

max
1≤i≤n

∥uTxi∥4
nπi

√√√√ n∑
i=1

g
1/3
2 (xi)

n

=OP |Fn

(√
8 log(2m)logκ(n)

r

)
, (S.10)

where the (S.10) holds by Assumption 4.

Lemma S.3. Under Assumptions 1–4, for any candidate model Mk, for a fixed unit length

vector u ∈ Rqk , conditional on Fn in probability, as n, r → ∞ with q2k/r → 0,

(r−1uTA−1
k Vk,cA

−1
k u)−1/2uTA−1

k ∂ℓ∗k/∂β(β̂k)

→N(0, 1), in distribution.

Proof. Denote ζ∗ki = {y∗i − ψ̇(β̂T
k x

∗
ki)}x∗

ki/(nπ
∗
i ). Note that ζ∗ki is an i.i.d. sequence condi-

tional on Fn. Direct calculation shows that

E

(
uTA−1

k

∂ℓ∗k(β̂k)

∂β

∣∣∣∣Fn

)
= E

(
1

r

r∑
i=1

uTA−1
k ζ∗ki

∣∣∣∣Fn

)

= uTA−1
k

∂ℓ∗k(β̂k)

∂β
= 0, (S.11)

and

var

(
uTA−1

k

∂ℓ∗k(β̂k)

∂β

∣∣∣∣Fn

)
(S.12)

=
1

r
uTA−1

k var (ζ∗ki|Fn)A
−1
k u

=
1

r
uTA−1

k

n∑
i=1

(yi − ψ̇(β̂T
kxki))

2xkix
T
ki

n2πi
A−1

k u.

Now we check the Lindeberg-Feller condition under the conditional distribution. For

every ε > 0, some δ ∈ (0, 1/2) assumed in Assumption 4,
r∑

i=1

E

(
∥r−1/2uTA−1

k ζ∗ki∥21(∥uTA−1
k ζ∗ki∥ > r1/2ε)

∣∣∣∣Fn

)
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≤ 1

r1+δε

r∑
i=1

E(∥uTA−1
k ζ∗ki∥2+δ

∣∣Fn)

=
1

rδ
1

ε

1

n2+δ

n∑
i=1

|yi − ψ̇(β̂T
kxki)|2+δ∥uTA−1

k xki∥2+δ

π1+δ
i

≤ 1

rδ
1

ε

n∑
i=1

|yi − ψ̇(β̂T
kxki)|2+δ∥uTA−1

k xki∥2+δ

n(nπi)1+δ

≤ 1

rδ
1

ε

√√√√ n∑
i=1

|yi − ψ̇(β̂T
kxki)|4+2δ

n(nπi)1+δ

√√√√ n∑
i=1

∥uTA−1
k xki∥4+2δ

n(nπi)1+δ
, (S.13)

where 1(·) is the indicator function, and the last inequality comes from Holder inequality.

Let a ∧ b = max(a, b). Under Assumptions 2 and 4, direct calculation yields that

n∑
i=1

|yi − ψ̇(β̂T
kxki)|4+2δ

n(nπi)1+δ

≤
n∑

i=1

(|yi|+ |ψ̇(β̂T
kxki)|)4+2δ

n(nπi)1+δ

≤
n∑

i=1

{2(|yi| ∧ |ψ̇(β̂T
kxki)|)}4+2δ

n(nπi)1+δ

≤
n∑

i=1

25(|yi|4+2δ + |ψ̇(β̂T
kxki)|4+2δ)

n(nπi)1+δ

≤
n∑

i=1

25(|yi|4+2δ + |g1(xi)|4+2δ)

n(nπi)1+δ

= OP (1). (S.14)

Also, note that

n∑
i=1

∥uTA−1
k xki∥4+2δ

n(nπi)1+δ
≤

n∑
i=1

∥A−1
k ∥4+2δ

s ∥uTxki∥4+2δ

n(nπi)1+δ
= OP (1),

under Assumptions 3 and 4.

Combining (S.13), (S.14), and (S.15), we obtain

r∑
i=1

E
(
∥r−1/2uTζ∗ki∥21(∥uTζ∗ki∥ > r1/2ε)|Fn

)
≤ 1

ε
OP (r

−1/2)OP (1) = oP (1).

Thus, conditionally on Fn, the desired result is held by the Lindeberg-Feller central limit

theorem (van der Vaart, 1998).
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Lemma S.4. Under Assumptions 1–3, for each ε > 0, and Mk in the candidate pool, as

r, n→ ∞ with lim r/n <∞,

sup
k,βk∈Nc(ε)

(rℓk(βk)− rℓk(βk,pop)) ≤ −cε2r +OP (r
1/2), (S.15)

in probability, where N c(ε) is a complementary set of a sphere centered at βk,pop with radius

ε, and c is a strictly positive constant.

Proof. Performing Taylor’s expansion of ℓk(βk) around βk,pop, it follows that, for any βk,

ℓk(βk)− ℓk(βk,pop) = (βk − βk,pop)
T
∂ℓk(βk,pop)

∂β
− 1

2
(βk − βk,pop)

TA(β́k)(βk − βk,pop),

(S.16)

where β́k lies on the line segment between βk and βk,pop.

Based on (S.16), for any βk ∈ N c(ε) = {β ∈ Λk : ∥β − βk,pop∥ > ε}, it follows that

sup
k
rℓk(βk)− rℓk(βk,pop)

= sup
k
r(βk − βk,pop)

T
∂ℓk(βk,pop)

∂β
− inf

k

r

2
(βk − βk,pop)

TA(β́k)(βk − βk,pop)

≤ sup
k
r(βk − βk,pop)

T
∂ℓ∗k(βk,pop)

∂β
− r

2
inf
Mk

λmin(A(β́k))∥βk − βk,pop∥2

≤ sup
k
r(βk − βk,pop)

T
∂ℓk(βk,pop)

∂β
− r

2
inf
k
λmin(A(β́k))ε

2

=O(1) sup
k

√
r(βk − βk,pop)

T
√
n
∂ℓk(βk,pop)

∂β
− r

2
inf
k
λmin(A(β́k))ε

2

≤O(1) sup
Mk

√
r∥βk − βk,pop∥ sup

Mk

∥∥∥∥√nuT
∂ℓk(βk,pop)

∂β

∥∥∥∥− r

2
inf
Mk

λmin(A(β́k))ε
2 (S.17)

where the second last equation comes from the fact r = O(1)
√
nr under the assumption

that lim r/n <∞, and u = ∥βk − βk,pop∥−1(βk − βk,pop).

Also note that under Assumption 3,

E sup
k

∥∥∥∥√nuT
∂ℓ∗k(βk,pop)

∂β

∥∥∥∥2
≤ E sup

k

∥∥∥∥(√n∂ℓ∗k(βk,pop)

∂βT

)(√
n
∂ℓ∗k(βk,pop)

∂β

)∥∥∥∥
s

= E sup
k
(∥B(βk,pop)∥s) = O(1),

11



which implies supMk
∥
√
nuT∂ℓk(βk,pop)/∂β∥ = OP (1) by applying Chebyshev’s inequality.

Combining this with (S.17), the result is proved under Assumptions 1 and 3.

S.4.2 Proof of Proposition S.1

Proof. Clearly, for the fixed dimensional case, the results hold naturally according to

Ai et al. (2021). Thus we only focus on the case that qk → ∞. Note that β̃k =

argminβk
ℓ∗k(βk). Due to the convexity of −ℓ∗k(βk), we only need to show that for any

given model Mk and any η ∈ (0, 1), there exist a large constant ∆ such that for sufficient

large r,

pr

(
sup

∥a∥=∆
rℓ∗k(β̂k +

√
qk/ra) < rℓ∗k(β̂k)

∣∣∣∣Fn

)
> 1− η. (S.18)

Conditional on Fn, we decompose rℓ∗k

(
β̂k +

√
qk/ra

)
− rℓ∗k(β̂k) =: T1 + T2, where

T1 :=
r∑

i=1

1

nπ∗
i

{
y∗i

(
β̂k +

√
qk
r
a

)T

x∗
ki − ψ

((
β̂k +

√
qk
r
a

)T

x∗
ki

)}

−
r∑

i=1

y∗i β̂
T
kx

∗
ki − ψ(β̂T

kx
∗
ki)

nπ∗
i

−
r∑

i=1

q
1/2
k

(
y∗i a

Tx∗
ki − ψ̇(β̂T

kx
∗
ki)a

Tx∗
ki

)
r1/2nπ∗

i

−
n∑

i=1

r

n

{
yi

(
β̂k +

√
qk
r
a

)T

xki − ψ

((
β̂k +

√
qk
r
a

)T

xki

)}

+
n∑

i=1

r

n

(
yiβ̂

T

kxki − ψ(β̂T

kxki)
)
,

and

T2 :=
r∑

i=1

qk
1/2
(
y∗i a

Tx∗
ki − ψ̇(β̂T

kx
∗
ki)a

Tx∗
ki

)
r1/2nπ∗

i

+
n∑

i=1

r

n

{
yi

(
β̂k +

√
qk
r
a

)T

xki − ψ

((
β̂k +

√
qk
r
a

)T

xki

)}

−
n∑

i=1

r

n

(
yiβ̂

T

kxki − ψ(β̂T

kxki)
)
.

Applying the Taylor expansion on the first term in T1, it follows that

r∑
i=1

1

nπ∗
i

{
y∗i

(
β̂k +

√
qk
r
a

)T

x∗
ki − ψ

((
β̂k +

√
qk
r
a

)T

x∗
ki

)}

12



=
r∑

i=1

1

nπ∗
i

(
y∗i β̂

T

kx
∗
ki − ψ(β̂T

kx
∗
ki)
)
+

r∑
i=1

√
qk

nπ∗
i

√
r

(
y∗i a

Tx∗
i − ψ̇(β̂T

kx
∗
ki)a

Tx∗
ki

)
− qk

2r

r∑
i=1

ψ̈(β́kx
∗
ki)

nπ∗
i

aTx∗
ix

∗T
i a, (S.19)

where β́k lies between β̂k and β̂k +
√
qk/ra.

Direct calculation yields that, for any β́k lies between β̂k and β̂k +
√
qk/ra,∥∥∥∥∥

r∑
i=1

ψ̈(β́T
kx

∗
ki)

rnπ∗
i

x∗
kix

∗T
ki −

r∑
i=1

ψ̈(β̂T

(k)x
∗
i )

rnπ∗
i

x∗
kix

∗T
ki

∥∥∥∥∥
s

≤ sup
∥u∥=1

1

nr

r∑
i=1

1

π∗
i

∥∥∥(ψ̈(β́T

kx
∗
ki)− ψ̈(β̂T

kx
∗
ki)
)
uTx∗

kix
∗T
kiu
∥∥∥ (S.20)

≤ sup
∥u∥=1

1

nr

r∑
i=1

1

π∗
i

|
...
ψ (β̆T

kx
∗
ki)||β́T

kx
∗
ki − β̂T

kx
∗
ki| ∥uTx∗

kix
∗T
kiu∥ (S.21)

≤ sup
∥u∥=1

1

nr

r∑
i=1

1

π∗
i

|
...
ψ (β̆T

kx
∗
ki)|∥β́k − β̂k∥∥uT

0x
∗
ki∥∥uTx∗

ki∥2 (S.22)

≤
√
qk
r
∥a∥ sup

∥u∥=1

1

nr

r∑
i=1

1

π∗
i

|g1/23 (x∗
i )|∥uTx∗

ki∥3 (S.23)

≤
√
qk
r
∆

(
1

nr

r∑
i=1

g3(x
∗
i )

π∗
i

)1/2(
sup
∥u∥=1

max
1≤i≤n

∥uTx∗
ki∥6

nπ∗
i

)1/2

, (S.24)

where (S.20) comes from Wely’s theorem Horn and Johnson (2013), (S.21) comes from the

mean value theorem that ψ̈(β́T
kx

∗
ki)− ψ̈(β̂T

kx
∗
ki) = ψ̈(β̆T

kx
∗
ki)(β́k − β̂k)

Tx∗
ki for some β̆k lies

between β́k and β̂k. The u0 in (S.22) is a unit vector equals to ∥β́k − β̂k∥−1(β́k − β̂k),

(S.23) comes from Assumption 2, and (S.24) holds by the Holder inequality.

Thus, from Assumption 4 and the assumption that qklog
κ(n)/r → 0, one can see that∥∥∥∥∥

r∑
i=1

ψ̈((β̂k + sr)
Tx∗

ki)

rnπ∗
i

x∗
kix

∗T
ki −

r∑
i=1

ψ̈(β̂T
kx

∗
ki)

rnπ∗
i

x∗
kix

∗T
ki

∥∥∥∥∥
s

= oP |Fn(1).

(S.25)

Similarly, applying Taylor expansion on the second last term of T1 yields that

n∑
i=1

r

n

{
yi

(
β̂k +

√
qk
r
a

)T

xki − ψ

((
β̂k +

√
qk
r
a

)T

xki

)}

=
n∑

i=1

r

n

(
yiβ̂

T

kxki − ψ(β̂T

kxki)
)
− 0.5qka

TAka+Rk, (S.26)
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where Rk is the reminder term with |Rk| = oP |Fn(qk) (by using the similar techniques in

(S.24)), and the last equality holds since ∂Lk(β̂k)/∂β = 0.

Combing (S.19), and (S.26), it follows that

|T1| =− qk
2

(
r∑

i=1

ψ̈(β̂T
kx

∗
ki)

rnπ∗
i

aTx∗
kix

∗T
ki a−

n∑
i=1

ψ̈(β̂T
kxki)

n
aTxkix

T

kia

)
+ oP |Fn(qk).

From Lemma S.2, it is clear to see that |T1| = oP |Fn(qk).

By the same reason, the sum of the last two terms in T2 is dominated by −0.5qka
TAka.

It is sufficient to show that the first term in T2 is oP |Fn(qk). Note that under Assumption 4,

E

{
r∑

i=1

1

nπ∗
i

(
y∗i a

Tx∗
ki − ψ̇(β̂T

kx
∗
ki)a

Tx∗
ki

) ∣∣∣∣Fn

}
= 0,

and

var

{
r∑

i=1

1

nπ∗
i

(
y∗i a

Tx∗
ki − ψ̇(β̂T

kx
∗
ki)a

Tx∗
ki

) ∣∣∣∣Fn

}

=r
n∑

i=1

1

n2πi

{
(yi − ψ̇(β̂T

kxki))
2(aTxki)

2
}

≤r

√√√√ n∑
i=1

y2i + ψ̇2(β̂T
kxki)

n2πi

√√√√ n∑
i=1

(aTxki)2

n2πi
= OP (r).

Thus
∑r

i=1 (nπ
∗
i )

−1(y∗i a
Tx∗

ki−ψ̇(β̂T
kx

∗
ki)a

Tx∗
ki) = OP |Fn(r

1/2), which implies T2 is dominated

by −0.5qka
TAka.

Thus, we can clearly see the difference rℓ∗k(β̂k+
√
qk/ra)−rℓ∗k(β̂k) = T1+T2 is dominated

by −0.5qka
TAka in probability, which implies (S.18).

S.4.3 Proof of Proposition S.2

Proof. Applying Taylor’s expansion,

∂ℓ∗k(β̃k)

∂β
=
∂ℓ∗k(β̂k)

∂β
−

r∑
i=1

I∗
kix

∗
kix

∗T
ki (β̃k − β̂k), (S.27)

with I∗
ki =

∫ 1

0
(nrπ∗

i )
−1ψ̈(β̂T

kx
∗
ki + t(β̃k − β̂k)

Tx∗
ki)dt.

14



Let u0 = ∥β̃k − β̂k∥−1(β̃k − β̂k). Using the similar techniques as what we have done in

(S.24), simple calculation yields that∥∥∥∥∥
r∑

i=1

I∗kiu
Tx∗

kix
∗T
ki u−

r∑
i=1

1

nrπ∗i
ψ̈(β̂T

kx
∗
ki)u

Tx∗
kix

∗T
ki u

∥∥∥∥∥
s

≤ sup
∥u∥=1

r∑
i=1

∫ 1

0

∥∥∥∥ 1

nrπ∗i
ψ̈(β̂T

kx
∗
ki + t(β̃k − β̂k)

Tx∗
ki)u

Tx∗
kix

∗T
ki u− 1

nrπ∗i
ψ̈(β̂T

kx
∗
ki)u

Tx∗
kix

∗T
ki u

∥∥∥∥dt
≤ sup

∥u∥=1

r∑
i=1

∫ 1

0

1

nrπ∗i

∣∣∣∣ψ̈(β̂T
kx

∗
ki + t(β̃k − β̂k)

Tx∗
ki)− ψ̈(β̂T

kx
∗
ki)

∣∣∣∣∥uTx∗
ki∥2dt

≤ sup
∥u∥=1

r∑
i=1

g
1/2
3 (x∗

i )∥uTx∗
ki∥3

2nrπ∗i
∥β̃k − β̂k∥

≤1

2

√√√√ r∑
i=1

g3(x∗
i )

nrπ∗i

√√√√ sup
∥u∥=1

r∑
i=1

∥uTx∗
ki∥6

nrπ∗i
∥β̃k − β̂k∥

≤1

2

√√√√ r∑
i=1

g3(x∗
i )

nrπ∗i

√
max
1≤i≤n

sup
∥u∥=1

∥uTxi∥6
nπi

∥β̃k − β̂k∥. (S.28)

Together with Proposition S.1 and Lemma S.2, it holds that,∥∥∥∥∥
r∑

i=1

I∗
kiu

Tx∗
kix

∗T
kiu−

r∑
i=1

1

nrπ∗
i

ψ̈(β̂T

kx
∗
ki)u

Tx∗
kix

∗T
kiu

∥∥∥∥∥
s

= oP |Fn (1) . (S.29)

By the definition of subsample-based estimator, the left-hand-side of (S.27) is zero.

Thus,

uT(β̃k − β̂k) = uTA−1
k ∂ℓ∗k(β̂k)/∂β + oP |Fn(|uT(β̃k − β̂k)|) = OP |Fn(r

−1/2), (S.30)

from Lemma S.3 and Proposition S.1. Therefore, uT(β̃k − β̂k) = OP |Fn(r
−1/2), and

uT(β̃k − β̂k) = uTA−1
k ∂ℓ∗k(β̂k)/∂β → N(0, r−1uTA−1

k Vk,cA
−1
k u). (S.31)

S.4.4 Proof of Proposition 1

Proof. For the fixed dimensional case (i.e., q is fixed), it is worth mentioning the number of

candidate models is also fixed (no more than 2q). Thus Proposition S.1 implies Proposition

1. Thus, we focus on the case that q goes to infinity. Note that β̃k = argminβk
ℓ∗k(βk). Due
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to the convexity of −ℓ∗k(βk), one can see that the event {∥βk−β̂k∥ ≥
√
q(L) log(q)log

κ(n)/r}

can be implied by the event {rℓ∗k(β̂k +
√
q(L) log(q)log

κ(n)/ra)− rℓ∗k(β̂k) < 0}, where a is

a vector with ∥a∥ = ∆ for some large constant ∆. Clearly, it follows that {supMk
∥βk −

β̂k∥ ≥
√
q(L) log(q)log

κ(n)/r} = ∪k{∥βk − β̂k∥ ≥
√
q(L) log(q)log

κ(n)/r} is implied by

the event ∪k{rℓ∗k(β̂k +
√
q(L) log(q)log

κ(n)/ra) − rℓ∗k(β̂k) < 0} = {sup∥a∥=∆ rℓ
∗
k(β̂k +√

q(L) log(q)log
κ(n)/ra)−rℓ∗k(β̂k) < 0}. Thus, it is sufficient to show that for any η ∈ (0, 1),

there exist a large constant ∆ such that for sufficient large r,

pr

(
sup
k

{
sup

∥a∥=∆

rℓ∗k

(
β̂k +

√
q(L) log(q)log

κ(n)/ra
)
− rℓ∗k(β̂k)

}
< 0

∣∣∣∣∣Fn

)
> 1− η. (S.32)

Conditional on Fn, we decompose rℓ∗k

(
β̂k +

√
q(L) log(q)log

κ(n)/ra
)
− rℓ∗k(β̂k) =: T1+

T2, where

T1 :=
r∑

i=1

1

nπ∗i

{
y∗i

(
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

x∗
i − ψ

((
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

x∗
i

)}

−
r∑

i=1

1

nπ∗i

(
y∗i β̂

T

(k)x
∗
i − ψ(β̂T

(k)x
∗
i )
)
−

r∑
i=1

√
q(L) log(q)log

κ(n)

nπ∗i
√
r

(
y∗i a

Tx∗
i − ψ̇(β̂T

(k)x
∗
i )a

Tx∗
i

)

−
n∑

i=1

r

n

{
yi

(
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

xi − ψ

((
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

xi

)}

+

n∑
i=1

r

n

{
yiβ̂

T

(k)xi − ψ(β̂T

(k)xi)
}
,

and

T2 :=
r∑

i=1

√
q(L) log(q)log

κ(n)

nπ∗i
√
r

(
y∗i a

Tx∗
i − ψ̇(β̂T

(k)x
∗
i )a

Tx∗
i

)
+

n∑
i=1

r

n

{
yi

(
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

xi − ψ

((
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

xi

)}

−
n∑

i=1

r

n

(
yiβ̂

T

(k)xi − ψ(β̂T

(k)xi)
)
.

Applying the Taylor expansion on the first term in T1, it follows that

r∑
i=1

1

nπ∗i

{
y∗i

(
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

x∗
i − ψ

((
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

x∗
i

)}

=

r∑
i=1

1

nπ∗i

(
y∗i β̂

T

(k)x
∗
i − ψ(β̂T

(k)x
∗
i )
)
+

r∑
i=1

√
q(L) log(q)log

κ(n)/r

nπ∗i

(
y∗i a

Tx∗
i − ψ̇(β̂T

(k)x
∗
i )a

Tx∗
i

)
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−
q(L) log(q)log

κ(n)

2r

r∑
i=1

ψ̈(β́T

(k)x
∗
i )

nπ∗i
aTx∗

ix
∗T
i a, (S.33)

where β́(k) lies between β̂(k) and β̂(k) +
√
q(L) log(q)log

κ(n)/ra.

For any sr lies between 0 and
√
q(L) log(q)log

κ(n)/ra, using the similar approach in the

proof of (S.24), it can be shown that

sup
k

∥∥∥∥∥
r∑

i=1

ψ̈((β̂(k) + sr)
Tx∗

i )

rnπ∗i
x∗
ix

∗T
i −

r∑
i=1

ψ̈(β̂T

(k)x
∗
i )

rnπ∗i
x∗
ix

∗T
i

∥∥∥∥∥
s

≤ sup
k,∥u∥=1

1

nr

r∑
i=1

g
1/2
3 (x∗

i )∥uTx∗
i ∥3

π∗i

√
q(L) log(q)log

κ(n)

r
∥a∥

≤
√
q(L) log(q)log

κ(n)

r
∆

(
sup

∥u∥=1

1

nr

r∑
i=1

g3(x
∗
i )

π∗i

)1/2(
sup

∥u∥=1

1

nr

r∑
i=1

∥uTx∗
i ∥6

π∗i

)1/2

≤
√
q(L) log(q)log

κ(n)

r
∆

(
sup

∥u∥=1

1

nr

r∑
i=1

g3(x
∗
i )

π∗i

)1/2(
sup

∥u∥=1
max
1≤i≤n

∥uTx∗
i ∥6

nπi

)1/2

. (S.34)

Under Assumption 2 that n−1
∑n

i=1 g3(xi) = OP (1). One can see that
∑r

i=1 g3(x
∗
i )/(nrπ

∗
i ) =

OP |Fn(1), under Assumption 4 by Chebyshev’s inequality. Also note the assumptions that

(log(m) + q(L) log(q)) log
2κ(n)/r → 0. Combining this result with (S.34), and Lemma S.2,

one can see that

sup
k

∥∥∥∥∥
r∑

i=1

ψ̈((β̂(k) + sr)
Tx∗

i )

rnπ∗
i

x∗
ix

∗T
i −

r∑
i=1

ψ̈(β̂T

(k)x
∗
i )

rnπ∗
i

x∗
ix

∗T
i

∥∥∥∥∥
s

= oP |Fn(1). (S.35)

Thus, the first three terms in T1 can be expressed as

r∑
i=1

1

nπ∗i

{
y∗i

(
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

x∗
i − ψ

((
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

x∗
i

)}

−
r∑

i=1

1

nπ∗i

(
y∗i β̂

T

(k)x
∗
i − ψ(β̂T

(k)x
∗
i )
)
−

r∑
i=1

√
q(L) log(q)log

κ(n)

nπ∗i
√
r

(
y∗i a

Tx∗
i − ψ̇(β̂T

(k)x
∗
i )a

Tx∗
i

)
=− 0.5q(L) log(q)log

κ(n)

r∑
i=1

ψ̈(β̂T

(k)x
∗
i )

rnπ∗i
aTx∗

ix
∗T
i a+R∗, (S.36)

where R∗ is the reminder term with supk |R∗| = oP |Fn(q(L) log(q)log
κ(n)).

Similarly, applying Taylor expansion on the second last term of T1 yields that

n∑
i=1

r

n

{
yi

(
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

xi − ψ

((
β̂(k) +

√
q(L) log(q)log

κ(n)

r
a

)T

xi

)}
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=
n∑

i=1

r

n

(
yiβ̂

T

(k)xi − ψ(β̂T

(k)xi)
)
− 0.5q(L) log(q)log

κ(n)aTAka+R, (S.37)

where R is the reminder term with supk ∥R∥s = oP |Fn(q(L) log(q)log
κ(n)), and the last

equality holds due to the fact that ∂Lk(β̂k)/∂β = 0.

Combing (S.36) and (S.37), it follows that

sup
k

|T1| =sup
k

−
q(L) log(q)log

κ(n)

2

( r∑
i=1

ψ̈(β̂T

(k)x
∗
i )

rnπ∗
i

aTx∗
ix

∗T
i a−

n∑
i=1

ψ̈(β̂T

(k)xi)

n
aTxix

T

i a

)
+ oP |Fn(q(L) log(q)log

κ(n)). (S.38)

From Lemma S.2, one can see that

E

(
sup
k

∣∣∣∣∣
r∑

i=1

ψ̈(β̂T

(k)x
∗
i )

rnπ∗
i

aTx∗
ix

∗T
i a−

n∑
i=1

ψ̈(β̂T

(k)xi)

n
aTxix

T

i a

∣∣∣∣∣
∣∣∣∣∣Fn

)
= oP |Fn(1).

Applying Taylor’s expansion on the second term of T2, one can see that the sum of the

last two terms in T2 is dominated by −0.5q(L) log(q)log
κ(n)aTAka. It is sufficient to show

that the first term in T2 is oP |Fn(q(L) log(q)log
κ(n)).

Clearly,

E

{
r∑

i=1

1

nπ∗
i

(
y∗i a

Tx∗
i − ψ̇(β̂T

(k)x
∗
i )a

Tx∗
i

) ∣∣∣∣Fn

}
= 0.

The deviation can be uniformly bounded by∣∣∣∣∣
r∑

i=1

1

nπ∗
i

(
y∗i a

Tx∗
i − ψ̇(β̂T

(k)x
∗
i )a

Tx∗
i

)∣∣∣∣∣
≤ √

q(L)∆ max
j=1,...,q

∣∣∣∣∣
r∑

i=1

1

nπ∗
i

(
y∗ix

∗
ij − ψ̇(β̂T

(k)x
∗
i )x

∗
ij

)∣∣∣∣∣ , (S.39)

through the Holder inequality. According to Lemma 14.24 of Bühlmann and van de Geer

(2011), it is easy to see that

E

 max
j=1,...,q

∣∣∣∣∣
r∑

i=1

1

nπ∗
i

(
y∗ix

∗
ij − ψ̇(β̂T

(k)x
∗
i )x

∗
ij

)∣∣∣∣∣
2 ∣∣∣∣∣Fn


≤ 8 log(2q)E

{(
max

j

r∑
i=1

ζ∗2ki

)∣∣∣∣Fn

}
,

where ζ∗kij = (y∗i − ψ̇(β̂T
(k)x

∗
ki))x

∗
ij/(nπ

∗
i ).
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Applying Holder’s inequality yields that

E

{(
max

j

r∑
i=1

ζ∗2ki

)∣∣∣∣Fn

}

≤

√√√√E

{
r∑

i=1

(y∗i − ψ̇(β̂T
k x

∗
ki))

2

n2π∗2
i

∣∣∣∣∣Fn

}√√√√E

(
max

j=1,...,qk

r∑
i=1

x4ij
n2π∗2

i

∣∣∣∣∣Fn

)

≤

√√√√E

{
r∑

i=1

(y∗i − ψ̇(β̂T
k x

∗
ki))

2

n2π∗2
i

∣∣∣∣∣Fn

}√
r sup
∥u∥=1

max
1≤i≤n

|uTxi|4
n2π2

i

≤

√√√√E

(
r∑

i=1

4y∗4i + 4ψ̇4(β̂T
k x

∗
ki)

n2π∗2
i

∣∣∣∣∣Fn

)√
r logκ(n)OP (1)

=OP

(
rlogκ/2(n)

)
,

where the second last inequality comes from Minkowski inequality, and the last equality

comes from the fact

E

(
r∑

i=1

4y∗4i + 4ψ̇4(β̂T
k x

∗
ki)

n2π∗2
i

∣∣∣∣∣Fn

)
= r

n∑
i=1

4y4i + 4ψ̇4(β̂T
(k)xi)

n2πi
= OP (r),

under Assumptions 2 and 4.

Therefore, applying the Chebyshev’s inequality, it holds that√
q(L) log(q)log

κ(n)

r
sup
k

∣∣∣∣∣
r∑

i=1

1

nπ∗i

{(
y∗i − ψ̇(β̂T

(k)x
∗
i )
)
aTx∗

i

}∣∣∣∣∣
= OP |Fn

(
q(L) log(q) log

κ/4(n)
)
.

That is to say the first term in T2 is uniformly dominated by −0.5q(L) log(q)log
κ(n)aTAka.

Combing this with (S.38), we know that the term supMk
(T1 + T2) is dominated by the

quantity −0.5q(L) log(q)log
κ(n)(infMk

λmin(Ak))∥∆∥. By Assumption 3, it follows that

infMk
λmin(Ak) = OP (1). Now the conclusion is proved.

S.4.5 Proof of (9)

Proof. We first decompose the bias as follows.

ℓ∗k(β̃k)− E(x,y) log fk(y|β̃k,x)
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=ℓ∗k(β̃k)− ℓ∗k(β̂k)

+ ℓ∗k(β̂k)− ℓk(β̂k)

+ ℓk(β̂k)− E(x,y) log fk(y|β̂k,x)

+ E(x,y) log fk(y|β̂k,x)− E(x,y) log fk(y|β̃k,x)

:=T(i) + T(ii) + T(iii) + T(iv). (S.40)

Note that both T(ii) and T(iii) appeared in Dk. Thus it remains to calculate the asymp-

totic bias terms T(i) and T(iv).

For T(i), performing a Taylor’s expansion of ℓ∗k(β̃k) around β̂k, we obtain that

ℓ∗k(β̃k) = ℓ∗k(β̂k) + (β̃k − β̂k)
T
∂ℓ∗k(β̂k)

∂β
+

1

2
(β̃k − β̂k)

T
∂2ℓ∗k(β́k)

∂βT∂β
(β̃k − β̂k) (S.41)

= ℓ∗k(β̂k) + (β̃k − β̂k)
T
∂ℓ∗k(β̂k)

∂β
+

1

2
(β̃k − β̂k)

T
∂2ℓ∗k(β̂k)

∂βT∂β
(β̃k − β̂k) + oP |Fn

(qk
r

)
, (S.42)

where β́ in (S.41) lies between β̃ and β̂, the equality (S.42) comes from (S.25) and Pro-

portion S.1.

From (S.27), (S.29), and Proportion S.1, it follows that

∂ℓ∗k(β̂k)

∂β
=
∂ℓ∗k(β̃k)

∂β
+ Ak(β̃k − β̂k) + oP |Fn

(√
qk
r

)
= Ak(β̃k − β̂k) + oP |Fn

(√
qk
r

)
, (S.43)

where the last equality holds by noting that ∂ℓ∗k(β̃k)/∂β = 0.

Combining (S.42), and (S.43), one can see that

T(i) = (β̃k − β̂k)
TAk(β̃k − β̂k)

+
1

2
(β̃k − β̂k)

T
∂2ℓ∗k(β̂k)

∂βT∂β
(β̃k − β̂k) + oP |Fn

(qk
r

)
=

1

2
(β̃k − β̂k)

TAk(β̃k − β̂k) + oP |Fn

(qk
r

)
, (S.44)

where the second equality comes from Lemma S.2 that ∂2ℓ∗k(β̂k)/∂β
T∂β = −Ak+oP |Fn(1).

For T(iv), performing Taylor’s expansion of E(x,y)(log fk(y|β̃k,x)) around β̂k, we obtain

that

E(x,y)(log fk(y|β̃k,x)) =E(x,y)(log fk(y|β̂k,x)) + (β̃k − β̂k)
TE(x,y)(∂ log fk(y|β̂k,x)/∂βk)
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+
1

2
(β̃k − β̂k)

TE(x,y)
∂2 log fk(y|β́k,x)

∂βT
k∂βk

(β̃k − β̂k), (S.45)

for some β́k lies between β̂k and β̃k. Since ∥β̂k − βk,pop∥ is OP ((qk/n)
1/2) under Assump-

tions 1–3, we can conclude that E(x,y)(∂
2 log fk(y|β́k,x)/∂β

T
k∂βk) = ∂2ℓk(β̂k)/∂β

T∂β +

oP (1) = −Ak + oP (1). Combing this results with (S.45) yields

T(iv) = E(x,y)

(
log fk(y|β̂k,x)−

∂ log fk(y|β̂k,x)

∂βk

)
= −(β̃k − β̂k)

TE(x,y)
∂ log fk(y|β̂k,x)

∂βk

+
1

2
(β̃k − β̂k)

TAk(β̃k − β̂k) + oP |Fn

(qk
r

)
. (S.46)

The proof finishes by combining T(i), T(ii), T(iii) and T(iv).

S.4.6 Proof of Theorem 1

Proof. First, we check the difference between ℓ∗k(β̂k) and ℓk(β̂k). Let uk = ∥β̂k∥−1β̂k.

Simple calculation yields

|ℓ∗k(β̂k)− ℓk(β̂k)|

≤ ∥β̂k∥

∣∣∣∣∣1r
r∑

i=1

y∗iu
T
kx

∗
ki

nπ∗
i

− 1

n

n∑
i=1

yiu
T

kxki

∣∣∣∣∣+
∣∣∣∣∣1r

r∑
i=1

ψ(β̂T
kx

∗
ki)

nπ∗
i

− 1

n

n∑
i=1

ψ(β̂T

kxki)

∣∣∣∣∣ .
Note that for any given uk,

E

(
y∗iu

T
kx

∗
ki

rnπ∗
i

∣∣∣∣Fn

)
=

1

nr

n∑
i=1

yiu
T

kxki.

From Lemma 14.24 in Bühlmann and van de Geer (2011),

E

sup
k

1

r2

{
r∑

i=1

(
y∗iu

T
kx

∗
ki

nπ∗
i

− 1

nr

n∑
i=1

yiu
T

kxki

)}2 ∣∣∣∣∣Fn


≤8 log(2m)

r2
E

{
sup
Mk

(
r∑

i=1

|y∗i |2|uT
kx

∗
ki|2

n2π∗2
i

)∣∣∣∣Fn

}

≤8 log(2m)

r2

(
sup
∥u∥=1

max
1≤i≤n

|uTxi|2

nπi

)
E

(
r∑

i=1

y∗2i
nπ∗

i

∣∣∣∣Fn

)

=OP

(
log(m)logκ(n)

r

)
,
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where m is the number of models in the candidate set, and the last equality comes from

Assumptions 5 and 4.

Similarly, under Assumptions 1 and 5, one can see that

E

sup
k

1

r2

{
r∑

i=1

(
ψ(β̂T

kx
∗
ki)

(rnπ∗i )
− 1

nr

n∑
i=1

ψ(β̂T
kxki)

)}2 ∣∣∣∣∣Fn


= OP

(
log(m) logκ(n)

r

)
,

which implies supMk
|ℓ∗k(β̂k)− ℓk(β̂k)| = OP |Fn(log

1/2(m) logκ/2(n)/r1/2).

Second, we will measure the difference between ℓ∗k(β̃k) and ℓ∗k(β̂k). Let úk = ∥β̃k −

β̂k∥−1(β̃k − β̂k). According to the mean value theorem, it holds that

|ψ(β̃T

kx
∗
ki)− ψ(β̂T

kx
∗
ki)| = |ψ̇(β́T

kx
∗
ki)|∥β̃k − β̂k∥|úT

kxki|

< g
1/6
1 (x∗

i )∥β̃k − β̂k∥|úkxi|,

under Assumptions 2 and 4. Therefore, it can be shown that

sup
k

|ℓ∗k(β̃k)− ℓ∗k(β̂k)|
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∣∣∣∣∣ 1nr
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T
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∗
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∗
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)
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1
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i

(
y∗i β̂

T

kPkx
∗
i − ψ(β̂T

kPkx
∗
i )
) ∣∣∣∣∣

≤ sup
k

1

nr

r∑
i=1

1

π∗
i

(
y∗i ∥úT

kx
∗
ki∥∥β̃k − β̂k∥+ |ψ(β̃T

kPkx
∗
i )− ψ(β̂T

kPkx
∗
i )|
)

=sup
k

1

nr

r∑
i=1

1

π∗
i

(
y∗i ∥úT

kx
∗
ki∥∥β̃k − β̂k∥+ |ψ(β̃T

(k)x
∗
i )− ψ(β̂T

(k)x
∗
i )|
)

≤
(
sup
k

∥β̃k − β̂k∥
)(

sup
∥u∥=1

1

r

r∑
i=1

|uTx∗
i |2

nπ∗
i

)1/2

(
1

r

r∑
i=1

y∗2i
nπ∗

i

)1/2

+

(
1

r

r∑
i=1

g
1/3
1 (x∗

i )

nπ∗
i

)1/2
 .

Under Assumptions 2 and 4, it can be shown
∑r

i=1 y
∗2
i /(rnπ

∗
i ) = OP |Fn(1),

∑r
i=1 g

1/3
1 (x∗

i )/(rnπ
∗
i ) =

OP |Fn(1), and sup∥u∥=1

∑r
i=1 |uTx∗

i |2/(rnπ∗
i ) ≤ sup∥u∥=1max1≤i≤n |uTxi|2/(nπi) = OP |Fn(log

κ(n))

hold. Additionally, Proportion 1 has shown that supk ∥β̃k−β̂k∥ = OP |Fn((q(L) log(q)log
κ(n)/r)1/2).

Thus, it proved that

sup
k

∣∣∣ℓ∗k(β̃k)− ℓk(β̂k)
∣∣∣ = OP |Fn

√q(L) log(q) log
2κ n

r
+

√
log(m)logκ(n)

r

 .
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Under Assumption 3, it is clear that supk tr(Vk,cA
−1
k ) = OP (q(L)) and supk rqk/n =

o(q(L)) under the assumption that lim r/n→ 0 and qk ≤ q(L). Recall that ∥β̂B −βB,pop∥ =

OP (
√
qB/n). Using similar techniques, it can be shown that |rℓB(β̂B) − rℓB(βB,pop)| =

OP (
√
qBr/n).

For any Mk ∈ U , it is clear to see that β̂k is inconsistency to βB,pop. By Lemma S.4, it

is clear to see that supk rℓk(β̂k) = supk rℓfull(β̂(k)) ≤ −2ε2r+OP (
√
q(L)r)+rℓfull(β(B,pop)) =

rℓB(βB,pop) − 2ε2r + OP (
√
q(L)r). Utilizing Theorem 3.3 in Xiong and Li (2008), it holds

that

pr

(
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k
AICsub(Mk)− AICsub(MB) > 0

∣∣∣∣Fn

)
=pr
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k
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B ) + 2r

qB
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)
=pr

(
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n
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−1
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n
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)
≥pr
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sup
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=pr
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rq(L) log(q) log
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(√
rq(L)
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)
=pr

(
c+ oP |Fn(1) > oP |Fn(1)|Fn

)
→ 1,

where c is a strictly positive constant.

S.4.7 Proof of Theorem 2

Proof. Let η∗i = (π∗
i )

−1(y∗i β̂
T
fullx

∗
i −ψ(β̂T

fullx
∗
i )) to ease the presentation. Given Fn, the η

∗
i ’s

are i.i.d. random variables for i = 1, . . . , r. Therefore,

var
(
ℓ∗full(β̂full)

∣∣Fn

)
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1
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η∗i
∣∣Fn

)
=

1
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=
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1
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var
(
η∗1
∣∣Fn

)
=

1

n2r
E
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2.
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Note that

E
(
η∗1
∣∣Fn

)
=

n∑
i=1

πi

(
yiβ̂

T
fullxi − ψ(β̂T

fullxi)
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T
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π2
i

.

Direct calculation yields that the asymptotic variance of ℓ∗full(β̂full) is

var
(
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)
=
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n2r
E
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− 1
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fullxi)
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(S.47)

Note that the second term on the right-hand-side of (S.47) does not depend on the sub-

sampling probabilities. Thus we only need to minimize the first term. From the Cauchy-

Schwarz inequality

1

n2r

(
n∑

i=1

πi

)
n∑

i=1

{
1

πi

(
yiβ̂

T

fullxi − ψ(β̂T

fullxi)
)2}

≥ 1

n2r

(
n∑

i=1

∣∣∣yiβ̂T

fullxi − ψ(β̂T

fullxi)
∣∣∣)2

,

and the equality in it holds if and only if πi proportions to

|yiβ̂T

fullxi − ψ(β̂T

fullxi)|1(|yiβ̂T

fullxi − ψ(β̂T

fullxi)| > 0).

Here we define 0/0 = 0 for convenience, and this is equivalent to removing data points with

|yiβ̂T
fullxi − ψ(β̂T

fullxi)| = 0.

S.4.8 Proof of Theorem 3

Proof. Recall that

L̃(ω) =
1

n

n∑
i=1

{
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(
θi −

m∑
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ωkβ̃
T

(k)xi
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−

(
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(
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))}
,
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and

L̂(ω) =
1

n

n∑
i=1

{
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.

Let unit vector ú = ∥
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(S.48)

According to the mean value theorem and Assumption 2, simple calculation yields∣∣∣∣∣ 1n
n∑

i=1

(
ψ

(
m∑
k=1

ωkβ̂
T

(k)xi

)
− ψ

(
m∑
k=1

ωkβ̃
T

(k)xi

))∣∣∣∣∣
≤ 1

n

n∑
i=1

g
1/6
1 (xi)

∥∥∥∥∥
m∑
k=1

ωkβ̂(k) −
m∑
k=1

ωkβ̃(k)

∥∥∥∥∥ ∥úTxi∥. (S.49)

From Holder’s inequality, one can show that

n−1

n∑
i=1

yiú
Txi ≤

(
n∑

i=1

y2i
n

)1/2( n∑
i=1

∥úTxi∥2

n

)1/2

≤

(
n∑

i=1

y2i
n

)1/2(
sup
∥u∥=1

n∑
i=1

∥uTxi∥2

n

)1/2

= OP (1).

Under Assumption 2, n−1
∑n

i=1 g
1/3
1 (xi) = OP (1), and sup∥u∥=1 n

−1
∑n

i=1 ∥uTxi∥2 = OP (1).

From (S.48) and (S.49), we obtain that with probability approaching one,

sup
ω∈Cm

|L̃(ω)− L̂(ω)|

≤OP (1) sup
ω∈Cm

∥∥∥∥∥
m∑
k=1

ωkβ̃(k) −
m∑
k=1

ωkβ̂(k)

∥∥∥∥∥
≤OP (1) sup

k
∥β̃(k) − β̂(k)∥.
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Thus, we have

sup
ω∈Cm

∣∣∣∣∣L̃(ω)− L̂(ω)

L̂(ω)

∣∣∣∣∣ ≤ supω∈Cm |L̃(ω)− L̂(ω)|
L̂(ω̂)

≤
supω∈Cm |L̃(ω)− L̂(ω)|

infω∈Cm L̂(ω)
→ 0, (S.50)

from Proposition 1. Also note that

|L̃(ω̃)− L̂(ω̂)| ≤ OP (1)

∥∥∥∥∥
m∑
k=1

ω̃kβ̃(k) −
m∑
k=1

ω̂kβ̂(k)

∥∥∥∥∥
≤ OP (1) sup

Mk

∥β̃(k) − β̂(k)∥. (S.51)

Thus both L̃(ω̂)−L̂(ω̂) and L̃(ω̃)−L̂(ω̂) are small order terms compare with L̂(ω̂), which

implies
L̃(ω̃)

L̂(ω̃)
→ 1,

L̃(ω̂)

L̂(ω̂)
→ 1, and

L̃(ω̃)

L̂(ω̂)
→ 1. (S.52)

The result holds by Slusky’s theorem.

S.4.9 Proof of Theorem 4

Proof. From the proof of Theorem 1, for any Mk ∈ U , as r → ∞ with r/n→ 0, it follows

that

ω̃kω̃
−1
B = exp(AICsub(MB)/2− AICsub(Mk)/2)

= exp

(
− rℓ∗(β̃B) + rℓ∗(β̃k) + tr(VB,cA

−1
B )− tr(Vk,cA

−1
k )

)
= exp{−r(c+ oP (1))} → 0 in probability, (S.53)

where c is a strictly positive constant. Therefore, ω̃k → 0 in probability for any Mk ∈ U

since ω̃k satisfy the conditions that ω̃k ≥ 0 and
∑m

k=1 ω̃k = 1. According to (S.53), it is

easy to see that ω̃k = OP |Fn(C
r) for any model Mk ∈ U , where C is some generic constant

belonging to (0, 1). We use k ∈ U to denote Mk ∈ U for notation simplicity. Thus, under

Assumption 1, ∥
∑

k∈U ω̃k(β̃(k) − β̂(B))∥ = oP |Fn(1), from Proposition S.1.
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From Proposition S.1, we see that for any k ∈ U c,

∥β̂ − β̂(B)∥ =

∥∥∥∥∥∑
k∈Uc

ω̂kβ̂(k) − β̂(B)

∥∥∥∥∥ ≤
√∑

k∈Uc

ω̂2
k

√∑
k∈Uc

∥∥∥β̂(k) − β̂(B)

∥∥∥2
= OP

(√
mcq(L)
n

)
,

since both β̂(B) and β̂(k) are consistency estimators of β(B),pop with rate no more than√
q(L)/n. Therefore, applying the Holder inequality, one can see that

sup
ω

∥∥∥∥∥∑
k∈Uc

ωk(β̂(k) − β̂(B))

∥∥∥∥∥ ≤
√∑

k∈Uc

ω̃2
k

√∑
k∈Uc

∥β̂(k) − β̂(B)∥2 = OP

(√
mcq(L)
n

)
.

Similarly, one can show that∥∥∥∥∥∑
k∈Uc

ω̃k(β̃(k) − β̂(k))

∥∥∥∥∥ ≤
√∑

k∈Uc

ω̃2
k

√∑
k∈Uc

∥β̃(k) − β̂(k)∥2 = OP |Fn

(√
mcq(L)
r

)
.

Thus, the results for the first two cases have been proven.

In addition, note that ∥β̃− β̂∥ ≤ ∥
∑

k∈Uc ω̃k(β̃(k)− β̂(k))∥+∥
∑

k∈Uc ω̃k(β̂(k)− β̂(B))∥+

∥
∑

k∈Uc ω̂k(β̂(k) − β̂(B))∥, where ω̂k is the full-data-based weights in S-AIC estimator.

Clearly the last two terms are OP (
√
mq(L)/n). The first term can also be bounded by the

fact ∥
∑

k∈Uc ω̃k(β̃(k) − β̂(k))∥ ≤ supk ∥β̃(k) − β̂(k)∥ = OP |Fn(
√
q(L) log(q)log

κ(n)/r). We

know that under the assumption mcr/(n log(q)log
κ(n)) → 0, the first term is the leading

order term. The proof finishes by noticing the fact that mc/(n log(q)log
κ(n)) → ∞.

S.4.10 Proof of Lemma S.1

Proof of Lemma S.1. When the sampling probabilities {πi}ni=1 are selected as {πSMASS
i }ni=1,

Assumptions 1–3, and 6 implies Assumptions 1–5. Thus, we will prove Lemma S.1 in a

more general case that Assumptions 1–5 hold with general sampling probabilities {πi}ni=1.

Without loss of generality, we assume that Mk consists of the first qk covariates in

Mfull. Now we begin to characterize the relationship between full model parameter esti-

mator (based on subsample) β̃full and restricted model parameter estimator (based on sub-

sample) β̃k. Recall that β̃full,j − β̂full,j = OP |Fn(r
−1/2) for jth dimension (j = 1, . . . , q) from
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Proposition S.2. Based on Lemma S.2, (S.27), (S.28), and (S.29), expanding ∂ℓ∗full(β̃full)/∂β

around β̂full yields that

0 =
∂ℓ∗full(β̃m)

∂β
=
∂ℓ∗full(β̂full)

∂β
− Afull(β̃full − β̂full) +OP |Fn(q

1/2/r),

whereOP |Fn(q
1/2/r) stands for a q dimensional vector with each elements beingOP |Fn(q

1/2/r).

Therefore, the first qk components in ∂ℓ∗full(β̂full)/∂β satisfy,

∂ℓ∗full,1(β̂full)

∂β
= Ak,11(β̃full1 − β̂full1) + Ak,12(β̃full2 − β̂full2) +OP |Fn(q

1/2/r), (S.54)

Similarly, we expand ∂ℓ∗k/∂β(β̃k) with respect to β̃k around the first qk components of

β̂full, i.e., β̂full1. One can see that

0 =
∂ℓ∗k(β̃k)

∂β
=
∂ℓ∗k(β̂full1)

∂β
− Ak,11(β̂full1)(β̃k − β̂full1) +OP |Fn(q

1/2/r), (S.55)

where Ak,11(β̂full1) has the same expression as Ak = A(β̂k) except that β̂k is replaced by

β̂full1.

It is clear to see that the jth component of |∂ℓ∗full,1(β̂full)/∂β − ∂ℓ∗k(β̂full1)/∂β| can be

bounded by ∣∣∣∣∣eT

j

∂ℓ∗full,1(β̂full)

∂β
− eT

j
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∗
ki)x

∗
ij

π∗
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=

∣∣∣∣∣∣ 1nr
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(
ψ̇(β̂T

full1x
∗
ki)− ψ̇(β̂T

fullx
∗
i )
)
x∗ij

π∗
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∣∣∣∣∣∣
≤∥β̂(full1) − β̂full∥

(
1

nr

r∑
i=1

g
1/3
2 (x∗

i )

π∗
i

)1/2(
1

nr

r∑
i=1

|uT
0x

∗
i |2|x∗ij|
π∗
i

)1/2

, (S.56)

for j = 1, . . . , qk, where β̂(full1) is a q-dimensional vector with the first qk components

being β̂full1 and rest being zero, and u0 = ∥β̂(full1) − β̂full∥−1(β̂(full1) − β̂full). Here the last

inequality comes from the mean value theorem under Assumption 2. By the facts that

β̂full2 is a consistency estimator of zero with rate
√
q/n and rlogκ(n)/n→ 0, (S.55) implies

that

∂ℓ∗full,1(β̂full1)

∂β
= Ak,11(β̃full1 − β̂full1) + oP |Fn

(√
q

r

)
. (S.57)
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Under Assumption 2, one can see that Ak,11 = Ak,11(β̂full1) + OP |Fn(
√
qk/r) according to

the mean value theorem. Combine (S.54) and (S.57), it is straight forward to see that

β̃full1 − β̃k = −A−1
k,11Ak,12(β̃full2 − β̂full2) + oP |Fn(

√
qk/r). (S.58)

For Mk ∈ U c, we have ∥β̃k − β̂full1∥ = OP |Fn(
√
q/r) according to Proposition S.2. Let

β̃k,res = (β̃T
k ,0

T)T ∈ Rq. Now we expand ℓ∗k(β̃k,res) around β̃full,

ℓ∗full(β̃k,res)− ℓ∗full(β̃full)

=(β̃k,res − β̃full)
T
∂ℓ∗full(β̃full)

∂β
+

1

2
(β̃k,res − β̃full)

T
∂2ℓ∗k(β̃full)

∂βT∂β
(β̃k,res − β̃full)

+OP |Fn(∥β̃k,res − β̃full∥3)

=
1

2
(β̃k,res − β̃full)

T
∂2ℓ∗k(β̃full)

∂βT∂β
(β̃k,res − β̃full) +OP |Fn

(
q3/2

r3/2

)
=− 1

2
(β̃k,res − β̃full)

TAfull(β̃k,res − β̃full) +OP |Fn

(
q3/2

r3/2

)
, (S.59)

where the second equality comes from the fact that ∂ℓ∗(β̃full)/∂β = 0, and the last equality

comes from Lemma S.2.

Therefore, combining (S.58), and (S.59), it follows that

− 2λk = −2r(ℓ∗k(β̃k,res)− ℓ∗full(β̃full))

=r(β̃full2 − β̂full2)
T
(
−AT

k,12A
−1
k,11, Iνk

) Ak,11 Ak,12

Ak,21 Ak,22

 −A−1
k,11Ak,12

Iνk

 (β̃full2 − β̂full2)

+ oP |FN
(1)

=r(β̃full2 − β̂full2)
TAk,22.1(β̃full2 − β̂full2) + oP |Fn(1)

=r(β̃full2 − β̂full2)
T Ãk,22.1(β̃full2 − β̂full2) + oP |Fn(1), (S.60)

where the last equality comes from the fact that Mk consists of the first qk covariates in

Mfull so that Ak,22.1 = Ãk,22.1.

From Proposition S.2, it has been shown that r1/2uT(β̃full2−β̂full2) converges to a normal

distribution. Thus, the desired results follow by Cochran’s theorem.
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S.4.11 Proof of Theorem S.1

Proof of Theorem S.1. Note that when the sampling probabilities are selected as {πSMASS
i }ni=1,

Assumptions 1–3, and 6 implies Assumptions 1–5. Thus, we prove Theorem S.1 in a more

general case that Assumptions 1–5 hold with general sampling probabilities {πi}ni=1.

Recall that Pk is a permutation matrix subject to β̃k = P T
k β̃(k). Without loss of

generality, assume that the first qB entries belong to the predictors which are included in

MB when Mk ∈ U c\MB.

From the proof of Theorem 4 and the fact that ω̃k ∈ [0, 1] with
∑

k ωk = 1, it holds that

√
ruT(

m∑
k=1

ω̃kβ̃(k) − β̂)

=
∑
k∈Uc

ω̃k

√
ruT(β̃(k) − β̂) + oP |Fn(1)

=
∑
k∈Uc

ω̃k

√
ruT(β̃(k) − β̂(k)) + oP |Fn(1)

=
∑
k∈Uc

ω̃k

√
ruTP T

k

(
β̃k − β̂k

)
+ oP |Fn(1)

=
∑
k∈Uc

ω̃kr
1/2uTP T

k A
−1
k

∂L∗
k(β̂k)

∂β
+ oP |Fn(1)

=
∑
k∈Uc

ω̃ku
TP T

k (PkAfullP
T

k )
−1Pk

(
r1/2

∂L∗
full(β̂full)

∂β

)
+ oP |Fn(1)

=
∑
k∈Uc

ω̃ku
TP T

k (PkAfullP
T
k )

−1Pkξr + oP |Fn(1), (S.61)

where the third last equality comes from (S.30), the second last from the facts ∂ℓ∗k(β̂k)/∂β−

Pk∂ℓ
∗
full(β̂full)/∂β = oP (1) by using the similar arguments as (S.56) and PkAfullP

T
k = Ak +

oP (1). Here ξr denotes r
1/2∂ℓ∗(β̂full)/∂β for short.

From (S.60), we can see that after some permutation as mentioned in the front of

Lemma S.1 of the main text, it follows that

−2λk = r(β̃m2 − β̂m2)
TAm,22.1(β̃m2 − β̂m2) + oP |Fn(1)

= r(β̃m − β̂full)
TP T

2mAm,22.1P2m(β̃m − β̂full) + oP |Fn(1)

= ξT

rA
−1
fullP

T

2kÃk,22.1P2kA
−1
fullξr + oP |Fn(1),
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which implies that ω̃k is also a function of random vector ξr.

For Mk ∈ U c, it follows that

ω̃k = ω̃kω̃
−1
full/

m∑
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ω̃lω̃
−1
full

= exp
(
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−1
full)− tr(Vk,cA

−1
k )
)

/{∑
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−1
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−1
l )
)
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}
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Gl, (S.62)

where ξ ∼ N(0, Iq).

Combining (S.61), and (S.62), we obtain that

√
ruT

(
m∑
k=1

ω̃kβ̃(k) − β̂(B)

)
=
∑

Mk∈Uc

ω̃ku
TP T

k (PkAfullP
T
k )

−1Pkξr + oP |FN
(1)

→
∑
k∈Uc

(
Gk

/∑
l∈Uc

Gl

)
uTP T

k (PkAfullP
T
k )

−1PkV
1/2
m,c ξ,

where the last equality comes from the proof of Lemma S.3.

As discussed in Theorem 4, β̂ is a consistency estimator of β̂(B) with rate no more than√
qmc/n. The desired result follows by Slutsky’s theorem.

For the special case that there is exactly one model in U c, (S.53) in the proof of Theo-

rem 4 together with the fact that ω̃k ≥ 0 and
∑m

k=1 ω̃k = 1 implies that the corresponding

weight on MB goes to one in probability. Therefore, β̃ has the same asymptotic distribu-

tion as the estimator under MB.
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S.5 Additional simulation results

S.5.1 Different parameter values of the logistic regression

In this subsection, we consider the different parameter values of the logistic regression. The

setups of the covariates and subsample size are the same as in Section 5.3. The following

two types of β are used in the logistic regression to generate the responses. For brevity, we

only present the results under Case 1 here.

Constant Parameter All the nonzero parameter in Section 5.3 are set to be 0.4.

Dense Parameter All the parameters are the same as in Section 5.3 and the full model
is the true model. To be precise, we set βj = 2/j for j = 1, . . . , 30.

The MAE under the two-parameter setups are displayed in Figures S.2 and S.3, respec-

tively. As expected, MASS based model averaging estimator achieves the smallest MAE

among all competitors for the constant parameter case.

(a) Case 1, Model averaging (b) Case 1, Full model

(c) Case 2, Model averaging (d) Case 2, Full model

Figure S.2: A graph showing the log MAE with different subsample size r for constant
parameter values under Cases 1 and 2. We fixed the model candidate pool as described in
Scenario 1. The r0 and ρ are fixed at 500 and 0.2, respectively.
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(a) Case 1 (b) Case 2

Figure S.3: A graph showing the log MAE with different subsample size r for the dense
parameter values under Case 1. We fixed the model candidate pool as described in Scenario
1. The r0 and ρ are fixed at 500 and 0.2, respectively.

For the dense parameter cases, one can see that the model averaging approach has a

very similar performance compared with the full model approach since the true model is full

model itself. One can see that the full model approach and model averaging approach have

the same MAE when r = 2500 due to the selection consistency described in Theorem 1. In

case 2, one can see MASS outperforms OSMAC under the full model approach. We explain

the phenomenon as follows. Firstly, OSMAC does not aim to minimize the MAE thus it

may not necessarily yield an estimator with the smallest MAE. Secondly, the cubic term

has a relatively larger magnitude than the linear and quadratic term. Thus the OSMAC

may select the sample that can provide a better estimator for the cubic terms. However,

the coefficients for such parameters is very small which leads a limited improvement.

S.5.2 Heavy-tailed covariates of the logistic regression

In this subsection, we consider the scenario that the covariates come from heavy-tailed

distribution. More precisely, we consider the covariates generated from the following two

cases, and the candidate model is specified as in Scenario 1. Except for the setups of

covariates, all the settings are the same as in Section 5.3.

Case 1’ Heavy tailed covariates. To be precise, the covariate comes from a multivariate t-
distribution with 3 degrees of freedom, i.e., t3(0, I30). Here Id denotes a d dimensional
identity matrix.

Case 2’ Covariates come from different distributions and part of the preditors are heavy-
tailed. To be precise, the first 15 dimensions of the covariates come from N(0, I15),
and the rest 15 dimensions come from t3(0, I15).
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The empirical MSE and MSPE are displayed in Figures S.4. As expected, MASS has a

similar behavior as in Sections 5.3.

(a) Case 1’, Model averaging (b) Case 1’, Full model

(c) Case 2’, Model averaging (d) Case 2’, Full model

Figure S.4: A graph showing the log MAE with different subsample size r. We fixed
model candidate pool as described in Scenario 1. The r0 and ρ are fixed at 500 and 0.25,
respectively.

S.5.3 Imbalanced data of the logistic regression

In this subsection, we consider the scenario that the responses are moderately imbalanced.

More precisely, the covariates from a multivariate normal distribution with with mean 1

for all dimensions, i.e., N(1, I30). The true parameter of β is the same as in Section 5.3.

Consequently, around the 90% responses in the full dataset is 1 which is nine times of the

response 0.

As a reviewer points out the subsampling strategy needs to calculate an initial estimate

for the parameter β. For imbalanced data and skewed data usually, this pilot estimate is

unstable. Thus it is interesting to investigate the sampling strategy for the pilot estimation.

As recommended in Wang et al. (2018), the case-control sampling is more suitable for the

imbalance data in obtaining a suitable pilot estimator. This is because the probability
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that the MLE exists based on case-control sampling is higher than that based on uniform

subsampling when the full data is very imbalanced. In the following, we study how the

different pilot estimators affect the MASS Algorithm in terms of MAE. To be precise,

we compare the pilot estimator β̃m,0 calculated based on the case-control sampling (CC)

with uniform sampling. The results are reported in Figure S.5. One can observe that

case-control subsampling indeed benefits the MASS under the imbalanced dataset. The

advantages are not that significant since the proposed method is not too sensitive to the

pilot estimation. As for the rare events data, we realize that the pilot estimator may not

exist based on the pilot sample obtained via uniform subsampling. In this case, we suggest

readers resort to the negative subsampling techniques (Wang et al., 2021). It is worth

mentioning the statistical behavior is quite different under the rare events (or extremely

imbalanced) scenario and beyond our scope. Thus we do not consider such setups here.

(a) Model averaging (b) Full model approach

Figure S.5: A graph showing the log MAE with different pilot estimators (obtained by
uniform subsampling and case-control subsampling) and subsample size r. The r0 and ρ
are fixed at 500 and 0.2, respectively.

Armed with case-control sampling in the first stage (for both MASS and OSMAC), the

empirical MSE together with MSPE are displayed in Figures S.6. As expected, MASS has

a similar behavior as in Sections 5.3.
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(a) Model Averaging (b) Full model approach

Figure S.6: A graph showing the log MAE with different subsample size r for imbalance
data. We fixed the model candidate pool as described in Scenario 1. The r0 and ρ are fixed
at 500 and 0.2, respectively.

S.5.4 Performance on other generalized linear models

In this section, we further evaluate MASS on other generalized linear models.

Probit regression. We perform simulation for the Probit regression that yi|xi comes

from Bernoulli distribution with pr(yi = 1|xi) = Φ(xT
i β) where Φ(·) is the standard nor-

mal’s cumulative distribution function. All the settings are the same as in Section 5.3 except

the candidate models are also replaced by Probit regressions. The results are summarized

in Figures S.7.

Poisson regression. We perform simulation for the Poisson regression that yi|xi comes

from Poisson distribution with (conditional) mean equals to exp(xT
i β). Here we also adopt

the same parameter setting as in Zheng et al. (2019) for Poisson regression with βj = 0.4/j

for j = 1, . . . , 6 and 0 for the rest. All the settings are the same as in Section 5.3 except

the value of β. The results are summarized in Figures S.8.
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(a) Case 1, Model averaging (b) Case 1, Full model

(c) Case 2, Model averaging (d) Case 2, Full model

Figure S.7: A graph showing the log MAE with different subsample size r for different
distributions of covariates for the Probit regression. We fixed the model candidate pool as
described in Scenario 1. The r0 and ρ are fixed at 500 and 0.2, respectively.

(a) Case 1, Model averaging (b) Case 1, Full model

(c) Case 2, Model averaging (d) Case 2, Full model

Figure S.8: A graph showing the log MAE with different subsample size r for different
distributions of covariates for the Poisson regression. We fixed the model candidate pool
as described in Scenario 1. The r0 and ρ are fixed at 500 and 0.2, respectively.
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