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Abstract

Subsampling is an effective approach to address computational challenges associated
with massive datasets. However, existing subsampling methods do not consider model
uncertainty. In this paper, we investigate the subsampling technique for the Akaike
information criterion (AIC) and extend the subsampling method to the smoothed AIC
model-averaging framework in the context of generalized linear models. By correcting
the asymptotic bias of the maximized subsample objective function used to approximate
the Kullback—Leibler divergence, we derive the form of the AIC based on the subsample.
We then provide a subsampling strategy for the smoothed AIC model-averaging esti-
mator and study the corresponding asymptotic properties of the loss and the resulting
estimator. A practically implementable algorithm is developed, and its performance is

evaluated through numerical experiments on both real and simulated datasets.
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1 Introduction

Subsampling is a popular method to address big data challenges imposed by exponentially
growing data volumes. In many areas of analysis, it successfully alleviates the computational
burden brought by large-scale datasets. There are two basic approaches in current research
investigations. One approach is to find the most representative data points for the entire
dataset, which is model-free. Typical examples include Latin-hypercube-design-based sub-
sampling (Zhao et al., 2018; He et al., 2024), uniform-design-based subsampling (Shi and
Tang, 2021; Zhang et al., 2023; Zhou et al., 2023), and support-points-based subsampling
(Mak and Joseph, 2018; Joseph and Mak, 2021; Joseph and Vakayil, 2022). Another ap-
proach is model-assisted subsampling, which aims to find the most informative data points to
improve estimation efficiency for specific models. Important works include, but are not lim-
ited to, leverage score subsampling (Ma et al., 2015, 2022), Lowcon (Meng et al., 2021), and
information-based optimal subsampling (Wang et al., 2019; He et al., 2024) for linear mod-
els; local case-control subsampling (Fithian and Hastie, 2014; Han et al., 2020) and optimal
subsampling motivated by the A-optimality criterion (OSMAC, Wang et al., 2018) for logistic
regression; and optimal subsampling methods for other more complicated models (Wang and
Ma, 2021; Ai et al., 2021; Yu et al., 2022, 2024; Ye et al., 2024).

The aforementioned investigations focus on estimating the unknown parameters with a
given model. In practice, the true data-generating model is always unknown, and multiple
candidate models are often plausible. For example, in high-energy physics, scientists are
interested in determining if a process produces supersymmetric particles or not (Baldi et al.,
2014). The supersymmetric benchmark dataset! in the UCI machine learning repository
was created to study the two classes of processes. Each record in the dataset represents
a hypothetical collision between particles with eight kinematic properties features such as
energy levels and momenta, along with some high-level features derived by physicists to help
distinguish the two classes. Researchers may build multiple candidate models with the eight
kinematic features, together with higher-order features, and possibly additional features such
as interactions among the eight kinematic features. Model averaging is usually regarded as

a powerful tool to achieve the smallest risk in estimation among the candidate models. See
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Buckland et al. (1997); Hjort and Claeskens (2003); Hansen (2014); Yuan and Yang (2005);
Claeskens et al. (2008); Liang et al. (2011); Zhang (2015); Peng and Yang (2022), among
others, for the advantages of model averaging. Finding model averaging estimators with
massive data can be daunting due to the computing costs in both parameter estimation and
weight determination for all candidate models. To alleviate the computation burden, we
investigate the subsampling strategy for model averaging.

Compared to existing approaches, designing an efficient subsampling strategy for model
averaging estimators meets the following three challenges. Firstly, as shown in Wang (2019),
if the model is misspecified, then “optimal” subsampling probabilities are no longer optimal
and may even reduce the estimation efficiency. Thus, the basic question becomes how to
design subsampling probabilities that benefit the estimation of the candidate models with
larger model weights. This is unknown in the literature of subsampling. Secondly, due to
the non-uniform and data-dependent sampling approach, the selected subdata and the entire
data often have different distributions. Consequently, a model that is good for describing the
selected subdata may fail to summarize the entire data well. Subsample-based model weights
should reflect the model information distilled for the entire data. Thirdly, one may want to
explore a larger number of candidate models with a larger sample size, so it is necessary to
let the number of predictors and the number of candidate models grow with the subsample
size. In the language of asymptotic analysis, they are allowed to diverge as the subsample size
increases. Although some investigations, such as Wang et al. (2019); Ma et al. (2022), have
tried to address the challenges caused by a diverging number of predictors, their studies are
on linear models using least squares estimators with explicit expressions. Their results cannot
be easily extended to generalized linear models due to multiple technical difficulties, e.g., no
explicit forms of the estimators and multiple candidate models to consider simultaneously.

We address the aforementioned issues and study the subsampling strategy of the AIC-
based model averaging approach for generalized linear models. We opt to use smoothed
AIC (S-AIC) weights (Buckland et al., 1997) because they are computationally more efficient
than other weighted averaging methods, such as Mallows model averaging (Hansen, 2007;

Wan et al., 2010), optimal mean squared error averaging (Liang et al., 2011; Zhang et al.,



2016), and the jackknife model averaging (Hansen and Racine, 2012). In addition, the AIC
and S-AIC enjoy the asymptotic efficiency property that achieves the smallest estimation
loss/risk among all the candidate models (Claeskens et al., 2008, Chapter 4). To improve the
performance of the model averaging estimator, we propose a mini-max asymptotic uncertainty
subsampling strategy (MASS). We derive the form of the subsampled AIC by correcting the
asymptotic bias in approximating a Kullback-Leibler type divergence caused by non-uniform
subsampling (9), and use it to define the subsample smoothed AIC model averaging estimator.
We also establish the uniform consistency of the subsample-based estimators to the full-data-
based estimator across candidate models with diverging dimensions for generalized linear
models (Proposition 1 and Theorem 4). The relative information loss of the subsample-based
estimator to the full-data estimator is studied (Theorem 3). To the best of our knowledge,
this has not been studied in the literature.

The rest of the paper is organized as follows. Section 2 describes the model setup of our
investigation. Section 3 derives the expression of the subsample-based AIC and shows its
asymptotic property in model selection. We introduce the subsample model averaging esti-
mator together with a subsampling strategy in Section 4, and derive its theoretical properties.
In Section 5, we present numerical studies on both simulated and real datasets. Technical

proofs are relegated to the Supplementary Material.

2 Preliminaries
2.1 Model Setup and Notations

Consider response distributions from the one-parameter natural exponential family with the

following density:
f(yl0) = h(y) exp(y8 — ¢(0))du(y), (1)

where 6 satisfies that [ h(y)exp(yf — ¥(0))du(y) < oo under the dominating measure .
Suppose we have n independent observations {(y;, ;)",i = 1,...,n}, where y;’s € R are the
responses and x;’s € R? are the covariates. The conditional distribution of y; given x; is linked

in the working model through the natural parameter ¢ in (1) by

O =a;3, for i=1...,n. (2)



Consider a set of m candidate models My, ..., M,, which are used to capture the rela-
tionship between & and y through (2). Here, the kth candidate model M, includes some (or
all) of variables in .

To facilitate the presentation, let X = (x1,...,2,)", Y = (y1,...,yn)", Fn = (X, Y),
and ¢ be the number of parameters in model M. Let P, € R%*? be a selection (projection)
matrix associated with My such that Py = (ej,,...,e;, )", where 1 <j; <. < j,, < qare
a subset of the column indices of the model matrix X and e; € R? is a unit vector with the
jth element being one. With this notation, we can write 3y = P3. Motivated by the “bet
on sparsity” principle (Hastie et al., 2009), the largest number of features to consider in a
candidate model is not necessarily ¢. To distinguish the largest number of parameters for the
models in the candidate pool and the number of the features in X, we use ¢() to denote the
largest dimension of the candidate models among My, ..., M,,.

Using the above notations, the kth candidate model M} can be written as

fe(W|Br, ) = h(y) exp (yB;, Prx — (B Prx)) (3)

and the full-data-based maximum likelihood estimator Bk with F,, under model M, is the

maximizer of the log-likelihood function

n

> (Wi Pexi — (B Py)) - (4)

=1

1

n

(1(Br)

2.2 General Subsampling Framework

Let m; be the sampling probability for the ith data point in one sampling draw and de-

note w = (my,ma,...,m,). Here the  may depend on the observed data. The subsample
{(yf, ", m)", i =1,...,r} is constructed by sampling with replacement for r times accord-

*

ing to the sampling distribution 7. Here y;, =],

and 7} denote the response, predictor, and
sampling probability of the ith data point in the subsample, respectively. Based on the sub-
sample, the quasi-likelihood estimator Bj, under model M, is the maximizer of the following

objective function:

1 1
0 (Br) = oy Z p (yi By, P — (B Pry)) - (5)
=1 7



For ease of presentation, we call (5) a subsample-based log-likelihood function throughout this
paper, since it is an unbiased estimator of the full-data-based log-likelihood function under
model M,,.

To ensure the consistency and asymptotic normality of the resultant estimator 3j with
respect to the full-data-based estimator under each candidate model, we assume the following

regularity conditions.

Assumption 1. For each candidate model My, the parameter By lies in Ay, = {Bx : || Bx|| < C},
and the full-data-based estimator By, is an inner point of Ay with probability one. Here C' is a

constant and || - || denotes the lo norm for a vector.

Assumption 2. Let ¢, qﬁ, and w be the first, second, and third derivatives of 1, respectively.
There exist integrable functions g(x) for 1 =0,...,3, such that V*(>_, wpBr Prx) < go(z),
S B R@) < g1(@), 057 nBiPea) < gal@), and (57, wBE ) < gs().
Further assume that supj, =, E([|[u"[®) < oo and E(y°) < co. Here wy, € [0,1] denotes the
weight of the kth model, and "] | wy, = 1.

Assumption 3. Denote Ayi(-) as the smallest eigenvalue and ||Al|s as the spectral norm
of a matrix A (the largest eigenvalue for a non-negative definite matriz). Let A(By) =
nt Z?zlgﬂ(ﬁngwi)Pkwim-TPg, and B(B) = n >0 (yi — V(BF Pyx;))? Pl PF.  With
probability one, it holds that 0 < lim,, o infr g, Apin(A(Br)) < limy oo supy g, [|ABK)|ls <

00,0 < limy, o0 infr g, Anin(B(Br)) < limy, 00 supy g, || B(Br)]]s < 0.

Assumption 4. For § € (0,1/2), the subsampling probabilities satisfy > v, (n**om ) ~1y8 =
Op(1), supjy 2oy (n*0m ) HuTal|” = Op(1), and 37, (n*Fm ™) Lgi(zi) = Op(),
for 1 =0,...,3, where g/(x;)’s are defined in Assumption 2 and Op(1) means bounded in

probability.

Assumption 5. For some k € (0, 00),

a0 v 1 3 P,
sup max iz v1 = Op(1), sup max V(B; Fr:) = Op(1),
u|=1 1<isn nlog™(n)m; K 1<i<n nlog”(n)m;

where a V b = max(a,b).



Assumption 1 is often assumed for the maximum likelihood estimator such as in White
(1982). Assumption 2 imposes some moment conditions. Similar conditions are also assumed
in Ando et al. (2017). Assumption 3 indicates that the log-likelihood function is convex and
ensures that the maximum likelihood estimator is unique (Lv and Liu, 2014). Some tail
behaviors of the data are required in Assumptions 4 and 5 which mitigate the inflation of
the sampling variance. More precisely, it is used to ensure that the Hessian matrix of (5)
concentrates around —A(Bx) (Chen et al., 2012), which implies that the £ (8y) is concave and
the resultant estimator 3y, is unique for My, ..., M,,. These assumptions are not restrictive.
Taking the logistic regression as an example, Assumptions 2, 4 and 5 are naturally satisfied
when the covariate distribution is sub-Gaussian for the proposed subsampling method and
the uniform subsampling method.

To capture the uniform convergence rate of the subsample-based estimator, we derive the

following proposition.

Proposition 1. If Assumptions 1-5 hold and (log(m) + q(z)log(q)) log**(n)/r — 0 as n,r —

00, then for any € > 0, there exists a finite A, and re, such that for all r > re,

pr (st;p H,ék — BkH > \/Q(L)logﬁ(n) log(q)/rA.

}‘n) <e, (6)

with probability approaching one.

3 Subsample-based Information Criteria

In this section, we propose an appropriate definition of the AIC in the subsampling framework.
Let fiue(y|x) be the true data generating conditional density of y given @ and fi(y|Bk, ) be a
parametric approximation under model M;. We assume that the distribution of « is ancillary
to the regression parameter. The Kullback—Leibler (KL) divergence between the true model

furue(y|x) and candidate model My, with fi(y|Bk, x) is

KL (ftrue(y|w)7 fk(y‘ﬁk7 JJ))
= H 10g (ferue (Y] T)) firue (Y| )dydFy — ﬂlog (feW|Br, x)) forue(y|)dydFy, (7)

where dF;, means the integration with respect to the marginal distribution of . Let fi(y|Bk pop, )

with Bk pop = argming, KL( fuue(y|x), fr(y|Bk, x)) be the least false approximating model,

7



which achieves the smallest KL divergence under Mj. As mentioned in Sin and White
(1996), one primary purpose of information criteria is to select the model M}, with the small-
est KL(firue(y]2), fr (Y] Br.pops ). We call this model the best model and denote it as Mp.
If there are multiple models that achieve the minimum KL divergence, we define Mpg to be
the model with the fewest parameters, and we assume that Mp is unique throughout this
paper. When the true data-generating model is included in the candidate pool, Mp is the
true model. We call a model an underfitted model if it does not include all the predictors
of Mp, and use U to denote the set of underfitted models. If the smallest model is the best
model, then U/ is empty; if the largest model is the best model, then U contains m — 1 models.

Since B pop 15 unknown, it is estimated via the maximum likelihood estimator ,ék The
AIC aims to select the model M, that minimizes KL( fuue(y|2), fo(y|Br. ), ie., the KL
divergence between the true model and the model estimated with the maximum likelihood
Akaike (1998). In the definition of (7), the first term is a constant across all candidate models.
The key to the success of model selection is to approximate the second term accurately. The

law of large numbers tells us that for each fixed value of (G,

Ue(Br) = Elp(Br) = Ewy) log fi(y|Br, x) = Hlog(fk@’ﬂk; x)) foue(y|x)dydFy,  (8)

almost surely under appropriate integrability. However, since 3y, is the maximizer of (Br),
x(By) is not unbiased towards Ez ) log Fi(y|Be, ). Akaike (1998) showed that £,(8y,) tends
to overestimate F(4 ) log fi(y| By, x) and the asymptotic bias is g, /n where gy, is the dimension
of By. The AIC uses q/n to correct the bias in £4(3;) with the goal to select the estimated
model that has the smallest KLi divergence to the data-generating model.

In the subsampling framework with massive data, By is hard to obtain due to the huge
computational cost and hence By ,op is estimated by ék To select a better working model,
we need to accurately approximate the KL divergence, KL( fuue(y|2), fi(y|Bs, ®)). The key
is to accurately approximate F(,,)log Fiulw|Be, ) = E(zen ynew) 108 Fie(Unew | Brs Tnew ), Where
(Ynew, Tnew) Means a new observation generated from the unknown true distribution. The
quantity E(g ) log fi(y| By, ) describes the goodness of the estimated model under M, for
predicting a future response (Konishi and Kitagawa, 2007).

Again, K}Z(Bk) is biased towards E(4, ) log fi(y|Br, ) because the same subsample is used

8



to estimate both the parameter and the KL divergence. Since By, is the maximizer of *(Br),
using *(By,) directly tends to overestimate Ez ) log fk(y\,ék,a:), which implies that EZ(Bk)
overestimates the model’s ability in prediction. If 6,’;(@@ is naively used for model selection, it
often ends up with a model that does not have the best prediction performance. The selected
model tends to overfit the subsample but does not have the best representation for the full
dataset.

To remove the influence of using the same subsample twice for estimating both the parame-
ter and the KL divergence, we derive the asymptotic mean of Dy, := fZ(Bk)—E(w,y) 10g fu(y| Bk, ),
which provides a bias correction for estimating the KL divergence. Under Assumptions 1-5,

as r,n — 0o, if gxlog™(n)/r — 0, then

Dy, =0i(By) — 0(Br) — (B — B) " Ewy) (310?; Fe(y1Be, w)/(%%) (9)
+ 0(Br) — E(z,y) <1Og fe (Y] B, m)) + (Br — Br)"Ax(Br — Br) + op|7, (qr/7),

where op|r, means convergence in conditional probability given the full data.

In Dy, the term EZ(Bk) —€k(,@k) has a mean zero and (Bk—Bk)TE(%y)(@ log fr(y|Bk, x)/0B%)
has an asymptotic mean zero conditional on F,, so they do not contribute to the asymp-
totic bias. The rest terms can be decomposed into two parts. The first part Ek(,[;’k) —
E(z4) log fk(y]Bk,:v) is the generalization bias from the full data to the population, which
has an unconditional asymptotic mean of g/n according to the classical AIC theory. The
second part (Bk — Bk)TAk(Bk — ,ék) describes the bias from the subsample-based estimator
to the full-data-based estimator which has a conditional asymptotic mean of tr(V; A, ') /r
according to Proposition S.2. Therefore, conditionally on F,,, the asymptotic bias of EZ(Bk)
in approximating Ez. log fi(y|Bk, @) is tr(Vi..Ap ) /7 + qr/n. This becomes tr(Vy A; 1) /7 if
r=o(n).

Based on Proposition S.2 and (9), we define the subsample-based AIC value for model M,
as

AlCg,(My) = —2r€,:(,ék) + 2tr (VMA,;I) + 2rqi/n. (10)

Remark 1. In the subsample-based AIC in (10), the first term describes the goodness of fit

for model My, on the subsample and the bias correction terms (the second and third terms)



penalize the model complexity. Here 2tr(V}, .A; ') is the bias correction term for using 2r¢; (Br)
to replace 2nfy(By,) /r, and 2rq, /n is the bias correction term for 2nfy(B;,)/r. For oversampling
with r > n, the term 2rg;/n dominates 2tr(Vk,cA,;1). In this scenario, AICqyy, is just r/n times
the classical AIC, implying that oversampling does not give additional benefits in terms of
model selection. If r is of the same order as n, there is a clear trade-off between the epistemic
bias, 2nlx(Br)/r — 2nlk(Brpop)/r = O(rqr/n), and the sampling variance, 2tr(ViAz') =
Op(r~'). For the more practical scenario that the subsample size is much smaller than the full
sample size, tr(Vj Ay ') > rq/n, so the bias term in subsample-based AIC mainly comes from
sampling volatility. Consequently, improving the quality of the subsample-based estimator
will also help identify the best model among the candidates. Although the relation between
informative subsampling and model selection is not surprising, it has not been well studied in

the literature.

Theorem 1. Under Assumptions 1-5, if (log(m) + q(z) log(q))log*(n) /r — 0 and limr/n <
00, then as r — oo and n — oo, the AlCq,y, defined in (10) selects an underfitted model

My € U with probability going to zero, namely,
pr(arg min AICg,(My) € U‘fn) — 0, (11)
My,
wn probability.

Although Theorem 1 is valid for the case that 0 < limr/n < oo, there is no essential
computational benefits to consider a subsample size of the same order of the full data. Despite
some insights on the variability of the AIC, this setting provides no significant improvement in
computation or statistical inference compared with the vanilla AIC Shibata (1997). Therefore,

we focus on the case r/n — 0 in the rest of the paper.

4 Subsample Smoothed AIC Model Averaging

Besides using the information criteria to filter underfitted models, model averaging is usually
adopted as an alternative and the corresponding estimator can often improve the estimation
efficiency (Claeskens et al., 2006, 2008). The S-AIC is a popular weighting technique due to its

simplicity of implementation. When subsampling for computational efficiency, the subsample

10



size is typically much smaller than the full data size, so we focus on this scenario and assume
r = o(n) in the following of the paper. In S-AIC, we construct a weighted average of the

estimators in the candidate pool. For each candidate model, we compute the weight as

o exp(—AICqn(My)/2)
F ST exp(—AlCu (M))/2)

for k = 1,...,m. The subsample-based S-AIC estimator is defined as 3 = Z?ZldjkP,;FBk,

(12)

where 8, is the subsample-based estimator under M.

4.1 Model Averaging Subsampling Strategy

The key idea of the S-AIC estimator is to put more weight on candidate models that are
estimated to have better performance in predicting future responses. Thus, it is ideal to
find a subsample that can help better approximate the E(, ) log fk(ylﬁk, x) for all candidate
models. From (9) and the discussion below it, we see that the terms £:(8;) — £4(8x) and
(Bk —Bk)TE(ny)(alog I (y[Bk, x)/0B) are not used to define the subsample-based AIC in (10)
because their asymptotic means that given the full data are zero so they do not contribute to
the asymptotic bias. However, both terms are subject to the randomness of subsampling so
they do contribute to the variation of using K}Z(Bk) to define the AIC. An ideal subsampling
strategy should try to reduce this variation. The term £;(8;) —€x(By) is of order Op|z, (r=/?).
Note that E( ) (0log fi(y| Br,x)/0B) is the population score function evaluated at the full-
data-based estimator under My, so its elements are of order Op(n~'/2). Thus Proposition S.1
indicates that this term is of order Opj ;n(q,i/ ?/(nr)Y/?) and it is a small term since g is
much smaller than n. Recall that the asymptotic bias of £;(8y) is of order Opjz, (/7).
Combining the variance and bias, the overall uncertainty by the subsampling randomness is
of order Opyz, (1/7 4 ¢2/r?). When g, = o(r**), the dominating term is £}(8x) — (x(Bx) and
other terms are negligible regarding the randomness caused by subsampling. Therefore, we
can focus on selecting an informative subsample that minimizes the conditional variance of
(5(Br) — (k(Br) given F,.

Thanks to Theorem 1, we know the weight assigned by the S-AIC weighting scheme in (12)

to an underfitted model in U is asymptotically zero. Thus we can focus on minimizing the

11



asymptotic variance of EZ(Bk) for My € U° only, where U° is the complement set of U, i.e.,
the set of candidate models that includes all the predictors of the best model M pg. Although
the set U is unknown, the models in it can be embedded within the model that contains all
the predictors of . We call this model the full model and denote it as Mg, We recommend
finding the subsampling strategy that minimizes the asymptotic variance of E}‘UH(BM) instead.
When there are no redundant variables and the full model Mg, is in the candidate pool,
this is a natural choice according to Theorem 1. If Mgy is not the best model, this is still
a reasonable choice because the asymptotic variance of %,,(Bsn) is an upper bound of the
asymptotic variances of K’,;(Bk) for any M, € U°. This is a type of mini-max asymptotic

uncertainty subsampling strategy, and we call it MASS.

Theorem 2. Assume that the maximum likelthood estimator under Mgy, say Bfuu, exists
and Assumptions 1-2 also hold for the full model Mgy . The subsampling probabilities that
achieve the minimum asymptotic variance of Efull(ﬁfull) are

MASS _ |YiBru®i — ¥ (Bin®:)]

2 A )
' 27:1 [yiBiuTi — V(B Ti)|

(13)
fori=1,... n.

Theorem 2 encourages us to select the data points with larger absolute values of the cor-
responding log-likelihood, i.e., |y; Bt ; — (B x:)|. Intuitively, data points with |y; B &; —
w(BfTwmm close to zero contribute less to the log-likelihood function, so it is reasonable to
assign smaller sampling probabilities on them. There are some potential risks of sampling
according to 7455 directly. For example, relying on the large absolute values of the log-
likelihood data points, the resultant estimator may be sensitive to outliers. In addition, if

MASS are sampled, the subsample-based estimator will

the data points with extremely small 7
become unstable. To make the estimator more stable and robust, we adopt the technique of
defensive importance sampling (Hesterberg, 1995; Owen and Associate, 2000). This approach
is also known as shrinkage subsampling (Ma et al., 2015). To be specific, we recommend using

the following subsampling probabilities

ASMASS _ (] )aMASS 4ot (14)

7 3

12



where p € (0,1). Mixing the MASS probabilities with the uniform probability improves the
stability of the subsample-based estimator. The empirical results suggest that the shrinkage
subsampling method is not sensitive to the selection of p and works well when p is not very
close to zero or one. In practice, it may not be feasible to obtain ,éfuu using the full data.
We take a pilot subsample of size ry to explore the data and obtain a pilot estimator, say
Bfuu,o, to be used for calculating the proposed sampling probabilities. We denote the resulting
sampling probabilities by 75MASS We then use 7w5M45 to take a second subsample of size r
according to the computational capacity.

With the specific 72MASS | Assumption 4 is automatically satisfied under Assumptions 1-3,
and Assumption 5 can be refined by a sufficient tail condition presented in Assumption 6.

Assumption 6. For some k € (0,00),

o V(B Pe;)
— 0n(1 TR BTV On(1).
||i1|]|l£1 12150 log™ (n) P(L): My 15isn log™(n) o

lux;

4.2 Theoretical Properties

To measure the performance of the subsample-based S-AIC estimator 3 under the proposed
subsampling procedure, we adopt the idea of Ando et al. (2017) and define the KL-divergence

based loss (normalized by the sample size) as

Lw)= 130, {y (6 = S Bt ) = (0(6) = (S, Bt P ) ) } (15)
where 6; is the true parameter that generate y; through (1) and w = (wy,...,w,,) is a general
weight. It is worth mentioning that £(&) with & calculated via (12) measures the general-
ization error of 3 from the subsample to the full data. This reflects how well 3 can be used
to describe the full data set. The following theorem shows that the subsample S-AIC weight
performs similarly to the full-data-based S-AIC weight in terms of the Kullback—Leibler loss.

Theorem 3. Let ¢ = infyec, L(w), where G, = {w € [0,1]™ : Yo wg = 1} and L(w)
has the same expression of (15) except that Bk 1s replaced by the full-data-based estimator Bk
Under Assumptions 1-3 and 6, if as 7 — 00, n — oo, (log(m)+(~2q(z) log(q)) log™* (n)/r — 0

and r/n — 0, then

)]
o

(«)
(@)

(«)
(@)

— 1, and — 1, (16)

o>
o>
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in probability, where @ = (&1, ...,0n) and @ = (Wq, . ..,wy,) are the subsample and full sample

S-AIC weights, respectively.

Theorem 3 indicates that the subsample S-AIC weight is asymptotically as good as the
full-data-based S-AIC weight in terms of the KL divergence loss. In the following, we show
the consistency of B to the full-data-based S-AIC estimator B =y Py Bk

Theorem 4. Let m. be the number of models in U°. Under Assumptions 1-3, and 6, if condi-
tions m.r/(nlog(g)log®(n)) — 0 and (log(m) + q(r log(q)) log>(n)/r — 0 holds as n,r — oo,
then the S-AIC estimator B is consistent to full-data-based S-AIC estimator B in conditional
probability given F,. More precisely, (i) when m. = O(log(q)log"(n)), with probability ap-

proaching one, for any € > 0, there exists a finite 0. and r. such that for all r > r,

pr (18 = Bl = \/meauy/7s.

or (i1) when m./(log(q)log™(n)) — oo and m.r/(nlog(q)log™(n)) — 0, with probability ap-

]:n> <€ (17)

proaching one, for any € > 0, there exists a finite 0. and r. such that for all v > r,,

pr (18 = Bl = oy oo (1)

]-'n> < €. (18)

Remark 2. In practice, prior information and subject knowledge are often helpful to identify
plausible candidate models so that the size of the candidate model set is much smaller than 27.
An exhaustive search may be directly implemented in this case. When such information is not
available, an exhaustive search across m = 29 models is often computationally infeasible. To
reduce the computational burden, forward selection usually serves as an alternative approach
to an all-subset search. The forward selection procedure starts from the null model that
includes the intercept term only, and then it sequentially adds one variable at a time to
the model that yields the lowest value of the AIC. More precisely, in the first step, it adds
the variable that yields the lowest value of AIC among models with only one variable. In
the second step, it adds the variable that yields the lowest value of AIC when added to the
previously selected model with one variable. This process stops when ¢(z)+1 nested models are
obtained. Here, the maximum model size q(;y may be determined by some prior knowledge or
can be taken as ¢y = ¢ when such knowledge is absent. After obtaining the g(z)+1 candidate

models, we calculate the corresponding S-AIC weights.

14



5 Numerical Studies

We conduct numerical experiments to evaluate the finite sample performance of the proposed
method on two real datasets and two synthetic datasets. Further numerical results with more
synthetic datasets are relegated to the Supplementary Material. Computations are performed

in R.

5.1 Beijing Multi-site Air-quality Dataset

In the following, we experiment on a real dataset about Beijing’s air quality. This dataset
consists of hourly air pollutants records from twelve air-quality monitoring sites in Beijing
from March 1st, 2013 to February 28th, 2017. There are 420,768 records in the data. The
dataset is available in the UCI database at https://archive.ics.uci.edu/dataset/501/
beijing+tmulti+site+air+quality+data, and more information about it can be found in
Zhang et al. (2017). One research interest is predicting whether the air is currently polluted
using the PM2.5 data from the past 23 hours. According to the ambient air quality standard
in China, we call the air is polluted if the PM2.5 is greater than 75ug/m?. A logistic regression
model with the PM2.5 values from the past 23 hours is used to predict the air quality. After
removing the incomplete cases, a logistic regression is fitted.

Since the predictors are the PM2.5 values from the past 23 hours, we consider the candidate
model set that consists of the 23 nested models, each with the PM2.5 values in the past j
(7 = 1,...,23) hours as predictors. More precisely, M; is the model with the j predictors
being the PM2.5 values in the past 7 hours.

We evaluate the performance of the AICg,;, in (10) for model averaging with the proposed
MASS subsampling strategy. For comparison, we also implement the OSMAC subsampling
for which m; o |y; — ¢(Bfu1170)]\]wi]] under the L-optimality, and the uniform subsampling
(UNIF) for which m; = n™'. Here /éfu]LO denotes the pilot-sample-based estimator for the
full model. We use the L-optimality for OSMAC for the following two reasons. Firstly, the
number of predictors is usually large in a model averaging problem. Thus we need to control
the computational cost in calculating sampling probabilities within O(nq) instead of O(ng?).

Secondly, in order to achieve a consistent estimator of the full model’s information matrix, we
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need a much larger ro, which implies a large ro/(r + 7o) when the sampling budgets is limited.
As illustrated in Figure 3(b), a large ro/(r + ro) may lead to an inefficient subsample-based
estimator.

We measure the performance of a sampling strategy 7 via the empirical mean absolute
error (MAE) which is the average [; distance between a subsample-based estimator B and a
full-data-based estimator ,é We repeated the simulation procedure for 500 times to calculate
the empirical MAE. To further demonstrate the advantage of the model averaging approach
over the full-model approach, the results of the full-model approach with MASS, OSMAC,
and UNIF subsampling probabilities are also presented as benchmarks. We fix 7y and p at
500 and 0.2, respectively. The empirical MAE, together with the accuracy on classifying the

full data are presented in Figure 1.

0.947 o n v e nn e
Bnmnen R IIIITINI groomni -
04 oast 7
= Full = Full
fm) ©+ Average  x(g4s == Average
g-o 8 g
K + UNIF 20044 =+ UNIF
MASS MASS
-1.2 = OSMAC 0.943 = OSMAC
0.942
T 1500 2000 2500 1000 1500 2000 2500
r r
(a) log(MAE) (b) Classification accuracy

Figure 1: A graph showing the median of log MAE and prediction accuracy with different
subsample size r for the Beijing multi-site air-quality dataset based on the UNIF (grey lines
with circle), the MASS (yellow lines with triangle), and the OSMAC (blue lines with square)
subsampling methods. Here the solid lines stand for the full-model approach, and the dotted
lines stand for the averaging approach. The ry and p are fixed at 500 and 0.2, respectively.

From Figure 1, one can see that the model averaging method always results in a smaller
MAE and a higher prediction accuracy compared with the full-model approach when the same
sampling probabilities are adopted. Judging from the selection results reported in Figure 2,
we believe this phenomenon comes from the fact that there are redundant variables in Myy,.
The MAE for all subsampling methods increases as r increases, which confirms the theoretical
result on the consistency of the subsampling methods.

Figure 2 reports the frequency that model M; receives the highest weight. All methods
tend to select My as the best model, which implies that the air quality can be well predicted
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Figure 2: The times that model M; enjoys the highest weight with » = 1000 (upper panel)
and r = 2500 (lower panel). Here we fixed ro = 500, p = 0.2.

by the PM2.5 values in the last two hours. Compared with the OSMAC and the MASS, the
UNIF has a higher chance to select M as the best model when » = 1,000. Comparing the
results in (a)-(c) with those in (d)-(f), we see that M is an underfitted model as discussed
in Theorem 1. This can be understood as using the PM2.5 value in the past one hour only is
not sufficient enough to explain the current air quality. OSMAC and MASS are more likely
to rule out the underfitted model compared with the uniform subsampling. This is a reason
why the two methods outperform the uniform subsampling.

In the following, we evaluate the impact of the tuning parameter p in (14) and the pilot
sample size 1y on the performance of the MASS. We present the results with rq = 500 and
r = 2500 for the sensitivity analysis on p and fix rq 4+ r = 3000 for the sensitivity analysis on
ro. The log(MAE) against different p and ro/(r¢ + r) are reported in Figure 3 (a) and (b),
respectively. It is seen that the proposed method performs well and are not very sensitive to
p when it is between 0.2 and 0.5; the relative variation is less than 10%. With a fixed p = 0.2,
one can see that MASS performs well when r¢/(ro + r) is between 0.15 and 0.3.

5.2 The SUSY dataset

We experiment on a real dataset about supersymmetric particles available on https://

archive.ics.uci.edu/dataset/279/susy. The task is to distinguish between a signal pro-
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Figure 3: Median log MAE against different p values with ro = 500, 7 = 2000 (left panel) and
median log MAE against different ry values with ry 4+ r = 3000, p = 0.2 (right panel).

cess which produces supersymmetric particles and a background process which does not.
There are eight features that are kinematic properties measured by the particle detectors in
the accelerator, which are known as the low-level features. There are another ten features
that are derived by physicists based on the low-level features to help discriminate between
the two classes. More information about the data is available in Whiteson (2014). Here we
consider a class of logistic regressions with 46 possible covariates (features), consisting of the
original 18 features and 28 interactions of the eight low-level features.

246 possible

Due to limited computational resources, it is infeasible for us to consider all the
models. Thus, the forward selection method as discussed in Remark 2 is adopted. Again, we
report the results for model averaging with the proposed MASS subsampling strategy together
with OSMAC and uniform subsampling strategies. The ry and p are fixed at 500 and 0.2,
respectively. Results for the full-model approaches are also reported for comparison.

Figure 4 shows that the model averaging method always leads to a smaller MAE compared
with the full-model approach when the same sampling probabilities are adopted. As expected
the MASS and OSMAC have better performances compared with uniform subsampling.

The S-AIC weights for models with less than 15 predictors are less than 1073® when the
forward regression is implemented on the full data. The extremely small weights imply that
models with less than 15 predictors are likely to be underfitted models. We record the number

of predictors in the best model selected by the smallest AIC,,, say dg, to reflect the model
selection performance. The number of times that dg < 15 for the UNIF, the OSMAC, and
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Figure 4: A graph showing the median of log MAE and prediction accuracy with different
subsample size r for the SUSY dataset based on UNIF (grey lines with circle), MASS (yellow
lines with triangle) and OSMAC (blue lines with square) subsampling methods. Here the solid
lines stand for the full-model approach, and the dotted lines stand for the averaging approach.

the MASS, are 88, 73, and 68, respectively, out of the 500 replications when r = 1000. This
implies that the MASS is more effective than the OSMAC in excluding underfitted models,
and they are both better than the UNIF.

We close this section by evaluating the computational efficiency. We implemented all
methods using the R programming language and recorded the computing times of the three
subsampling strategies using the Sys.time () function. Computations were carried out on an
iMac (Retina 5K, 2020) with a 10-Core Intel Core i9 processor. We also record the computing

time on the full dataset as a benchmark. Results are presented in Table 1.

Table 1: Computational time (in seconds) of the S-AIC estimator on the Beijing multi-site
air-quality and SUSY datasets.
r 1000 1500 2000 2500  Full data
UNIF  0.0817 0.1051 0.1277  0.1504
Air-quality dataset ~MASS  0.1037 0.1224 0.1432  0.2081  18.5777
OSMAC 0.1139 0.1361 0.1609  0.1765
UNIF  6.5255 8.3666 10.6676 12.2237
SUSY dataset MASS  6.9350 9.2282 10.8142 12.5163 24469.62
OSMAC 7.3816 8.9530 10.6676 12.2237

It is seen that all subsampling methods are significantly faster than the full-data calculation
for the S-AIC estimator. The UNIF is faster than the MASS and the OSMAC, but the
difference is not significant. The main reason is that the computational time is mainly spent

on calculating the AIC values of the candidate models. The time complexity for calculating 3
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under My, is O(rq?). For nested models as in the air-quality dataset, the time complexity of
calculating the model averaging estimator based on a subsample is O(r Z?;i (j+1)?) = O(rg®).
When forward selection is adopted, ¢+ 1 — 7 models with j + 1 covariates are calculated in the
jth iteration, leading to a time complexity of O(r 7", (¢+1—7)(j+1)%) = O(rq"). The MASS
and OSMAC only take O(ng) time to calculate the sampling probabilities. Therefore, the
additional time in calculating the subsampling probabilities may not be a leading order term
in the computational complexity. Consequently, our method has comparable computational
performance with the uniform subsampling method.
5.3 Simulation Results
It is known that model averaging estimators are impacted by candidate model specification. In
the following, we further validate the proposed method on the synthetic dataset with different
candidate models. The response is generated by a logistic regression with ¢ = 30 potential
covariates. The full data size is set to be n = 500,000. The nonzero components of 3 have
decreasing sizes as suggested in Zheng et al. (2019). Specifically, 8; = 2/j for j = 1,...,6,
and §; = 0 for the rest.

The following two distributions are used to generate covariates x;’s.

Case 1 Multivariate normal distribution N (0, %) with the (i, j)th entry of 3; being 0.5/"~7!,

Case 2 The first 10 dimensions of the covariate come from N (0, ¥;), and the rest dimensions
consist of quadratic and cubic transformation of the first 10 dimensions.

We consider the following two scenarios for the candidate model specification.

Scenario 1 The M; contains the first j predictors. In this case, there are 29 models in the
candidate set.

Scenario 2 The forward selection procedure is used to explore the candidate models with
prior knowledge on the largest number of predictors. Here we assume the number to be
eight where the largest model contains 30% more predictors than the best true model.

We fix rp = 500 and p = 0.2 and set r to 1000, 1500, 2000, and 2500. The uniform
subsampling is implemented with a subsample size r +ry for fair comparisons. The simulation
results are given in Figure 5. We opt to show the full-model approach and model averaging
approach in different panels since the scaling of log MAE in the two methods is different.

We see that the MAE for all subsampling methods decreases as r increases, which confirms

the theoretical consistency of the subsampling methods. As expected, the MASS always leads
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Figure 5: A graph showing the median of the log MAE with different subsample size r for
different distributions of covariates and different candidate models. Here we opt to show the
full-model approach and model averaging approach in different panels since the scaling of log
MAE in the two methods is different. The full-model approach is the same under Scenarios 1
and 2.

to a smaller MAE compared with the UNIF. Although the OSMAC outperforms the UNIF
with the full model, Figure 5(d) shows that it does not necessarily outperform the UNIF in
the model averaging framework due to model uncertainty. Similar phenomenon is observed
in Figures 5(a) and (c¢) that OSAMC outperforms MASS with the full-model approach while

MASS has a better performance under the model averaging framework.

6 Conclusion
In this paper, we have investigated the subsample-based S-AIC estimator and developed

a MASS subsampling strategy to improve the subsample-based model averaging method.
We have derived the asymptotic properties of the estimators under candidate models with
diverging dimensions and derived the appropriate expression of the subsample AIC. We have
also carried out numerical experiments on both simulated and real datasets to evaluate its
practical performance. Both theoretical results and numerical results demonstrate the great
potential of the proposed method in extracting useful information from massive datasets. Our
investigations have focused on the subsample-based AIC model averaging, and the technical

proofs are already complicated. We only considered averaging candidate models with different
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covariates in the linear predictor as studied in Ando et al. (2017). More complicated scenarios,
such as that when candidate models have different link functions and/or different distribution
assumptions are also important and need to be investigated in future research. We hope this
work will attract more attention to the promising technique of model averaging in subsampling

big data.

Supplementary Material

Narrative Supplement The pdf file contains an algorithm, distributional results on the
subsample-based S-AIC estimator, all the technical proofs, and additional simulation
results.

Code Supplement The zip file contains the R codes that were used for the numerical results
of the paper.
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S.1 Detailed Algorithm

For transparent presentation, we summarize the practical implementation procedure in

Algorithm S.1.

Algorithm S.1 Practical MASS implementation

1. Uniformly take a subsample of size r = ry to obtain a pilot estimator Bqu,O, and use

SMASS

%

it to calculate 7

2. Sample with replacement r times according to the sampling distribution 7SMASS to

form the subsample set {(y;, =7, 7)) T, i=1,...,70,70+ 1,...,70 +7}.

I

3. On the subsample set, calculate the subsample log-likelihood estimator Bk under
each candidate model My, according to (5) and calculate the corresponding weight

@y, defined in (12).

4. Calculate the subsample-based S-AIC estimator BSMASS => &JkP,? Bk

It is worth mentioning that the uniform subsampling is adopted to obtain a consis-
tent estimator of ,éfuu in the first step. Other efficient subsampling procedures can also
be applied here. For example, when the logistic regression is applied, the case-control

subsampling can be used to obtain the pilot estimator for My, when the responses are



imbalanced.

S.2 Asymptotic results for each candidate model

The following propositions show the consistency and asymptotic normality of the subsample-

based estimators under each candidate model.

Proposition S.1. Under Assumptions 1-5, if n,r — oo in a way that qxlog™(n)/r — 0,

then for model My, and any € > 0, there exists a finite A. and r., such that for all v > r,,

pr (18— Bill = Var/rA.

EJ<@ (S.1)
with probability approaching one.

Proposition S.2. Under Assumptions 1-5, for any candidate model M, and a nonrandom
unit vector u € R%* if (log"™(n) + qx)qx/r — 0 as n,r — oo, then conditional on F, in

probability,

(w"Viw) 2" (By, — Br) — N(0,1), (S.2)
in distribution, where Vi, = AT (r W) ALY, Ay = n ' SO0 (B Pox;) Pexix? PY, and
Vie =n 230 w7y — O(BF Py ) e Py

Propositions S.1 and S.2 extend the results in Ai et al. (2021) to the scenario of a

diverging dimension of the model parameter. However, it is still a result based on a given

model and thus can not be applied directly to bound the uniform approximation error.

S.3 Distributional results on subsample-based Smoothed

AIC estimator

Besides consistency, the uncertainty of the subsample-based estimator B is also of interest.

In the following, we consider the asymptotic distribution of B conditional on F,,, when

wIMASS defined in (13) is adopted.



Recall that ¢ is the set of candidate models that includes all the predictors of the
best model Mpg. If U¢ contains exactly one model Mpg, Theorem S.1 (to be presented
later in this section) indicates that the S-AIC weight on the best model goes to one in
probability. Now we consider a more interesting case that U¢ contains multiple models.
Following Lumley and Scott (2014, 2017), we define the subsample quasi (log) likelihood
ratio statistic for the full model Mg, to a model My, € U\ Mgy, as

M =71 sup ((Br) =7 sup  Lig(Bran), (S.3)
Br€Ag Bran €A a1

where Ay and A, are the parameter spaces under My, and Mg, respectively, and U\ M,y
consists of models in U¢ without Mg,. For model Mgy, we permutation and partition
Bran = (Biays Beqe)™ with Brn being the g entries corresponds to B, partition the selec-
tion matrix Py = (Py, Pyy,)" comfortably to (81, Bhqe)" s and partition Pran g Asan Py .

defined in Proposition S.2 accordingly into four submatrices,
’ (S.4)

with

- 1 = 9%log frun(vil Bruit, )
Ak,j1j2 = Z B 98T ’
n Beunjs OBy,

for 71, 7o = 1,2. Denote the Schur complement of flkm as /Ik,gz.l = flmz — Amlflﬁlflml.

The following lemma states the asymptotic distribution of Ag.

Lemma S.1. When U contains multiple models, if Assumptions 1-3 and 6 still hold when
the full model Mgy is added to the candidate set, then for any My, € U\ Mg as r,n — 0o
in rates such that rlog”™(n)/n — 0 and q(¢* +log"(n))/r — 0, for any a € R,

Vi
pr(—=2X\; < alF,) —pr (Z ki Zt <a
1=1

]-'n> — 0, (S.5)

in probability, where v, = q — qi; Z;’s are independent standard normal random variables;
and C1, ..., Cry, are the eigenvalues of Tvara(,éfuug|]:n)/~lk722.1 with Vara(,éfu112|fn) being the

asymptotic variance of Beae under M.

Based on Lemma S.1, the asymptotic distribution of B is presented in the following

theorem. We use k € U to denote that My € U for notation simplicity.

4



Theorem S.1. If Assumptions 1-3 and 6 still hold with the full model M¢, added to the
candidate set, and grm.log”(n)/n — 0, q(¢*+log"(n))/r — 0, and m.r/(nlog(q)log"(n)) —

0 asn — oo, r — 00, then for any given unit vector uw € R? and a € R,

S

pr (ﬁuT(B ~B)<a

7)o (wQvifie <a

— 0, (S.6)

wn probability, where

Q= =P, (PAsn P;) " P,
kezuc D reue Gl

G = exp (€ Voo Abpros Valin€/2 — tr(Viee ALY )

and Agproj. = AﬁlPQTkAk,QQ.lPQkAgjl. Here, Agpq is defined in Proposition S.2 for Mg,
&~ N(0,1,) and

~ (y; — (B L 233i33;f
an’czz (i — Y (Brani))

n2 7.(.ZASMASS ’

i=1
SMASS

with m; gien in (14). For the special case that U° contains exactly one model Mp,
the S-AIC weight on Mp goes to one and B has the same asymptotic distribution as the

estimator under Mp.

From the above theorem, we see that the S-AIC weight for an underfitted model con-
verges to zero, while the weight for a mode in U¢ goes to a non-degenerate random variable
Gr/ > Myeye Gi iU contains multiple models. In this case, the asymptotic distribution of
the S-AIC estimator is not normal.

To evaluate the asymptotic distributions visually, we create normal Q-Q plots for pa-
rameter estimates from the 500 repetitions of the simulation. Figure S.1 reports the results
for parameter g in Case 1 when ry = 200, = 1500, and p = 0.2. The asymptotic dis-
tributions for estimators from model selection and model averaging are non-normal. This

confirms the results in Theorem S.1.
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Figure S.1: Q-Q plot for estimates of 5 for Case 1 Scenario 1 listed in Section 5.3 with
r = 2500, 7o = 500 and p = 0.2 based on UNIF, MASS, and OSMAC subsampling methods
under the S-AIC model averaging (top panel), and full-model (bottom panel) approaches.

S.4 Proofs

Before the proof, we summarize some frequently used notations in Table S.1.



Table S.1: Notation table
Notation | Interpretation

n Number of observations in the full data set.

r Subsample size.

m Number of candidate models.

q Number of the possible covariates.

Qe The dimension of ﬁk

qr) The dimension for the widest model.

M, The kth candidate model.

Mea The model which contains all possible variables.
Mp The best model in the candidate set.

AlICgy, Subsample-based AIC value defined in (10).

Py The projection matrix such that B, = P.(3.

x; Covariate of the ith observation in the widest model.

Ty, Ty, | Tk = Py, and x}, = Byx).

Bk pop Br.pop = arg maxg, E'log fi.(y|Bk, ).
BB | Buy = PiBr, By = PLBr.

B Smoothed AIC,, estimator.

[5’ Smoothed full-data-based AIC estimator.
U The set of underfitted models.

Uue The complement set of .

Recall that for a candidate model My, the subsample-based estimator ,ék is the maxi-

mizer of the following objective function,

r

G080 = 37 - (B P — (8] Pea?)).

=1 !

and ﬁk is the full-data-based maximum likelihood estimator that maximizes

n

> (i Pexi — (B Py) -

=1

1

n

(1(Br)



S.4.1 Some useful lemmas

In the following, we will give some technical lemmas which are routinely used in proofs.

Lemma S.2. Under Assumptions 1-5, for any candidate model My, as n,r — oo with

log®(n)/r — 0, the following result hold in probability

I ~— 1 -
— Z ;w(ﬁiwzz)wzzwﬁ — Ay

nr .
i=1

=0p|F, ( log';(n)> )

Furthermore, if log(m)log®(n)/r — 0, it holds that

s (S.7)

11 s \
o Z ;w(ﬂiwzi)%wk? — Ay

i=1 ¢

Op, ( 1g<m>lg<>> |

sup
k

s (S.8)

r

with probabilities approaching one.

Proof. Let uy be a g, dimensional unit vector, and w is a ¢ dimensional unit vector. Under

Assumptions 2 and 4, for each candidate model M

T

1 1 . .
( r ;:1 W;@/’( 8 Thi) T T k >
wz Bkwk |“T$ |4
< sup E : Fa
\ (u e e

sup max ——— |uTa;Z|4 (Z ¢2 Bk“’m

"\ =1 1S5

n)
|IU'T$1‘4 ¢2 Bkwlm)
=,/ sup max g
lu|=115isn TR

=0p(1/log"(n)/r), (S.9)

where (S.9) holds under Assumptions 2 and 5.
Recall B(k) = P! By. Applying Lemma 14.24 in Biihlmann and van de Geer (2011), one

:

can see that
1 - L. AT, % % T
o Z Fw< 5T ) Ty — A

=1 !

E | sup
My

s



<4/8log(2m) E( supﬂz

8log(2m) E( sup

2

r

r lull=1 1si<n

O, (\/810g(2m)log“(n)> | (S.10)

r
where the (S.10) holds by Assumption 4.
O]

Lemma S.3. Under Assumptions 1—4, for any candidate model My, for a fived unit length

vector u € R%* | conditional on JF,, in probability, as n,r — oo with ¢i/r — 0,
(r T ATV A ) TV 2T A 00 108 (Br)

—N(0,1), in distribution.

Proof. Denote (i, = {y* — (B x:,)} s,/ (n7?). Note that ¢}, is an ii.d. sequence condi-
tional on F,,. Direct calculation shows that

B (uTA;“%’“(ﬁ’“) a) -5 <1 YA fn)
T
1=1

B
=0, (S.11)

06 (Br)
08

_ ., T 54—1
=u A

and

(s

1
= —uTA’lvar (Gl Fn) At

Fn> (S.12)

1 T yz ﬁkmkz)ymkﬁm}; -1
= AL LA .
P Z KU

Now we check the Llndeberg—Feller condition under the conditional distribution. For

")

every € > 0, some ¢ € (0,1/2) assumed in Assumption 4,

S E (Hr—I/QuTAk1<;i|r21<||uTAk1<;:i|| > %)

i=1

9



Srm ZE ™ A Gl F)

o 11 1 |y1 kmkz)|2+6”uTA g ||2+5
MMZ mes

T

115 s = ) o A
- n(nm )1+6

n )|4+26 T 4425
< 11 Z lyi — zb(,@klsz | Z K% A | (S.13)
“ e n(nm;) 1+5 n(nm;) 1+5 7

where 1(+) is the indicator function, and the last inequality comes from Holder inequality.

Let a A b = max(a,b). Under Assumptions 2 and 4, direct calculation yields that

Z ‘yz ﬁk inz) !4”5

1+5

(|3/2| + |¢<Bkmkl)|)4+26

<
T = n(nm;)1+9
< Z {21y A [0 (BFmr) )}
- n(nm;)+0
= - 220wl 4 [ (Bl )
T = n(nm;)t+o
N 2wl + g (@) [T
T = n(nmw;)t+o
= Op(1). (S.14)
Also, note that
Z ||UTA kaz |4+26 n ||AI;1||§+26||UT$M”4+26 _o (1)
D n(nm;) 1+ TP
i=1 t

under Assumptions 3 and 4.

Combining (S.13), (S.14), and (S.15), we obtain

! 1
S E(Ir PutGIPI(uT Gl > )| ) < EOP(T‘”Q)OP(D = op(1).

i=1
Thus, conditionally on F,, the desired result is held by the Lindeberg-Feller central limit
theorem (van der Vaart, 1998). O

10



Lemma S.4. Under Assumptions 1-3, for each € > 0, and My, in the candidate pool, as
r,n — oo with limr/n < oo,
sup  (10(Br) — 70k Brpop)) < —cer + Op(r/?), (S.15)

k,BrENC(g)

in probability, where N¢(g) is a complementary set of a sphere centered at By, pop with radius

g, and c 1s a strictly positive constant.

Proof. Performing Taylor’s expansion of ¢4 (8) around By pop, it follows that, for any By,

10l (Brpop) 1

'gk’(IBk?) - gk(ﬁk’,pOp) = (IBk - Bk,pop) T 2(:8/6 - 6k,pop)TA(Bk)(/6k - Bk,pop)a

(S.16)

where Bk lies on the line segment between B, and By pop-

Based on (S.16), for any By € N°(e) = {8 € Ay : [|B — Brpopll > ¢}, it follows that

sup 0 (Br) — 70k (B, pop)

86 le} . T 3
= Supr(ﬁk - ﬁk,pop)T k(ng) p) — inf i(ﬁk - ﬁk,pop) A(ﬁk)(ﬁk - ﬁk,pop)
k G k2

+ 0% (Bk,pop) _r

< sgpr(,@k - IBk,pOp) 03 }aﬁ Amin(A(Bk)) 18k — ﬂk,popH2

2
ot 0 . ;
< Sl;p’f'(,@k; - /Bk’,pop)T k(g[g,p p) - gH’%f Amin(A(,@k:))52
¢ o : ;
:O(l) sup \/;(1616 - Bk,pop)T\/ﬁak(gBk’pp) - L inf )\min(A(/@k))gz
k J6] 2k
<O(1)sup V7185 ~ B popll sup ||Vt P2Bsen) | Fine s g (sam)
My My, B 2 My,

where the second last equation comes from the fact r = O(1)y/nr under the assumption

that limr/n < oo, and w = || Bk — Brpopll ™ (Bk — Br.pop)-

Also note that under Assumption 3,

2

Ta«gZ(ﬁk,pOp)
Esgp ‘\/ﬁu — 8
(%Z (Bk,pt)p) ) ( 862 (ﬁk,pOP) )
< ESI]]C.p ‘ (\/ﬁ—aIBT \/ﬁ—@ﬁ .

= ESlip(HB(ﬂmpop)lls) = 0(1),

11



which implies sup vy, ||v/nu” 0l (B pop) /9B = Op(1) by applying Chebyshev’s inequality.
Combining this with (S.17), the result is proved under Assumptions 1 and 3.

S.4.2 Proof of Proposition S.1

Proof. Clearly, for the fixed dimensional case, the results hold naturally according to
Ai et al. (2021). Thus we only focus on the case that ¢, — oco. Note that B, =
argming, (;(Bx). Due to the convexity of —(;(8)), we only need to show that for any
given model My, and any 1 € (0, 1), there exist a large constant A such that for sufficient
large r,

pr <SupA 0 (B + Var/ra) < rl(B)

]-"n> >1—1. (S.18)

Conditional on F,,, we decompose ¢} <Bk - qk/ra> — M’,;(Bk) =: T, + T2, where

T, = Zl mlr;k {y: (Bk + \/%a) Ty — Y ((Bk + \/%a) $Zz) }

~ ~ r 1/2 * T a0 (AT o T
_ g wiBie — VBl 5~ (via"at, — (Blai)a"ai,)
i=1 nry

r12nms

i=1

- ; %{yz (Bk + ﬁa) Ty — 1) ((Bk + \/iza> inz> }
+ Z % (yﬁ;?wm - 1/)(313331“)) ;
i=1

and

T @'’ (yg‘achzi - ¢(ﬁ;§wiz)a%?§l>
2= Z 2

=1

+Zn;%{y (Bk+ \/qrza>Ta:ki — ) ((Bk+ \/z:a)T:vm) }

1=

i=1

Applying the Taylor expansion on the first term in 77, it follows that

> {y: (B /2a) ai- ((Bk [ La) w) }
=1 ¢

12




T 1 * AT % AT % > r w/qk ( x T % AT % T *>
B i PeLhi — L a'x; — i )a x:.
;1: - (yz v — V(Brxy) ) + ; N Y, w( Tt 5

where Bk lies between Bk and Bk +va/ra.
Direct calculation yields that, for any ﬁk lies between Bk and Bk +Vq/ra,

LiThi 2o ) LiThi s
<uiﬂ 152 (b(8iai) — i(Biai,) ) u'ap il ($20)
<iup1$§;—|¢< re |8, — Bt |l (521)
s3u51$i§rj—|¢<ak%>|uﬁk—ﬁk||||u0xm||uu%zi||2 (522
<\ Lall sup —Z—W s, (523
HuH* nr

, /2 1/2
[ G 1 g93(T;) Ju"z;,;||°
<,/ =A[— =t — S.24
v ("Tzl i ) (@j}g@%’; nm ’ (524

where (S.20) comes from Wely’s theorem Horn and Johnson (2013), (S.21) comes from the
mean value theorem that (87 ;) — (Brxr,) = ¥(BFz:,)(Be — Be) "z}, for some By, lies
between By, and B,. The wg in (S.22) is a unit vector equals to [|Bx — Bull " (Be — Be),
(S.23) comes from Assumption 2, and (S.24) holds by the Holder inequality.

Thus, from Assumption 4 and the assumption that gglog”®(n)/r — 0, one can see that

rooe A
w((ﬁk + ST)ka:z x* w kwkz xr* *T
E 7“77,7'(,7 Ly kz § L i L

. (5.25)
= opi7, (1),

Similarly, applying Taylor expansion on the second last term of 77 yields that

S (B ) o (3 ) )}

n , . A

13



where R}, is the reminder term with |Ry| = op £, (qx) (by using the similar techniques in
(S.24)), and the last equality holds since dL(8;)/98 = 0.
Combing (S.19), and (S.26), it follows that
x; " (B s
‘7-1 (Z 1# Bk kz ]:kaz _ Z MGT&‘MCL‘;G> + OP\}'n(CIk)-
i=1

n

From Lemma S.2, it is clear to see that 71| = opz, (qx)-
By the same reason, the sum of the last two terms in 75 is dominated by —0.5¢za™ Axa.

It is sufficient to show that the first term in 75 is opz, (qx). Note that under Assumption 4,

- 1 * * 2 * *
p{S o (et diatyaras) .| <o

1
Var{z n (y;kaTwl:z ¢( ka:k:z CL mkz ‘F }
r

i=1 v

and

n

:rz n217r- {(yz - lﬂ(/éigmkz))%a’ka’)Q}

i=1 v

Z yi + W IBkwkl) zn: (a™@p)? Op(r).
=1

n27ri

Thus Y7, (n7}) " Myra @}, — ) (Bre);)a x),) = Opx, (r'/?), which implies 73 is dominated
by —0.5q.a™ Axa.

Thus, we can clearly see the difference 05 (Be++/qc/ra)—rt:(B) = Ti+7s is dominated
by —0.5¢xa” Ara in probability, which implies (S.18).

O
S.4.3 Proof of Proposition S.2
Proof. Applying Taylor’s expansion,

B 3,3
with 3%, = fol (nrm?) (B, + (B — Bk)TfBZi)dt-

14



Let wo = ||Br — Bl| (B — Bk). Using the similar techniques as what we have done in

(S.24), simple calculation yields that

ZJZiUT‘L’mme Z i kwm Ty T U
i S
* * 1 TA * * ok
D(Brah; + H(Br — Br) i u T w — —— ) (Bl uT ) 'dt
||u|| 1 nr;
1 * 2 2 * A * *
< sup Z/ — [(Bhak; + (B — Br) "wj;) — P(Bray,) | |u" i | dt
[ul|=1;= Jo M7
T 1/2, « 3
95"~ (@})||u |
< sup YOI EI TR 5, gy
[luefl=1 i=1 m'7r
2\ im1 TLT‘7T1- HUH 1Z 1
1 g3()) [wTa]® ~
<= e — . S.28
3\ ; e\ 12, s 18— Bl (8.28)
Together with Proposition S.1 and Lemma S.2, it holds that,
'
Jhu T T w — Z Wl/}( E )W T wl| = opix, (1) (S.29)
=1 1 s

By the definition of subsample-based estimator, the left-hand-side of (S.27) is zero.
Thus,

w(B — Br) = u" AU (Br) /0B + opir, (|u" (B — Br)]) = Opr, (), (S.30)
from Lemma S.3 and Proposition S.1. Therefore, u™(B; — Bi) = Opyz, (r~/?), and
u" (B — Br) = uTA; 100 (B) /0B — N (0,7 u" A Vi AL ). (S.31)

]

S.4.4 Proof of Proposition 1

Proof. For the fixed dimensional case (i.e., ¢ is fixed), it is worth mentioning the number of
candidate models is also fixed (no more than 29). Thus Proposition S.1 implies Proposition

1. Thus, we focus on the case that ¢ goes to infinity. Note that 83j, = arg ming, ¢;(B). Due

15



to the convexity of —¢% (), one can see that the event {||Bx— By > V) log(q)log™(n)/r}

can be implied by the event {rf; (8 + V) log(q)log™(n)/ra) — rli(By) < 0}, where a is
a vector with [la|| = A for some large constant A. Clearly, it follows that {sup,,, ||Br —
Bill > V) log(glog™(m)/r} = U{lIBr — Bill > /ar)log(g)log™(n)/r} is implied by
the event Up{rl:i (B + V) log(g)log™(n)/ra) — rli(By) < 0} = {supq=a 0 (B +
V) log(g)log" (n)/ra)—rl;(By) < 0}. Thus, it is sufficient to show that for any € (0,1),

there exist a large constant A such that for sufficient large 7,

pr <sup{ sup rf; (,8k+\/q log(q)log”(n )/T&) —er(Bk)} <

ko Ullall=A

0 .7:n> >1—-n. (5.32)

Conditional on F,,, we decompose r/; (ﬂk + V) log(q log“(n)/ra> —rli(Br) =: T+

75, where

om o o [T i (- [T, )

=1 ?
1) log(g)log"(n) <

- Z (yz Bloei — (B} )) - ZE; \/q nmi/r

(L)
1
—Zn:;{yi (B(k)+ \/q(L)log(z)log”(n)a> . w((ﬁ(k) . \/Q(L)log(z)log“(n)a> w)}

i=1

£ 37 2wl - v(Blym) }

=1

ylaTa! — ¢m@@mwﬁ

and
" 1/4(r) log(g)log"™(n) R
75::2\/ — (yz*aTw* @D(B(Tk)w?)a%f)
=1
n . log(q)] ! . log(q)1 B
+Z{yl (ﬁ(k)Jr\/Q(L) og(r) 0g"(n) ) wi—dJ((/B(k \/Q(L) og(r) 0g"(n) ) wz>}
=1

- Z % (%B(Tk)‘”z - ¢(B(Tk)mz)> -
i=1

Applying the Taylor expansion on the first term in 77, it follows that

Zn;* {yf (ﬁ(k)"‘\/q(L) log(z)log“(n)a> -y <</é(k)+\/q(L) log(‘i)logﬁ(n)a> mf)}

1 * QT % AT % d qr) log(q)logn<n)/
=2 (yz BwTi — ¢(B(k)wi)> + \/ nr} (

i=1 g i=1

yia'z; — (Blyz))a"))

16



a Tr,r, a
* [Rad} )
nm,

a(r) log(q)log" (n) <~ V(Byxl) S
- 33
. ; (S.33)

where B(k) lies between B( and ,B(k + ) log(q)log"(n) /ra.
For any s, lies between 0 and +/q(z) log(¢)log"(n)/ra, using the similar approach in the
proof of (S.24), it can be shown that

T (A Dk r 1/] BT CC;(
Z (B +'i ) x’)m:me Z ((7@*):13::3?
rnm;

sup
ko=t Ly i—1 B
" gy (a ||u 13 [qe log(g)log™ (1)
Z lall
kIIUII pnre r

1/2
41 log(g)log™(n) < gs(x ) < lu"a *HG>
= \/ r IIUII pnr Z IIUII 1 nr Z

1/2 1/2
log(q)log” ||
- \/Q(L) 0g(g)log™(n) ng sup max [ (S.34)
r ”u” nr * lull=1 1<i<n nm;

7

Under Assumption 2 that n™! >"7" | g3(x;) = Op(1). One can see that >, gs(x})/(nrr}) =
Opir, (1), under Assumption 4 by Chebyshev’s inequality. Also note the assumptions that
(log(m) + q(r) log(q)) log**(n)/r — 0. Combining this result with (S.34), and Lemma S.2,

one can see that

- i,
=1 4

— opi, (1), (S.35)

sup
k

S

Thus, the first three terms in 7; can be expressed as

- ) log(q)log"(n) \" . log(q)log™(n) \"
Zn;{y <ﬂ(k)+\/qu) Og(z) og"( )a> - <<ﬂ(k)+\/Q(L) Og(f«) og"( )a> w)}

=1 ?
. T log(q)log™(n)
1 * QT * AT * \/Q(L) 8 * T, % (AT *\ T, %
_ ; ot (yz /B(k)wi _¢(5(k)£13i)) - ; e (yla x; —Qp(,@(k)mi)a mz)
r w BT w;k
= - 05(](L) log(q)log’i(n) Z ((7k)*>aTw* *Ta 1 R, (836)

- rnm.
=1 g

where R* is the reminder term with sup, |R*| = op|z, (¢ log(q)log™(n)).
Similarly, applying Taylor expansion on the second last term of 7; yields that

Z%{yl (B(k) n \/Q(L) 10g(i)log“(n)a) 2, — ((ﬁ(k) . \/Q(L) log(z)logﬁ(n) a) wl) }

i=1
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! 3T 3T K T
=2 (yﬁ(k)‘”i N ¢(ﬁ(k)wi)) — 0.5q(1) log(g)log"(n)a" Aa + R, (S.37)

where R is the reminder term with sup, ||R||s = opz,(qr)log(g)log™(n)), and the last
equality holds due to the fact that 8Lk(3k)/86 =0.
Combing (S.36) and (S.37), it follows that

q(r) log(q)log"(n) ET: w(ﬁ&)wé‘)a%,fﬂa _ zn: w(B(Tk)wi)aTmm.Ta
2 — rnm} v — n e

+ op 7, (q(z) log(q)log™(n)). (S.38)

sup | 71| =sup —
k k

From Lemma S.2, one can see that

d 1/’(3(2)‘”?) | A(Tk)wz‘)
E| sup Z ————a'zix]'a— Z ————a'z;x;al|F, | =opr, (1)
( kol T i=1 n

Applying Taylor’s expansion on the second term of 75, one can see that the sum of the
last two terms in 73 is dominated by —0.5¢(z log(¢)log"(n)a™ Aza. It is sufficient to show
that the first term in 75 is opyz, (q(z) log(q)log™(n)).

Clearly,

5 {z L (jgara; - d(e)ar) ]f} o

i=1 ¢

The deviation can be uniformly bounded by

r

1 * T % I /AT *\ T *)
21: o (Z/ia Z; w(ﬁ(k)wi>a’ T,

, (S.39)

1 * % (A * *
2; - <yi L — ¢(5(Tk)mz)wzg>

through the Holder inequality. According to Lemma 14.24 of Bithlmann and van de Geer
(2011), it is easy to see that

—l—

where (5 = (4 — @D(Bﬁ)wzz))w?]/(m?)

a)
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Applying Holder’s inequality yields that

E { (maXzT:CZ?> fn}
g

~ (y; — V(Bf )’ —~ T
< {3
—\E{Z e Y S\ Ve D D=

=1 ¢

~ (yf — (Bl ) juz;|*
< (]
_\ E {Z n2mr2 Fn r Hil“lgl gfg;i n2m2

i=1 i

7)

n2my?

T %4 14 AT ok
< B (Z 4yt + (B x,)

fn> V/rlog"(n)Op(1)

where the second last inequality comes from Minkowski inequality, and the last equality
comes from the fact

o (Z 4yt + 404 (Bl ;)

: n2m2
i=1 ?

n 4 40 aAT ..
J—"n) ey MR o

- n’m;
i=1

under Assumptions 2 and 4.

Therefore, applying the Chebyshev’s inequality, it holds that

\/(I(L) log(q)log"(n) sup ZT: mlﬁk {(yf B w(B’(Tk)m;k)> aTm;‘k}‘

r k

= OpFx, (CI(L) log(q) 108;'{/4(71)) .

That is to say the first term in 75 is uniformly dominated by —0.5¢(r)log(¢)log"(n)a" A;a.
Combing this with (S.38), we know that the term sup,, (7 + 72) is dominated by the
quantity —0.5¢(z)log(q)log"(n)(inf v, Amin(Ax))||All. By Assumption 3, it follows that

inf yq1, Amin(Ax) = Op(1). Now the conclusion is proved.

S.4.5 Proof of (9)

Proof. We first decompose the bias as follows.

Ci(Br) — Eay log fi(y]Br, )

19



:£Z(Bk) - @(Bk)
+G(Br) — Lk (Br)
+ 0u(Br) — Eay) log fe(y| By, )
+ E(ay) 10g f1(Br, @) — Eay) log fi(y|Bk, x)
=Ty + Taiy + Taaiiy + Tiiv)- (5.40)
Note that both 7(;) and 7(;;;) appeared in Dy. Thus it remains to calculate the asymp-

totic bias terms 7(;) and 7).

For 7(;), performing a Taylor’s expansion of /; (,ék) around ,[;'k, we obtain that

B0 = 6B + (B — A" %5’“) LB i85, g (s.41)
~ (B0 + (B B0 g, a5 5 ko (%), (s

where B in (S.41) lies between 8 and 3, the equality (S.42) comes from (S.25) and Pro-
portion S.1.
From (S.27), (S.29), and Proportion S.1, it follows that

352@(5@ = 852@(5@ + Ae(Br — Br) + opi, (\/qjk)

~ (B~ B +ors, (| 2). (5.43)

where the last equality holds by noting that 8¢;(8)/93 = 0.

Combining (S.42), and (S.43), one can see that

Ty = (Br — Br)"Ar(Br. — Br)

1 (926*
5(@: — )" aﬁT(g[];) (Br — Br) + op|7, <Qk>
= %(ﬁk — B)"A(Br — Br) + op|F, (%) , (S.44)

where the second equality comes from Lemma S.2 that 9*¢; (Bk)/GﬁTa,B = —Ap+opr,(1).
For T, performing Taylor’s expansion of Eg ) (log fi(y| B, x)) around B, we obtain
that

Ew)(10g fi(y|Bk, ) =E(a,)(10g fi(yBr. ) + (B — Br) " Ew,y) (9 10g f1(y|Br, x) /9By
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0% log fi(y| B, )
0B, 0Bk

for some By, lies between By and By. Since |8k — Brpopll is Op((gx/n)"/?) under Assump-
tions 1-3, we can conclude that E, (9% log fk(y|,3k,:v)/8,3,366k) = 82€k(3k)/85T65 +
op(l) = —Ai + op(1). Combing this results with (S.45) yields

alogfk(y\Bk,m) Glogfk(y|3k,w)

+ %(Bk — B Au(Br — Br) + OP|F, <%> : (S.46)

+ 5B~ B B (B~ B, (5.45)

Tiiv) = Ezy) (log Fi(ylBr ) — ) = —(Br — Br)" Elay)

The proof finishes by combining 7, Ty, Tgisy and Ty

S.4.6 Proof of Theorem 1

Proof. First, we check the difference between £:(8y) and £x(B;). Let up = |8l Bs.

Simple calculation yields
10 (Br) — €:(Bx)|
Lo yuizn 1~ o
Ly S 1S e+
i=1 i i=1
Note that for any given uy,

E (yz Ukwm

rnw;

£ > Hoth) i) _ Zwﬁkmm

=1

< (18|

> Z yzukmkz

From Lemma 14.24 in Bithlmann and van de Geer (2011),
. 2
yz uk mk@
b e {Z ( nw; onr Zy@ukmk’) }

i=1
fn}
fn>

Fn

8log(2m) — |y "zl
Sr—zE sup ZW

8log(2m) lu"x;|? Ly
<= 7 E L
- ||i1ﬁ£1 1265 nm; E nm}

—0p (M) | it

r

21



where m is the number of models in the candidate set, and the last equality comes from
Assumptions 5 and 4.

Similarly, under Assumptions 1 and 5, one can see that

r ATw*‘ n R 2

E S%P:Q {Z (W - % Ziﬂ(ﬁgfﬂki)) } Fn
i=1 i i=1

_0 (10g(m):0gm(”)) 7

which implies sup 10:(By) — e(Br)| = Op|7. (log/2(m) log™?(n) /rV/2).
Second, we will measure the difference between £;(8y) and £;(B). Let ty = ||B) —

Brll " (Bx — Br). According to the mean value theorem, it holds that

[W(BExy,) — v(Brar)| = [0(Br )18k — Bell|af @il
< g%(x) 1Bk — Bl |,

under Assumptions 2 and 4. Therefore, it can be shown that

sup [6:(Br) — G(Br)]

1~ 1 (s . 1~ 1 /. ;
—sup|— > — (y;Br P — (BLF %>__§:_<%Tp * _(BTP ’.‘)
Sl;p nr £ 7_[_; (yz /6k kmz 77ZJ(/BI<: kmz) nr — 7_(; yz IBk sz w(IBk sz)
< i - i (| 2T % 2 A NTP ®\ ATP *
SUP o E = y; |zl 1Bk — Brll + [ (B Prx}) — ¥ (B Pruxy)|
i=1 %

T

1 1 ~ - ~ R
—oup 50 L (s B — Al + o(8e0) — (820

nr
k i=1

1 ) ’uTa:*P 1/2 | , y*2 r gl/3 * 1/2
< 3, — 3 PO D r i T
< (Sllip | Br. ﬁk”) (ﬁjﬁp r Z; nmt ) (7“ ; n7r;"> ( Z )

Under Assumptions 2 and 4, it can be shown Y., y?/(rnmf) = Opi£,(1), Yi_, gi/?’( 9/ (rnw}) =

Opy7,(1), and SUP||u||=1 Zi:l [uTf?/(rnmf) < SUD||y||=1 NAX1<i<n [uz;?/ (nm;) = Opy7,(log"(n))
hold. Additionally, Proportion 1 has shown that sup,, ||Bx—B|| = Opi7, ((q(z) log(q)log™(n) /r)/?).
Thus, it proved that

qry log(q) log™ n N \/log(m)log“(n)

T r

sup G:(Br) — fk(fék)‘ =Op7, \/
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Under Assumption 3, it is clear that sup, tr(Vj.A; ") = Op(qu)) and sup, rgr/n =
o(q(ry) under the assumption that limr/n — 0 and ¢, < g(r). Recall that 185 — Ba.pop|l =
Op(\/qs/n). Using similar techniques, it can be shown that |rlp(8s) — rl5(Bs.pop)| =

Op(\/qpr/n).

For any M, € U, it is clear to see that Bk is inconsistency to Bp pop. By Lemma S.4, it

is clear to see that sup,, rﬁk(Bk) = Supy rﬁfull(ﬁ(k)) < —2e%r+0p(, /G)T) + 1l (B(B,pop)) =
rl5(Bs pop) — 26 + Op(,/qz)T). Utilizing Theorem 3.3 in Xiong and Li (2008), it holds

)

:pr<ir]if —2rl3(Br) + 2tr (Vi oA + 2r— > —2r05(Bp) + 2tr(Vp Ag') + L

that

pr (Hlif AICsub(/\/lk) — AICSub(MB) >0

=pr H]%f —27’€Z<Bk) -+ 2T€k(/ék) — 2T€k(ék) + 27’63(,63@01)) + 2tr(Vk7CA,;1) + 27“%

> —2r05(Bs) + 2rlp(Bs) — 2rls(Bs) + 2rlp(Bp pop) + 2tr(Vi AZY) + 2#%3

)

QTEZ(B]C) — 2T€k(,ék)‘ + 2T€B(ﬂB,pop) — Sup QTEk(Bk) > —QTE*B(BB) + 27%3(,63)

)

=pr <OP|]-'n (\/TQ(L) log(q) 10?52'{(”)) +cr > Opir, (\/TC](L)) ‘Fn)

Zpr<SUP -
k

— 2Up(Bp) + 2rl5(Bppop) + 2tr(VeAG) + 2r L2

=pr (c +op|F, (1) > OP\Fn(l)‘]:n) — 1

where c is a strictly positive constant. O

S.4.7 Proof of Theorem 2

Proof. Let nf = (7)) (yBEyr — (B, x?)) to ease the presentation. Given F,, the n’s

2

are i.i.d. random variables for « = 1,...,r. Therefore,

. 1 —
(B n) —var [ =Sl E | =
var ( F (B 11)‘.7: var (nr izlnz F, ) 3 Zvar ni | F,

1 . 1. 1 )
—Evar (771|fn) = EE (7]12 fn) - E(E(Th )2

)

3, var (Th
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Note that

i <yiBfTuuwi - ¢(Bf€uwi>> - (yi:éguuwi - Qﬁ(Bmewi)) 2

W) =2 - - BOIA) =2 m w2

1=1 g

E (n}

Direct calculation yields that the asymptotic variance of f}‘uu(,éfuu) is

N 1 1
var (Gn(Baan)|Fa) = =B (11%[ F.) = ——(B(ni|7.)?
2 .
n (yZBfullwl - 77Z)(18fullmi)> 1 n <yi/6fTuumi - @/’(BfTuumiD

2—5 T — >
nr 2 n2r — e
1=

Z

2

n n 2
= nLQT z; % (yz‘,éfTullmz‘ - ¢(B£llmi)>2 - % (Z (yiBfTuumz‘ - 10(35111331))) (5.47)

Note that the second term on the right-hand-side of (S.47) does not depend on the sub-
sampling probabilities. Thus we only need to minimize the first term. From the Cauchy-

Schwarz inequality

=1

2
1 n ~ .
ZW (Z YiBranTi — ¥ (Bran®s) ) )

= (Z m) Z{ (Bt — 0Bt}

i=1

and the equality in it holds if and only if m; proportions to

‘yiBfTunwi - ¢(B§111$i)‘1(|yiﬁgmwi — (B i)| > 0).

Here we define 0/0 = 0 for convenience, and this is equivalent to removing data points with

lyiBin®i — Y(Bnxi)| = 0.

S.4.8 Proof of Theorem 3

Proof. Recall that

Z(‘*’) _% Z {yi (91' - Zka(Tk)wz> - <¢(9¢) — <Z wk,é(Tk)iI?z>) },
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and

L(w) = ; {yz (9 - Zwkﬁ(k ) - (W(@i) - (Z%ﬂ&;)%)) }

Let unit vector 1 = || Z;nzl Wklé(k) - ZZ’L wké(k)"_1<2$:1 Wk/é(k) - Z;cnzl WkB(’f)) We

have

DIDIELEED DD BEL )
i=1 k=1 =1
Ly, (z oy~ 3 wkﬁ“(k)> .
=1 k=1 k=1
_ Z Wk;,é(k) (% Z yiﬁTmi) (S.48)
k=1 =1

According to the mean value theorem and Assumption 2, simple calculation yields

Ly ( (zwkﬂ(k ) _y (zﬂ))\
=1 k=1
291/6 () Zwké(k) - Zwk,é(k;)
k=1 k=1

From Holder’s inequality, one can show that

n n o\NY2 /e g\ M2
n’lzyﬂfwi < (Z %) (Z I :z“ )

l|a" ;|- (S.49)

i=1 i=1
< i yiz v S Z ||’U, mZHQ O <1>
= u = .
S\ Hqul :

Under Assumption 2, n=' 32" g17%(z;) = Op(1), and SUD =1 7 iy [uTa]|* = Op(1).

From (S.48) and (S.49), we obtain that with probability approaching one,
sup |£(w) — L(w)]
weCm
<Op(1 Sug) Z wiB) — Z wiBk)
welm

<Op(1)sup 18y — Buw -
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Thus, we have

o | £ = £ _ 51, 1E(e) ~ £(w)
wECm L(w) B L(w)
stbcc, |£w) ~ L)l | S50
infuee,, £(w) ’
from Proposition 1. Also note that
£(@) = L(@) < 0p() || @By — Y By
k=1 k=1
< Op(1) Sup 18y — Buw - (S.51)

implies

— 1. (S5.52)

The result holds by Slusky’s theorem.

S.4.9 Proof of Theorem 4

Proof. From the proof of Theorem 1, for any My € U, as r — oo with r/n — 0, it follows

that

Cakcbgl = eXp(AICSUb(MB)/Q — AICSHb(Mk»)/2)

— exp ( — 10" (Bp) + 10 (By) + tr(Vi Ag") — tr(Vk,CA,;l))

= exp{—7r(c+op(1))} — 0 in probability, (S.53)
where c is a strictly positive constant. Therefore, @, — 0 in probability for any M, € U
since @y, satisfy the conditions that @, > 0 and > ;" , wr = 1. According to (S.53), it is
easy to see that W, = Opz,(€") for any model M, € U, where € is some generic constant

belonging to (0,1). We use k € U to denote M, € U for notation simplicity. Thus, under
Assumption 1, || 3, @k(Bw) — Bs)| = op|z, (1), from Proposition S.1.
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From Proposition S.1, we see that for any k& € U¢,

Z @k,é(k) - B(B)

keue

me
:()P( ﬂ))
n

since both B(B) and ,é(k) are consistency estimators of B(p)pop With rate no more than

~

~ N 2
18— B = —%H

keue keue

\/4(r)/n. Therefore, applying the Holder inequality, one can see that

~ A A meq(r)
< [S @t |3 18w - Bl = 0r ({72,

keuc keue

~

> wi(Bw — Bw)

keue

sup
w

Similarly, one can show that

A

Z k(B — Buw)

keue

~ > A meq(r)
< D@ D I1Bw — Bwl? =0, ( . > :

keuc keue

Thus, the results for the first two cases have been proven.

In addition, note that (|6 = BI| < || e @By — Byl + || Zerse @1 (B — Bem) |l +
| D kewe dzk(,é(k) - B(B))|\, where wy, is the full-data-based weights in S-AIC estimator.
Clearly the last two terms are Op(y/mgqr)y/n). The first term can also be bounded by the
fact || > ere @k (B — Buw)ll < supg 1Bw) — Bwll = Orix.(v/aw) log(g)log™(n)/r). We
know that under the assumption m.r/(nlog(q)log®(n)) — 0, the first term is the leading

order term. The proof finishes by noticing the fact that m./(nlog(q)log"(n)) — oc.

S.4.10 Proof of Lemma S.1

SMASS1n
7 =1

Proof of Lemma S.1. When the sampling probabilities {m;} ; are selected as {m
Assumptions 1-3, and 6 implies Assumptions 1-5. Thus, we will prove Lemma S.1 in a
more general case that Assumptions 1-5 hold with general sampling probabilities {m; } ;.

Without loss of generality, we assume that M, consists of the first ¢, covariates in
M. Now we begin to characterize the relationship between full model parameter esti-

mator (based on subsample) Bgn and restricted model parameter estimator (based on sub-

sample) By. Recall that B — By = Opy, (r~/?) for jth dimension (j = 1,...,¢q) from
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Proposition S.2. Based on Lemma S.2, (S.27), (S.28), and (S.29), expanding 9¢%,,(Bsa1) /08
around Bfu]] yields that

0 :ag;fku“(’é m) _ ag;ull(/éfull)
B 0B

where Opyz, (¢'/%/r) stands for a ¢ dimensional vector with each elements being Op|z, (¢'/?/r).

— Apat(Bran — Bran) + Opi7, (¢ /1),

Therefore, the first g, components in 86}‘]111(@1111) /0 satisfy,

agl)ckull,l (ﬁfull)
op

Similarly, we expand 0/} / 8ﬁ(ﬁk) with respect to Bx around the first g, components of

= Ap11(Bran — Bran) + Ar12(Branz — Branz) + Opiz,(¢"?/7), (5.54)

Bean, i.€., ,Bfuul. One can see that

00;(Br) _ 045 (Bran)
B B
where Aml(,éfum) has the same expression as A = A(Bk) except that By is replaced by
Bran.-
It is clear to see that the jth component of |8€}‘ull’1([§fuu)/8,6 — 00 (Brun1) /0B can be

bounded by

0=

- Ak,ll(Bfulll)(Bk - Bfulll) + OP|]-'n (q1/2/7“)7 (8'55>

00 (Brun) + 00 (Bram)
e e

J B J Bl
| b XT: yiwy — ¢(/3fu1133 )T} _ yiry; — V(Brn Th) Ty
nr4— (" ("

($(Bimei) — d(Bie)) a5

1
- n_; T

]

s ’“g“?’a:- L G bl
§||5(fu111)—ﬁfu11||< Z 2 > (ﬁZ#) , (S.56)

=1

for j = 1,...,qr, where ﬁ(fulll) is a g-dimensional vector with the first ¢, components
being B and rest being zero, and uy = ||B ) — BfuuH ( (fulily — Bran). Here the last
inequality comes from the mean value theorem under Assumption 2. By the facts that

Bz is a consistency estimator of zero with rate \/q/n and rlog®(n)/n — 0, (S.55) implies

805 11 (B . ;
— Rl 1V 11’5,(8 f 111) = Ak,n(,@fulu - ;Bfulll) +op|F, <\/g> . (S'57>

that
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Under Assumption 2, one can see that Ay = Ak711(/éfu1]1) + Op‘fn(\/q_k/r) according to
the mean value theorem. Combine (S.54) and (S.57), it is straight forward to see that

Bfulll - /ék = —Aﬁlz‘lk,w(éfuuz - Bfull2> + OP\fn(\/ /7). (S.58)

For M, € U°, we have ||B; — Bran || = Opy7,(\/q/1r) according to Proposition S.2. Let
Bk,res = (B,f, 0")" € R?. Now we expand K};(,@k’res) around B,

g;ull(/ék,r%‘) - EFull (Bfull)

5 5 % 2 5 5 2% ( B 5
:(ﬁk,res - IBqu)TM + %(ﬂk,res - ﬁfull)TM<ﬁk,res - ﬁfull)

+ OP|-7:n<”/ék’,res - Bfull”3)
13 = 0% (Bran) , - 3/2
25(5’%%8 - BfU11>T$(ﬂk,res — Bra) + Opi7, (%)
1, - = - . q3/2
= — 5(/8k,res - /Bfull) Afull(/Bk,res - ,Bfull) + Op|]:n (m) ) (S59>

where the second equality comes from the fact that 9¢*(Bgn) /08 = 0, and the last equality

comes from Lemma S.2.

Therefore, combining (S.58), and (S.59), it follows that

— 20 = =27 (£ (Brores) — Lo (Bran))

-1
A1 Akao _AkyuAk,w ~

:T(Bfum — /équZ)T <_AZ,12A]; " Iuk) (Brunz — /équQ)

+ Op|Fy (1)
:r(/équQ — Bfull2)TAk,22.1(Bfull2 — BfullZ) + op7, (1)
:T(Bfuuz - Bfu112)T/~1k,22.1(Bfu112 - Bfull?) + op|7, (1), (5.60)

where the last equality comes from the fact that M, consists of the first ¢, covariates in

M so that Ay 001 = Ak,22.1-

From Proposition S.2, it has been shown that /2" (B2 — Brunz) converges to a normal

distribution. Thus, the desired results follow by Cochran’s theorem.
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S.4.11 Proof of Theorem S.1

Proof of Theorem S.1. Note that when the sampling probabilities are selected as {7FMA551n_

Assumptions 1-3, and 6 implies Assumptions 1-5. Thus, we prove Theorem S.1 in a more
general case that Assumptions 1-5 hold with general sampling probabilities {m;}! ;.
Recall that P, is a permutation matrix subject to Bk = P/ B(k). Without loss of
generality, assume that the first gg entries belong to the predictors which are included in
Mp when My € U\ M.
From the proof of Theorem 4 and the fact that @, € [0,1] with ), w, = 1, it holds that

\/FUT(Z OBy — B
= Zwk\/_u )+Op|_7:n(1)

keue
= Y @eVru (B — Bwy) + opi7, (1)
keue
= o/ru'P (;ék - /ék) + op7, (1)
keue
OL: (3
= 3w prap P00 o)
B
keue
) - L% (B
= Z Opu' Py (P Amn Py ) 'P, (7"1/2$> + opi7,(1)
keue
= Z oxu" Pl (P Awa PO ' P&, + opy7, (1), (5.61)
keue

where the third last equality comes from (S.30), the second last from the facts 905 (3, )/93—
Pkaé’fkuu(,éfuu) /0B = op(1) by using the similar arguments as (S.56) and P, Agn Py = Ax +
op(1). Here &, denotes r/290*(Bgn) /0 for short.

From (S.60), we can see that after some permutation as mentioned in the front of

Lemma S.1 of the main text, it follows that

=2\ = 'r’(,émQ - BmZ)TAm 22.1(Bm2 - ém2) + 0P|J—‘"<1)
= T(Bm /Bfull)T o A 22.1P2m(/ém - Bfull) + OP\}'n(l)

= & A P Ar oo 1 P A + op|7, (1),
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which implies that wy is also a function of random vector &,.

For M, € U°, it follows that
wy = ‘bk‘:’f;lll/ Z ‘:’l‘:’f;u
= exp (/2 + tr(VineAnh) — tr(Vie A1)
/ { D exp (=A/2 4 tr(VineAg) — tr(VieAd ) + op,fnu)}
leue
= oxp (£ A PR Akona PaAihee/2 — tr(Vie AL )

/{ > oxp <€TTAEI%1P2T1AZ722.1leAf_uﬁSr/Q - tr(Vl’CAl_l)) }
leue

— exp (g Vo 2 A P A oo P Al Vi 26 /2 — (Vi Ay ))
/{ > exp (5V1/2AfuuP2TkAk 221 Pok Ap Vil 36/2 — tr (Vi AT )) }

— Gk/ S G (.62)

where £ ~ N (0, I,).
Combining (S.61), and (S.62), we obtain that

’ (Z kB — B(B))
k=1

Y O P (PeAwaPL) T P + opyey (1)

M eue
o3 (6 Sawrina e
keue leue

where the last equality comes from the proof of Lemma S.3.

As discussed in Theorem 4, B is a consistency estimator of ,B( p) with rate no more than
\/W. The desired result follows by Slutsky’s theorem.

For the special case that there is exactly one model in &€, (S.53) in the proof of Theo-
rem 4 together with the fact that @, > 0 and Y ;" , @, = 1 implies that the corresponding
weight on Mp goes to one in probability. Therefore, B has the same asymptotic distribu-

tion as the estimator under Mp. O
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S.5 Additional simulation results

S.5.1 Different parameter values of the logistic regression

In this subsection, we consider the different parameter values of the logistic regression. The
setups of the covariates and subsample size are the same as in Section 5.3. The following
two types of 3 are used in the logistic regression to generate the responses. For brevity, we

only present the results under Case 1 here.
Constant Parameter All the nonzero parameter in Section 5.3 are set to be 0.4.

Dense Parameter All the parameters are the same as in Section 5.3 and the full model
is the true model. To be precise, we set §; = 2/j for j =1,...,30.

The MAE under the two-parameter setups are displayed in Figures S.2 and S.3, respec-
tively. As expected, MASS based model averaging estimator achieves the smallest MAE

among all competitors for the constant parameter case.
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Figure S.2: A graph showing the log MAE with different subsample size r for constant
parameter values under Cases 1 and 2. We fixed the model candidate pool as described in
Scenario 1. The ry and p are fixed at 500 and 0.2, respectively.
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Figure S.3: A graph showing the log MAE with different subsample size r for the dense
parameter values under Case 1. We fixed the model candidate pool as described in Scenario
1. The ry and p are fixed at 500 and 0.2, respectively.

For the dense parameter cases, one can see that the model averaging approach has a
very similar performance compared with the full model approach since the true model is full
model itself. One can see that the full model approach and model averaging approach have
the same MAE when r = 2500 due to the selection consistency described in Theorem 1. In
case 2, one can see MASS outperforms OSMAC under the full model approach. We explain
the phenomenon as follows. Firstly, OSMAC does not aim to minimize the MAE thus it
may not necessarily yield an estimator with the smallest MAE. Secondly, the cubic term
has a relatively larger magnitude than the linear and quadratic term. Thus the OSMAC
may select the sample that can provide a better estimator for the cubic terms. However,

the coefficients for such parameters is very small which leads a limited improvement.

S.5.2 Heavy-tailed covariates of the logistic regression

In this subsection, we consider the scenario that the covariates come from heavy-tailed
distribution. More precisely, we consider the covariates generated from the following two
cases, and the candidate model is specified as in Scenario 1. Except for the setups of
covariates, all the settings are the same as in Section 5.3.

Case 1’ Heavy tailed covariates. To be precise, the covariate comes from a multivariate t-
distribution with 3 degrees of freedom, i.e., t3(0, I39). Here I; denotes a d dimensional
identity matrix.

Case 2’ Covariates come from different distributions and part of the preditors are heavy-
tailed. To be precise, the first 15 dimensions of the covariates come from N (0, I35),
and the rest 15 dimensions come from ¢3(0, I15).
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The empirical MSE and MSPE are displayed in Figures S.4. As expected, MASS has a

similar behavior as in Sections 5.3.
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Figure S.4: A graph showing the log MAE with different subsample size r. We fixed
model candidate pool as described in Scenario 1. The ry and p are fixed at 500 and 0.25,
respectively.

S.5.3 Imbalanced data of the logistic regression

In this subsection, we consider the scenario that the responses are moderately imbalanced.
More precisely, the covariates from a multivariate normal distribution with with mean 1
for all dimensions, i.e., N(1, I3). The true parameter of 3 is the same as in Section 5.3.
Consequently, around the 90% responses in the full dataset is 1 which is nine times of the
response 0.

As a reviewer points out the subsampling strategy needs to calculate an initial estimate
for the parameter 3. For imbalanced data and skewed data usually, this pilot estimate is
unstable. Thus it is interesting to investigate the sampling strategy for the pilot estimation.
As recommended in Wang et al. (2018), the case-control sampling is more suitable for the

imbalance data in obtaining a suitable pilot estimator. This is because the probability
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that the MLE exists based on case-control sampling is higher than that based on uniform
subsampling when the full data is very imbalanced. In the following, we study how the
different pilot estimators affect the MASS Algorithm in terms of MAE. To be precise,
we compare the pilot estimator :ém,O calculated based on the case-control sampling (CC)
with uniform sampling. The results are reported in Figure S.5. One can observe that
case-control subsampling indeed benefits the MASS under the imbalanced dataset. The
advantages are not that significant since the proposed method is not too sensitive to the
pilot estimation. As for the rare events data, we realize that the pilot estimator may not
exist based on the pilot sample obtained via uniform subsampling. In this case, we suggest
readers resort to the negative subsampling techniques (Wang et al., 2021). It is worth
mentioning the statistical behavior is quite different under the rare events (or extremely

imbalanced) scenario and beyond our scope. Thus we do not consider such setups here.

o- < UNIF @71 < UNIF
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r r
(a) Model averaging (b) Full model approach

Figure S.5: A graph showing the log MAE with different pilot estimators (obtained by
uniform subsampling and case-control subsampling) and subsample size r. The ry and p
are fixed at 500 and 0.2, respectively.

Armed with case-control sampling in the first stage (for both MASS and OSMAC), the
empirical MSE together with MSPE are displayed in Figures S.6. As expected, MASS has

a similar behavior as in Sections 5.3.
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Figure S.6: A graph showing the log MAE with different subsample size r for imbalance
data. We fixed the model candidate pool as described in Scenario 1. The ry and p are fixed
at 500 and 0.2, respectively.

S.5.4 Performance on other generalized linear models

In this section, we further evaluate MASS on other generalized linear models.

Probit regression. We perform simulation for the Probit regression that y;|x; comes
from Bernoulli distribution with pr(y; = 1|z;) = ®(x]3) where ®(-) is the standard nor-
mal’s cumulative distribution function. All the settings are the same as in Section 5.3 except
the candidate models are also replaced by Probit regressions. The results are summarized
in Figures S.7.

Poisson regression. We perform simulation for the Poisson regression that y;|x; comes
from Poisson distribution with (conditional) mean equals to exp(x}3). Here we also adopt
the same parameter setting as in Zheng et al. (2019) for Poisson regression with 3; = 0.4/
for 5 =1,...,6 and 0 for the rest. All the settings are the same as in Section 5.3 except

the value of 3. The results are summarized in Figures S.8.
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Figure S.7: A graph showing the log MAE with different subsample size r for different
distributions of covariates for the Probit regression. We fixed the model candidate pool as
described in Scenario 1. The 7y and p are fixed at 500 and 0.2, respectively.
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Figure S.8: A graph showing the log MAE with different subsample size r for different
distributions of covariates for the Poisson regression. We fixed the model candidate pool

as described in Scenario 1. The ry and p are fixed at 500 and 0.2, respectively.
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