
Fast Optimal Subsampling Probability Approximation for
Generalized Linear Models

JooChul Lee, Elizabeth D. Schifano, HaiYing Wang∗

Department of Statistics, University of Connecticut, Storrs, CT 06269, USA

Abstract

For massive data, subsampling techniques are popular to mitigate computational burden by re-
ducing the data size. In a subsampling approach, subsampling probabilities for each data point
are specified to obtain an informative sub-data, and then estimates based on the sub-data are
obtained to approximate estimates from the full data. Assigning subsampling probabilities based
on minimization of the asymptotic mean squared error of the estimator from a general subsample
(A-optimality criteria) is a popular approach, however, it is still computationally demanding to cal-
culate the probabilities under this setting. To efficiently approximate the A-optimal subsampling
probabilities for generalized linear models, randomized algorithms are proposed. To develop the
algorithms, the Johnson-Lindenstrauss Transform and Subsampled Randomized Hadamard Trans-
form are used. Additionally, optimal subsampling probabilities are derived for the Gaussian linear
model in the case where both the regression coefficients and dispersion parameter are of interest,
and algorithms are developed to approximate the optimal subsampling probabilities. Simulation
studies indicate that the estimators based on the developed algorithms have excellent performance
for statistical inference and have substantial savings in computing time compared to the direct
calculation of the A-optimal subsampling probabilities.

Keywords: Generalized linear models, Massive data, Optimal subsampling, Randomized
algorithm.

1. Introduction

Due to scientific and technological advances, large datasets are being collected across many
fields and require proper analysis. Applying conventional statistical methods to such big data can
strain both computer memory and computational efficiency, with even very simple tasks causing
inordinate computational burden. There are several statistical and computational approaches to
address this challenge: divide-and-conquer approach [e.g., 10, 5, 15], online updating approach [e.g.,
12, 13, 14, 20, 21, 9], and subsampling-based approach [e.g., 7, 11, 18, 1, 16, 17].

∗Corresponding author: Department of Statistics, University of Connecticut, 215 Glenbrook Road U4120, Storrs,
CT 06269, USA; Tel: 1.860.486.3414; Fax: 1.860.486.4113.

Email address: haiying.wang@uconn.edu (HaiYing Wang)
1Supplementary materials for this article are attached as annexes.
2Codes are available on GitHub, https://github.com/pedigree07/FASA.

Preprint submitted to Econometrics and Statistics February 12, 2021



The subsampling-based approach involves using sub-data which are drawn from the full data
to approximate results of interest from the full data. Clearly, using a subset of the full data can
lessen the computational burden by reducing the data size. The main issue of this approach is
how to specify subsampling probabilities to obtain informative data points. In the context of
the linear regression model, Drineas et al. [7] developed an algorithm to approximate the least
squares estimates by preprocessing a randomized Hadamard transform on the covariate matrix
and then sampling uniformly at random, and Ma et al. [11] used statistical leverage scores of the
covariate matrix to allocate the subsampling probabilities. For logistic regression, Wang et al.
[18] developed an optimal subsampling procedure. They derived an asymptotic distribution of the
general subsampling estimator and then obtained optimal subsampling probabilities based on an A-
or L-optimality criterion. The A-optimality criterion seeks to minimize the trace of the variance-
covariance matrix of the parameter estimator, and the L-optimality criterion seeks to minimize
the trace of the variance-covariance matrix based on some linear transformation of the parameter
estimator. Based on the optimal subsampling algorithm developed by Wang et al. [18], Ai et al.
[1] considered optimal subsampling for generalized linear models (GLMs) and Wang and Ma [17]
investigated optimal subsampling for quantile regression.

In this paper, we propose algorithms to approximate the optimal subsampling probabilities
under GLMs. Computing time for subsampling probabilities obtained from the A-optimality cri-
terion is O(Np2) where N and p are the full data size and the number of covariates, respectively.
Thus, efficient algorithms for approximating subsampling probabilities are developed to reduce the
computing time. We use a Johnson-Lindenstrauss Transform (JLT) and a Subsampled Random-
ized Hadamard Transform (SRHT) which are techniques to downsize matrix volume. Furthermore,
we derive A-optimal subsampling probabilities for the Gaussian linear model when the dispersion
parameter is also of interest. The asymptotic distribution of the subsampling estimators is estab-
lished, and optimal subsampling probabilities are obtained using this asymptotic distribution. We
also suggest randomized algorithms to approximate these subsampling probabilities.

The rest of this paper is organized as follows. In Section 2, we explain the optimal subsampling
probabilities based on the A-optimality criterion for GLMs, and propose the optimal subsampling
probabilities for the Gaussian linear model considering the coefficients and dispersion parameter
together. In Section 3, we develop algorithms to approximate optimal subsampling probabilities
using a JLT and SRHT. Simulation studies and two real data analyses are provided in Section 4
to demonstrate the empirical performance and applicability of our algorithms. Section 5 concludes
the paper and technical proofs for theoretical results are provided in Supplementary materials.

2. Models and Optimal Subsampling Probabilities

In this section, we review optimal subsampling probabilities developed for approximating the
maximum likelihood estimator (MLE) of regression coefficients from the full data under GLMs,
and derive optimal subsampling probabilities for the Gaussian linear model when the dispersion
parameter is additionally of interest. In the following presentation, denote the full data as DN =
{(xi, yi) : i = 1, ..., N} from a model where xi is a p dimensional vector of covariates whose first
element is one corresponding to an intercept term, and yi is the response for the ith observation. Let
π1, ..., πN be subsampling probabilities assigned to all observations such that

∑N
i=1 πi = 1. Using

subsampling with replacement, a random subsample of size n is drawn based on the subsampling
probabilities {πi}Ni=1 from the full data. Denote x∗i , y

∗
i and π∗i for i = 1, ..., n as covariates, responses,

and subsampling probabilities in the subsample, respectively.

2



2.1. Optimal Subsampling probability with known dispersion parameter in generalized linear models

Suppose that y comes from a distribution with the following mass or density function in the
subclass of the general exponential family,

f(y|θ, φ) = g(y)exp

(
yθ − b(θ)
a(φ)

+ c(y, φ)

)
, (1)

where θ is a natural parameter and φ(> 0) is a dispersion parameter.
Let y be the response variable and x be the p dimensional covariate. Considering θ as a function

of the linear predictor, θ = u(βTx), and assuming that the dispersion parameter, φ, is known, Ai
et al. [1] studied optimal subsampling under the following generalized linear regression model,

f(y|β,x) = h(y)exp[yu(βTx)− ψ{u(βTx)}], (2)

where β is a p×1 vector of unknown regression coefficients including the intercept. For GLMs, they
derived asymptotic distributions of the subsampling-based estimator, and then developed optimal
subsampling strategies based on A- and L-optimality criteria. For completeness, we now briefly
review the subsampling probabilities based on the A-optimality criterion for GLMs.

Suppose the full data DN is from the model (2). The subsample estimator β̃G is obtained by
maximizing the following weighted objective function,

l∗(β) =
1

n

n∑
i=1

1

π∗i
[y∗i u(βTx∗i )− ψ{u(βTx∗i )}]. (3)

Let ψ̇(t) and u̇(t) be the first derivatives of ψ(t) and u(t), and ψ̈(t) and ü(t) be the second derivatives

of ψ(t) and u(t), respectively. Let β̂G be the MLE of β based on the full data under model (2).

Given the full data,
√
n(β̃G − β̂G) converges in distribution to a normal distribution with mean 0

and variance-covariance matrix VG = M−1
G Vc

GM−1
G , where

Vc
G =

1

N2

N∑
i=1

wcixix
T
i

πi
,MG =

1

N

N∑
i=1

wixix
T
i , w

c
i = [yi − ψ̇{u(β̂T

Gxi)}]2u̇(β̂T
Gxi),

and wi = ü(β̂T
Gxi)[ψ̇{u(β̂T

Gxi)}−yi]+ψ̈{u(β̂T
Gxi)}u̇2(β̂T

Gxi). To determine the optimal subsampling
probabilities based on the A-optimality criterion, Ai et al. [1] minimized the asymptotic mean
squared error (MSE) of β̃G, which is the same idea proposed in Wang et al. [18]. The resulting
subsampling probabilities are

πGi =
|yi − ψ̇{u(β̂T

Gxi)}|‖M−1
G u̇2(β̂T

Gxi)xi‖∑N
j=1 |yj − ψ̇{u(β̂T

Gxj)}|‖M−1
G u̇(β̂T

Gxj)xj‖
, i = 1, ..., N. (4)

2.2. Optimal subsampling probability in Gaussian linear model

In this subsection, we derive the optimal subsampling probabilities based on A-optimality in
the Gaussian linear model when φ is also a parameter of interest. To describe the Gaussian model
from (1), we assume that y follows a normal distribution with mean µ and variance σ2, and the

3



canonical link function (identity link) is used, namely, µ = βTx. The conditional distribution of y
given x is

f(y|x,β, σ) = exp

{
yβTx− (βTx)2/2

σ2
−
(
y2

σ2
+

log 2πσ2

2

)}
. (5)

Suppose the full data DN is from the model (5). Then, the subsample estimators, (β̃T
L , σ̃L)T, are

obtained by maximizing the weighted objective function,

l∗L(β, σ) =
1

n

n∑
i=1

1

π∗i

(
y∗i β

Tx∗i − (βTx∗i )
2/2

σ2
−
(

(y∗i )2

σ2
+

log 2πσ2

2

))
. (6)

To establish the asymptotic properties of the subsample estimator, we need the following as-
sumptions.

Assumption 1. N−2
N∑
i=1

π−1i ‖xi‖
4 = OP (1) and N−2

N∑
i=1

π−1i e4i = OP (1) where ei = yi − β̂T
Lxi

and β̂L is the MLE of β based on the full data under model (5).

Assumption 2. N−(2+δ)
N∑
i=1

π
−(1+δ)
i ‖xi‖2(2+δ) = OP (1) and N−(2+δ)

N∑
i=1

π
−(1+δ)
i |ei|2(2+δ) = OP (1)

for some δ > 0.
Assumption 1 is a condition on subsampling probabilities and the covariate distribution. It

essentially imposes some moment constraints. For example, with equal sampling probabilities πi =
1/N , Assumption 1 holds if E(x4

i ) <∞ and E(|yi|4) <∞. Assumption 2 is for the Lindeberg-Feller

Central Limit Theorem, and a sufficient condition is that E
(
x
2(2+δ)
i

)
<∞ and E(|yi|2(2+δ)) <∞

for equal sampling probabilities πi = 1/N .

Theorem 1. Under Assumptions 1 and 2, conditional on the full data DN in probability,(
β̃L − β̂L
σ̃L − σ̂L

)
−→ N(0,V), (7)

in distribution as n,N →∞, where σ̂L is the MLE for σ based on the full data under model (5), V =

M−1VcM−1, M =


N∑
i=1

xix
T
i

N
0

0 2σ̂L

 and Vc =
1

nN2

N∑
i=1

1

πi

[
e2ixix

T
i (e2i − σ̂L)eixi

(e2i − σ̂L)eix
T
i (e2i − σ̂2

L)2

]
.

In the following Theorem 2, the subsampling probabilities based on A-optimality criterion are
obtained by minimizing the trace of V.

Theorem 2. The A-optimal subsampling probabilities that minimize the asymptotic mean squared
error of (β̃T

L , σ̃
T
L)T are

πLi =

√
e2i ‖M

−1
L xi‖2 + (e2i − σ̂2

L)2/(4N2σ̂2
L)∑N

j=1

√
e2j‖M

−1
L xj‖2 + (e2j − σ̂2

L)2/(4N2σ̂2
L)

i = 1, ..., N, (8)

where ML = XTX and X = [x1, ...,xN ]T.

4



3. Fast Approximation of Subsampling Probability

To compute the optimal subsampling probabilities in (4) and (8), O(Np2) time is needed because

of ‖M−1
G u̇(β̂T

Gxi)xi‖ in (4) and ‖M−1
L xi‖ in (8) for i = 1, ..., N . Thus, randomized algorithms to ap-

proximate them are proposed for saving the computing time by using a Fast Johnson-Lindenstrauss
Transform (FJLT), and a Johnson-Lindenstrauss Transform (JLT). We call them fast A-optimal
subsampling probability approximation (FASA) algorithms. To construct a FJLT with high proba-
bility for any vector z ∈ RN , we can use a Subsampled Randomized Hadamard Transform (SRHT),
T1 = 1√

r1
SHD, where S is a r1 ×N linear sampling operator, H is the N ×N Hadamard trans-

form and D is a N ×N diagonal matrix whose diagonal entries are +1 or -1 with probability 1/2
respectively, [e.g., 7]. The time complexity for performing T1z is O(N log r1) [e.g., 3]. To construct
a JLT with high probability for any vector z∗ ∈ Rp, we can use an r2 × p matrix, denoted by T2,
in which every entry is independently equal to ±

√
3/r2 with probability 1/6 each and zero with

probability 2/3 [e.g., 2]. Then, T2z
∗ is performed in O(r2p) time.

3.1. Subsampling probability approximation in generalized linear models

In this subsection, we approximate the subsampling probabilities in (4). Write MG = XTWX

where W = diag(w1, ..., wN ), and U = diag[u̇(β̂T
Gx1), ..., u̇(β̂T

GxN )]. Then, ‖M−1
G u̇(β̂T

Gxi)xi‖ is
expressed as ‖(M−1

G XTU)(i)‖ where (M−1
G XTU)(i) is the ith column of M−1

G XTU . We focus on

approximating ‖(M−1
G XTU)(i)‖ for i = 1, 2, ..., N . Using the SRHT, we first approximate MG as

M̃G = (T1W
1/2X)TT1W

1/2X, (9)

where W1/2 = diag(
√
w1, ...,

√
wN ). Since we consider the case where N is much larger than r1

and p, computing M̃G takes O(Np log r1) time. However, we still need O(Np2) time for M̃−1
G XTU .

Thus, we further consider a JLT for M̃−1
G to reduce the computational burden. Based on the JLT

for M̃−1
G , say T2M̃

−1
G , we can use (T2M̃

−1
G )XTU instead of M−1

G XTU . Then, ‖(M−1
G XTU)(i)‖ can

be approximated as

‖(T2M̃
−1
G XTU)(i)‖, i = 1, ..., N. (10)

This operation of (T2M̃
−1
G )XTU can be performed in O(Npr2) time.

Since W and U depend on β̂G, a pilot sample can be considered to obtain an estimator to
replace β̂G. Let β̆G be the estimate for β in the model (2) based on the pilot sample. Then, the

optimal subsampling probabilities can be approximated by using β̆G instead of β̂G in W and U .
The details of this projection based FASA algorithm for (4) are presented in Algorithm 1.

To construct the SRHT for any vector z ∈ RN , however, the size N needs to be a power of
2 which may not be the case in practice. Thus, we propose a more practical FASA algorithm
using a random sampling matrix and the JLT. Let R be a r3 ×N random sampling matrix whose

rows are chosen randomly from the rows of the N ×N identity matrix. We first construct M̂G =

(RW1/2X)TRW1/2X and then perform the JLT for M̂−1
G , T2M̂

−1
G . After that, we replace T2M̃

−1
G

by T2M̂
−1
G in (10). Then, the subsampling probabilities in (4) can be approximated based on

(T2M̂
−1
G )XTU . It is also conducted in O(Npr2) time. In the same manner as Algorithm 1, we

use β̆G to replace β̂G in W and U . The details of the practical sampling based FASA for (4) are
summarized in Algorithm 2.

5



Algorithm 1 Random projection based FASA for (4)

1. Construct M̆G1
= (T1W̆

1/2X)TT1W̆
1/2X, where T1 is a SRHT of W̆1/2X, W̆ =

diag(w̆1, ..., w̆N ) and w̆i = ü(β̆T
Gxi)[ψ̇{u(β̆T

Gxi)}− yi] + ψ̈{u(β̆T
Gxi)}u̇2(β̆T

Gxi) for i = 1, ..., N .

2. Let T2 be a JLT for M̆−1
G1

. After performing T2M̆
−1
G1

, construct (T2M̆
−1
G1

)XTŬ , where Ŭ =

diag[u̇(β̆T
Gx1), ..., u̇(β̆T

GxN )].

3. Replacing ‖M−1
G u̇(β̂T

Gxi)xi‖ by ‖(T2M̆
−1
G1

XTŬ)(i)‖ in (4), approximate the optimal subsam-
pling probabilities as

π̆G1
i =

|yi − ψ̇{u(β̆T
Gxi)}|‖(T2M̆

−1
G1

XTŬ)(i)‖∑N
j=1 |yj − ψ̇{u(β̆T

Gxj)}|‖(T2M̆
−1
G1

XTŬ)(j)‖
, i = 1, ..., N,

where (T2M̆
−1
G1

XTŬ)(i) is the ith column of T2M̆
−1
G1

XTŬ .

Algorithm 2 Random sampling based FASA for (4)

Let R be a r3 ×N random sampling matrix.

1. Construct M̆G2
= (RW̆1/2X)TRW̆1/2X.

2. Let T2 be a JLT for M̆−1
G2

. After performing T2M̆
−1
G2

, construct (T2M̆
−1
G2

)XTŬ .

3. Replacing ‖M−1
G u̇(β̂T

Gxi)xi‖ by ‖(T2M̆
−1
G2

XTŬ)(i)‖ in (4), approximate the optimal subsam-
pling probabilities as

π̆G2
i =

|yi − ψ̇{u(β̆T
Gxi)}|‖(T2M̆

−1
G2

XTŬ)(i)‖∑N
j=1 |yj − ψ̇{u(β̆T

Gxj)}|‖(T2M̆
−1
G2

XTŬ)(j)‖
, i = 1, ..., N,

where (T2M̆
−1
G2

XTŬ)(i) is the ith column of T2M̆
−1
G2

XTŬ .

6



We establish the following theoretical result to examine the effect of subsample sizes on approx-
imation accuracy of the subsampling probability. Let σmin(A) and σmax(A) be the largest and
smallest non-zero singular values of a matrix A.

Theorem 3. Assume that ν1 ∈ (0, 1/3), σmin

(
M̂G

)
≥ γσmin (MG) for some γ ∈ (0, 1]. If

r2 ≥
12 log n− 6 log ν1

ε21
for ε1 ∈ (0, 1/2], with probability at least 1− (ν1 + ν2)− ν1 ∗ ν2, we have

‖(M−1
G XTU)(i) − (T2M̂

−1
G XTU)(i)‖ ≤

‖(XTU)(i)‖
γσmin (MG)

(
σ2
max

(
W1/2X

)
σmin (MG)

4p2
√

log 1/ν2
α
√
r3

+ (1 + ε1)
√
p

)
.

Theorem 3 indicates that the approximation accuracy of FASA.RS-πG is improved as r2 and r3
are larger. However, this comes at the expense of longer computational time.

3.2. Subsampling probability approximation for Gaussian linear model
In this subsection, we develop specific FASA algorithms for the optimal subsampling probabili-

ties in (8). We can apply Algorithm 1 and Algorithm 2 to approximate the subsampling probabilities

by letting W̆ = Ŭ = I, where I is the identity matrix.
Since {ei}Ni=1 and σ̂2

L in (8) depend on β̂L, we use a pilot sample to obtain an estimate to replace

β̂L. Let β̆L be the estimate based on the pilot sample. Based on β̆L, we calculate residuals and
mean squared error, denoted as {ĕi}Ni=1 and σ̆2

L, where ĕi = yi− β̆T
Lxi and σ̆2

L =
∑N
i=1 ĕ

2
i /N . Then,

we replace {ei}Ni=1 and σ̂2
L by {ĕi}Ni=1 and σ̆2

L, respectively. The detailed procedures are given in
Algorithms 3 and 4.

Algorithm 3 Random projection based FASA for (8)

1. Construct M̃L = (T1X)TT1X where T1 is a SRHT of X.

2. Let T2 be a JLT for M̃−1
L . After performing T2M̃

−1
L , construct (T2M̃

−1
L )XT.

3. Replacing ‖M−1
L xi‖ by ‖(T2M̃

−1
L XT)(i)‖ in (8), approximate the optimal subsampling prob-

abilities as

π̆L1
i =

√
ĕ2i ‖(T2M̃

−1
L XT)(i)‖2 + (ĕ2i − σ̆2

L)2/(4n2σ̆2
L)∑N

j=1

√
ĕ2j‖(T2M̃

−1
L XT)(j)‖2 + (ĕ2j − σ̆2

L)2/(4n2σ̆2
L)

i = 1, ..., N,

where (T2M̃
−1
L XT)(i) is the ith column of T2M̃

−1
L XT.

Remark 1. In T1 and T2, r1 and r2 should be appropriately specified for efficient computing time.

The formulas r1 = Ω

(
p logN

ε2
log

(
p logN

ε2

))
and r2 = O

(
logN

ε2

)
suggested by [6] can guide

the choices for r1 and r2 to generate a JLT and a FJLT respectively, for ε ∈ (0, 1/2]. Based on

simulation results in Appendix E.2, we prefer that as a general rule,
p logN

10
log (p logN) ≤ r1, r3 ≤

p(logN) log (p logN) and 2 log p ≤ r2 < p in practice.

7



Algorithm 4 Random sampling based FASA for (8)

Let R be r3 × n a random sampling matrix.

1. Construct M̂L = (RX)TRX.

2. Let T2 be a JLT for M̂−1
L . After performing T2M̂

−1
L , construct (T2M̂

−1
L )XT.

3. Replacing ‖(XTX)−1xi‖ by ‖(T2M̂
−1
L XT)(i)‖ in (8), approximate the optimal subsampling

probabilities as

π̆L2
i =

√
ĕ2i ‖(T2M̂

−1
L XT)(i)‖2 + (ĕ2i − σ̆2

L)2/(4n2σ̆2
L)∑N

j=1

√
ĕ2j‖(T2M̂

−1
L XT)(j)‖2 + (e2j − σ̆2

L)2/(4n2σ̆2
L)

i = 1, ..., N,

where (T2M̂
−1
L XT)(i) is the ith column of T2M̂

−1
L XT.

4. Numerical examples

In this section, numerical experiments are conducted in linear regression and logistic regression
to evaluate the performance of our proposed methods. Using the FASA algorithms, we approximate
the optimal subsampling probabilities and then calculate estimates from the subsample which is
taken based on the approximated subsampling probabilities.

4.1. Simulation studies

4.1.1. Linear Regression

We generated full data with size N = 217 according to the following model,

yi = xT
i β + εi i = 1, . . . , N,

where εi’s are independent error terms and follow a normal distribution with mean zero and variance
σ2 = 9, and β = (β0, β1, ..., β29) is a 30 dimensional vector including the intercept, β0. Distributions
of the covariates are considered in the following four scenarios.

Case 1. Covariates follow a multivariate normal distribution with mean 0 and variance-covariance
matrix Σ, N(0,Σ), where Σjk = 0.5I(j 6=k) for j, k = 1, . . . , 29 and I() is the indicator function.
The true values of coefficients are β = (1, 0.25, 0.3, 0.35, 0, ..., 0)T.

Case 2. This case is the same as the first case except that Σjk = 0.8I(j 6=k). The true coefficients
are β = (1, 0.4, 0.5, 0.6, 0, ..., 0)T.

Case 3. Covariates follow a multivariate t distribution with degree of freedom 2, t2(0,Σ) where
Σjk = 0.5I(j 6=k) for j, k = 1, . . . , 29. The true coefficients are β = (1, 0.07, 0.10, 0.13, 0, ..., 0)T.

Case 4. This case is the same as the third case except that Σjk = 0.8I(j 6=k). The true coefficients
are β = (1, 0.12, 0.15, 0.18, 0, ..., 0)T.

8



The different nonzero coefficients in each case are considered to examine empirical power between
roughly 0.3 and 1. Based on B = 1000 subsamples from the full data, we calculate the empirical
mean squared errors of the resultant estimator using MSE =

∑B
b=1 ‖θ̃(b) − θ̂MLE‖2/B where θ̃(b)

and θ̂MLE are the estimates of θ = (β, σ) obtained from the bth subsample and the full data,
respectively. To explore the performance for statistical tests (H0 : βj = 0 vs. HA : βj 6= 0), we
calculate the empirical type I error for β4 and power for β1, β2 and β3.

We consider different subsampling probabilities to compare the performance: subsampling prob-
abilities based on Algorithm 3 and Algorithm 4 (FASA.RP-πL and FASA.RS-πL, respectively), A-
optimal subsampling probabilities based on (8) (ASP-πL), and uniform subsampling probabilities
(UNIF). We also present the results using subsampling probabilities obtained from Algorithm 5
in Appendix D (FASA.SVD-πL). This algorithm is developed based on the ideas suggested in [7].

For FASA.RP-πL, FASA.RS-πL, FASA.SVD-πL and ASP-πL, a uniform pilot sample of size n0
is taken to obtain estimates β̆L and σ̆2

L for calculating the optimal subsampling probabilities. Then,
a subsample of size n is taken based on the calculated subsampling probabilities, and combined with
the pilot sample to estimate the coefficients. For UNIF, we use the total subsample sizes n0 + n.

We set n0 = 400, n = 400, 600, 800, 1000. Also, we choose r1 = 1000 and r2 = 10, and M̂L in
Algorithm 4 is performed using the pilot sample without an additional sample.

The results for MSE are in Figure 1. For all cases, the MSEs for FASA.RP-πL, FASA.RS-πL,
FASA.SVD-πL and ASP-πL are smaller than that of UNIF, and the MSE for FASA.RP-πL is close
to that for ASP-πL method. In Case 1 and 2, the performance of FASA.RP-πL and FASA.RS-πL are
similar, but better than FASA.SVD-πL. When the covariates follow t2 distribution, FASA.RP-πL

results in smaller MSE than FASA.RS-πL and FASA.SVD-πL. Also, we have additional simula-
tion results to compare the performance in terms of MSEs between the A-optimal subsampling
probabilities in (4) and (8) using Algorithms 3, 4 and 5. Detailed results are in Appendix E.1.

Figure 2 and 3 show the results from statistical testing. The empirical type I errors from all
methods and cases are close to the nominal value of 0.05. Generally, the empirical power for
β1, β2 and β3 based on ASP-πL, FASA.RP-πL, FASA.RS-πL and FASA.SVD-πL are larger than
that based on UNIF. Also, we observe that the power from FASA.RP-πL and FASA.RS-πL are
comparable with that of ASP-πL in most cases. When the covariates are highly correlated (Case
2 and 4), FASA.RP-πL and FASA.RS-πL outperform FASA.SVD-πL. Additionally, we investigate
the performance of the suggested methods for different pilot sample sizes, r1, r2 and r3 in Appendix
E.2. As expected, MSEs for the suggested algorithms decrease as n0 increases, and they result in
smaller MSE and longer computing time as r1 and r2 increase.

To evaluate the performance of computational efficiency for the algorithms, we report the CPU
time (in seconds) for the different methods using data from Case 1. The R programming language
(R Core Team, 2015) is used, along with the Rcpp package to interface with C++ for the SRHT
in FASA.RP-πL and FASA.SVD-πL. All computations are carried out on a MacBook Pro with 2.5
GHz Intel Core i7 processor and 16 GB memory. Table 1 shows the results including the computing
time for using the full data. We observe that FASA.RP-πL, FASA.RS-πL and FASA.SVD-πL

require less computing time than ASP-πL because FASA algorithms save the computing time by
approximating the optimal subsampling probabilities. As expected, the computing time for UNIF
is the least since the additional step for calculating the subsampling probabilities is not required.
FASA.RS-πL, which does not perform the SRHT, takes less computing time than FASA.RP-πL

and FASA.SVD-πL. ASP requires more computing time than using the full data. This is because
the extra computing time to calculate the A-optimal subsampling probabilities is O(Np2), which
is the same as that for computing the MLE based on full data in the linear model.

9



−
1.

2
−

0.
8

−
0.

4

Case 1

n

lo
g(

M
S

E
)

400 600 800 1000

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

ASP−πL

UNIF

−
0.

4
0.

0
0.

2
0.

4
0.

6

Case 2

n

lo
g(

M
S

E
)

400 600 800 1000

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5

Case 3

n

lo
g(

M
S

E
)

400 600 800 1000

−
2.

5
−

2.
0

−
1.

5
−

1.
0

Case 4

n

lo
g(

M
S

E
)

400 600 800 1000

Figure 1: Logarithm of MSEs for varied subsample size n at a fixed n0 = 400 in the linear model setting. FASA3,
FASA.RS-πL, and FASA.SVD-πL use fast A-optimal subsampling probability approximation based on the Algo-
rithm 3, Algorithm 4 and Algorithm 5, respectively, ASP-πL uses A-optimal subsampling probabilities based on (8),
and UNIF uses uniform subsampling probabilities.

10



0.
00

0.
10

0.
20

0.
30

Type I Error
P

ro
ba

bi
lit

y 
of

 r
ej

ec
tin

g 
H

0

400 600 800 1000

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

ASP−πL

UNIF

β1=0.25

0.
30

0.
40

0.
50

0.
60

400 600 800 1000

β2=0.3

n

0.
5

0.
6

0.
7

0.
8

0.
9

400 600 800 1000

β3=0.35

n

0.
5

0.
6

0.
7

0.
8

0.
9

400 600 800 1000

(a) Case 1

0.
00

0.
10

0.
20

0.
30

Type I Error

P
ro

ba
bi

lit
y 

of
 r

ej
ec

tin
g 

H
0

400 600 800 1000

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

ASP−πL

UNIF

β1=0.4

0.
30

0.
40

0.
50

0.
60

400 600 800 1000

β2=0.5

n

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

400 600 800 1000

β3=0.6

n

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

400 600 800 1000

(b) Case 2

Figure 2: Empirical type I error and power in Cases 1 and 2 for different subsample size n at a fixed n0 = 400 in
linear model setting.

11



0.
00

0.
10

0.
20

0.
30

Type I Error
P

ro
ba

bi
lit

y 
of

 r
ej

ec
tin

g 
H

0

400 600 800 1000

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

ASP−πL

UNIF

β1=0.07

0.
2

0.
4

0.
6

400 600 800 1000

β2=0.1

n

0.
4

0.
6

0.
8

1.
0

400 600 800 1000

β3=0.13

n

0.
4

0.
6

0.
8

1.
0

400 600 800 1000

(a) Case 3

0.
00

0.
10

0.
20

0.
30

Type I Error

P
ro

ba
bi

lit
y 

of
 r

ej
ec

tin
g 

H
0

400 600 800 1000

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

ASP−πL

UNIF

β1=0.12

0.
2

0.
4

0.
6

0.
8

400 600 800 1000

β2=0.15

n

0.
4

0.
6

0.
8

1.
0

400 600 800 1000

β3=0.18

n

0.
3

0.
5

0.
7

0.
9

400 600 800 1000

(b) Case 4

Figure 3: Empirical type I error and power in Cases 3 and 4 for varied subsample size n at fixed n0 = 400 in the
linear model setting.

12



Table 1: Average of CPU time (in seconds) in linear model using data from Case 1 with different subsample size n
at a fixed n0 = 400. The average of CPU time (in seconds) for the full data is provided in the last row. Repetition
is 1000.

n
400 600 800 1000

FASA.RP-πL 0.2007 0.2011 0.2013 0.2021
FASA.RS-πL 0.0533 0.0535 0.0539 0.0546

FASA.SVD-πL 0.1944 0.1958 0.1960 0.1962
ASP-πL 0.3939 0.3944 0.3945 0.3950

UNI 0.0020 0.0024 0.0028 0.0034
FULL data CPU seconds : 0.3394

Table 2: Average of CPU time (in seconds) in linear model using data from Case 1 with different full data size N
and number of covariates p at fixed n = 2000 and n0 = 1000. The average of CPU time (in seconds) for the full data
is provided in the last row. Repetition is 300.

N = 217 N = 220

p = 50 p = 80 p = 150 p = 50 p = 80 p = 150
FASA.RP-πL 0.3518 0.5946 1.2743 3.6518 5.8931 13.0123
FASA.RS-πL 0.0975 0.1722 0.4051 0.8381 1.1997 2.3502

FASA.SVD-πL 0.3388 0.5711 1.3163 3.6618 5.9331 13.2159
ASP-πL 0.9546 2.2112 7.2071 9.0927 19.0304 60.3314
UNIF 0.0147 0.0312 0.0995 0.0159 0.0325 0.1040
FULL 0.8984 2.1314 6.9981 8.5794 18.4633 59.2473

To further explore the computational efficiency for more massive data, we consider p = 50, 80, 150
and N = 217, 220. We use data from Case 1 and set n0 = 1000 and n = 2000 to record the computing
time for 300 repetitions. Table 2 presents the results. As N and p increases, the computing based
on the FASA algorithms becomes more efficient, compared to ASP-πL and the full data approaches.
Table A.1 in Appendix E.3 provides the results of the MSE, empirical type I error and power. The
MSEs for FASA.RP-πL and FASA.RS-πL are closer to that for ASP-πL than FASA.SVD-πL in all
cases. Overall, all methods show similar results for empirical type I error and power for β1, β2 and
β3.

4.1.2. Logistic Regression

In this section, a simulation study for logistic regression is performed. A full data with size
N = 217 is generated from the model yi ∼ Bernoulli(θi) with logit(θi) = xT

i β. We consider
four cases for distributions of the covariates that are the same as the cases in the linear regres-
sion example, but we use different true values of coefficients: β = (1, 0.2, 0.25, 0.3, 0, ..., 0)T for
Case 1, β = (1, 0.3, 0.35, 0.4, 0, ..., 0)T for Case 2, β = (1, 0.08, 0.10, 0.12, 0, ..., 0)T for Case 3, and
β = (1, 0.18, 0.20, 0.22, 0, ..., 0)T for Case 4. We set the different nonzero coefficients to investigate
empirical power between roughly 0.3 and 1. The B = 1000 subsamples from the full data are used
to calculate MSE =

∑B
b=1 ‖β̃(b) − β̂MLE‖2/B where β̃(b) is the estimate from the bth subsample

and β̂MLE is the MLE based on the full data, and the empirical type I error for β4 and power for

13



−
1.

6
−

1.
4

−
1.

2
−

1.
0

−
0.

8

Case 1

n

lo
g(

M
S

E
)

400 600 800 1000

FASA.RP−πG

FASA.RS−πG

ASP−πG

UNIF

−
0.

6
−

0.
2

0.
0

0.
2

Case 2

n

lo
g(

M
S

E
)

400 600 800 1000

−
3.

0
−

2.
5

−
2.

0

Case 3

n

lo
g(

M
S

E
)

400 600 800 1000

−
2.

2
−

1.
8

−
1.

4
−

1.
0

Case 4

n

lo
g(

M
S

E
)

400 600 800 1000

Figure 4: Logarithm of MSEs for varied subsample size n at a fixed n0 = 400 in the logistic model setting. FASA.RP-
πG and FASA.RS-πG use fast A-optimal subsampling probability approximation based on Algorithm 1 and Algo-
rithm 2, respectively, ASP-πG uses subsampling probabilities based on (4), and UNIF uses uniform subsampling
probabilities.

14



0.
00

0.
10

0.
20

0.
30

Type I Error
P

ro
ba

bi
lit

y 
of

 r
ej

ec
tin

g 
H

0

400 600 800 1000

FASA.RP−πG

FASA.RS−πG

ASP−πG

UNIF

β1=0.2

0.
40

0.
50

0.
60

0.
70

400 600 800 1000

β2=0.25

n

0.
6

0.
7

0.
8

0.
9

1.
0

400 600 800 1000

β3=0.3

n

0.
6

0.
7

0.
8

0.
9

1.
0

400 600 800 1000

(a) Case 1

0.
00

0.
10

0.
20

0.
30

Type I Error

P
ro

ba
bi

lit
y 

of
 r

ej
ec

tin
g 

H
0

400 600 800 1000

FASA.RP−πG

FASA.RS−πG

ASP−πG

UNIF

β1=0.3

0.
35

0.
45

0.
55

0.
65

400 600 800 1000

β2=0.35

n

0.
5

0.
6

0.
7

0.
8

0.
9

400 600 800 1000

β3=0.4

n

0.
5

0.
6

0.
7

0.
8

0.
9

400 600 800 1000

(b) Case 2

Figure 5: Empirical type I error and power in Cases 1 and 2 for different subsample size n at a fixed n0 = 400 in
logistic model setting.

15



0.
00

0.
10

0.
20

0.
30

Type I Error
P

ro
ba

bi
lit

y 
of

 r
ej

ec
tin

g 
H

0

400 600 800 1000

FASA.RP−πG

FASA.RS−πG

ASP−πG

UNIF

β1=0.08

0.
30

0.
40

0.
50

0.
60

400 600 800 1000

β2=0.1

n

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

400 600 800 1000

β3=0.12

n

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

400 600 800 1000

(a) Case 3

0.
00

0.
10

0.
20

0.
30

Type I Error

P
ro

ba
bi

lit
y 

of
 r

ej
ec

tin
g 

H
0

400 600 800 1000

FASA.RP−πG

FASA.RS−πG

ASP−πG

UNIF

β1=0.18

0.
4

0.
5

0.
6

0.
7

0.
8

400 600 800 1000

β2=0.2

n

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

400 600 800 1000

β4=0.22

n

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

400 600 800 1000

(b) Case 4

Figure 6: Empirical type I error and power in Cases 3 and 4 for different subsample size n at a fixed n0 = 400 in
logistic model setting.

16



Table 3: Average of CPU time (in seconds) in logistic model using data from Case 1 with different subsample size
n at a fixed n0 = 400. The average of CPU time (in seconds) for using the full data is provided in the last row.
Repetition is 1000.

n
400 600 800 1000

FASA.RP-πG 0.2188 0.2362 0.2366 0.2381
FASA.RS-πG 0.0597 0.0605 0.0612 0.0623

ASP-πG 0.2873 0.2880 0.2886 0.2905
UNI 0.0030 0.0037 0.0044 0.0055

FULL data CPU seconds : 0.6375

Table 4: Average of CPU time (in seconds) in logistic model using data from Case 1 with different full data size N
and number of covariates p at fixed n = 2000 and n0 = 1000. The average of CPU time (in seconds) for the full data
is provided in the last row. Repetition is 300.

N = 217 N = 220

p = 50 p = 80 p = 150 p = 50 p = 80 p = 150
FASA.RP-πG 0.3936 0.6697 1.4172 3.7703 6.4313 13.3619
FASA.RS-πG 0.1166 0.1875 0.4417 0.8226 1.2236 2.3259

ASP-πG 0.7303 1.5707 5.4712 6.5127 14.9707 48.5209
UNIF 0.0286 0.0624 0.1882 0.0282 0.0633 0.1937
FULL 1.5412 3.1870 11.0800 14.8427 32.5135 96.6608

β1, β2 and β3 for testing H0 : βj = 0 vs. HA : βj 6= 0. Five different subsampling probabilities are
compared: subsampling probabilities based on Algorithm 1 and Algorithm 2 (FASA.RP-πG and
FASA.RS-πG, respectively), A-optimal subsampling probabilities on (4) (ASP-πG), and uniform
subsampling probabilities (UNIF). Other settings for the simulation are the same as the linear
regression example.

Figure 4 presents the results for MSE. The MSEs for FASA.RP-πG and FASA.RS-πG are close
to that for ASP-πG in all cases. The UNIF method always has the worst performance. We also
provide the results for the statistical testing in Figures 5 and 6. The empirical type I errors from
all methods and cases are close to the nominal value of 0.05, except for UNIF in Cases 3 and 4.
Compared to the proposed methods, UNIF tends to underestimate the variance of the estimator,
which caused the inflation of type I errors. In general, ASP-πG, FASA.RP-πG and FASA.RS-πG

have better performance than UNIF for the empirical power.
Results on the CPU time (in seconds) for the different methods are reported in Tables 3 and 4.

The settings for the simulation are the same as for the linear regression examples. In both tables,
FASA.RP-πG and FASA.RS-πG are faster than ASP-πG, and the UNIF always yields the fastest
computing time. As N and p increase in Table 4, the computational efficiency of the FASA algo-
rithms are more significant compared to the full data approach. As shown in Table A.2 in Appendix
E.3, FASA.RP-πG and FASA.RS-πG show comparable performance with ASP-πG in terms of MSE
and statistical testing.

17



2.
0

2.
5

3.
0

n

lo
g(

M
S

E
)

400 600 800 1000

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

ASP−πL

UNIF

Figure 7: Logarithm of MSEs calculated from 1000 subsamples of the Online News Popularity Data for varied
subsample size n at a fixed n0 = 400.

4.2. Online News Popularity Data Analysis

In this section, we use the FASA algorithms to analyze online news popularity data. The data
was collected from the contents of articles in Mashable, which is a news website, for two years. The
detailed information of the data is described in Fernandes et al. [8], and the dataset is available
at the UCI Machine Learning repository (https://archive.ics.uci.edu/ml/datasets/Online+
News+Popularity). For the linear regression model, the number of articles Mashable shares is used
as the response. We consider 13 covariates: number of links, number of links to other articles
published by Mashable, number of images, number of videos, average length of the words, rate
of positive (negative) words, average (minimum, maximum) of polarity of positive words, and
average (minimum, maximum) of polarity of negative words. The full data includes N = 39, 797
observations. To apply FASA.RP-πL and FASA.SVD-πL to the dataset, we randomly draw a subset
of data with the size 215(= 32, 768) from the full data since the SRHT in the algorithms requires
the size to be powers of 2. The responses are log-transformed, and we set n0 = 400, r1 = 500, and
r2 = 5.

Figure 7 shows the results for MSE (=
∑1000
b=1 ‖θ̃(b) − θ̂MLE‖2/1000) based on 1000 subsamples

of the size n0 + n from the full data. ASP-πL, FASA.RP-πL, and FASA.RS-πL have similar
performance and they outperform the other methods. While the results of FASA.SVD-πL are not
close to those of ASP-πL compared to other FASA algorithms, FASA.SVD-πL gives smaller MSEs
than UNIF.

To identify computational benefits for the suggested algorithms, we compute the average CPU
times to obtain the estimates when n = 1000. The average computing times are 0.035 and 0.028
seconds for ASP-πL and Full data, respectively, but 0.024, 0.008, and 0.023 seconds for FASA.RP-
πL, FASA.RS-πL and FASA.SVD-πL, respectively.

18

https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity
https://archive.ics.uci.edu/ml/datasets/Online+News+Popularity


2.
5

3.
5

4.
5

n

lo
g(

M
S

E
)

400 600 800 1000

FASA.RP−πG

FASA.RS−πG

ASP−πG

UNIF

Figure 8: Logarithm of MSEs calculated from 1000 subsamples of the Forest Cover Type Data for varied subsample
size n at a fixed n0 = 400.

4.3. Forest Cover Type Data Analysis

For the logistic regression model, we analyze a forest cover type data (Blackard [4]). The data is
available on the UCI Machine Learning repository: https://archive.ics.uci.edu/ml/datasets/
Covertype. The dataset contains seven forest cover type classes, but two classes (Lodgepole Pine
=0, spruce/fir = 1) are used for the logistic regression model. The percentage of Lodgepole Pine
in the responses is about 57.22%. The following covariates are considered in the model: elevation,
aspect, slope, horizontal (vertical) distance to the nearest surface water feature, horizontal distance
to the nearest roadway, a relative measure of incident sunlight at 9:00 (at noon and at 15:00),
and horizontal distance to the nearest historic wildfire ignition point. The full data sample size is
N = 495, 141. A sub-data of the size 218(= 262, 144) is chosen randomly from the full data for
FASA.RP-πG and FASA.RS-πG, and we consider n0 = 400, r1 = 1, 000, and r2 = 5.

The results of MSE (=
∑1000
b=1 ‖β̃(b) − β̂MLE‖2/1000) obtained from 1000 subsamples are in

Figure (8). FASA.RP-πG and FASA.RS-πG yield smaller MSEs than UNIF, and they provide the
results similar to those of ASP-πG. We also observe that the FASA algorithms save computing time
for obtaining the estimates, compared to ASP-πG. The average CPU times for 1000 subsamples of
the size n0 + n = 1400 are 0.177 and 0.089 seconds for FASA.RP-πG and FASA.RS-πG, while it
takes 0.231 seconds for ASP-πG.

5. Conclusion

In this paper, we developed the FASA algorithms that approximate A-optimal subsampling
probabilities for GLMs by performing the JLT and FJLT with high probabilities. In addition, we
investigated the optimal subsampling method for the Gaussian linear model by taking into account
both the regression coefficients and the dispersion parameter. Asymptotic results of the subsample
estimators were examined and the A-optimal subsampling probabilities were derived by minimizing

19

https://archive.ics.uci.edu/ml/datasets/Covertype
https://archive.ics.uci.edu/ml/datasets/Covertype


the trace of the variance-covariance matrix of the estimators. To mitigate the computing burden,
algorithms to approximate the optimal subsampling probabilities were also proposed. We have
demonstrated the performance of the suggested algorithms through the simulation studies. In
the linear regression setting, FASA.RP-πL (algorithm constructed by the JLT and SRHT) showed
comparable performance with ASP-πL (A-optimal subsampling probability based on (8)) in terms
of the empirical MSE and power for the coefficient parameter. FASA.RS-πL (algorithm based
on a random sampling matrix and the JLT) saved significantly the computing time compared
to ASP-πL and FASA.RP-πL although it did not give better results for the empirical MSE and
power than FASA.RP-πL in some cases. In the logistic regression setting, both of FASA.RP-πG

(algorithm performed by the JLT and SRHT) and FASA.RS-πG (algorithm based on a random
sampling matrix and the JLT) provided similar MSEs and empirical power as ASP-πG (A-optimal
subsampling probability based on (4)) .

Based on Theorem 1, Theorem 3, and simulation results, we observe that the optimal sub-
sampling methods give better performance in terms of MSE and power for statistical testing
when r1, r2, r3, pilot sample size, and subsample size increase. However, time complexities are
O(Np log r1 +Npr2) for Algorithms 1 and 3, and O(Npr3 +Npr2) for Algorithms 2 and 4. More-

over, the required times to obtain β̆G and β̆L are O(n0p
2ζ0) and O(n0p

2) where ζ0 is the number
of iterations in an iterative procedure. Lastly, the computing time to obtain estimates from the
subsample is O(np2ζ) for GLMs and O(np2) for linear regression models where ζ, where ζ is the
number of iterations in an iterative procedure. It indicates that the computing time goes up for
larger r1, r2, r3, pilot sample size and subsample size. We face a tradeoff between computing time
and desired accuracy (e.g., MSE and power). If better statistical accuracy is desired, more subsam-
ple sizes are required, although the computational efficiency is reduced. On the other hand, fewer
subsample sizes can be considered for the benefit of computing time, but less accuracy.

There is an important question left to investigate in the future. When we approximated the
optimal subsampling probabilities, we only considered JLT and FJLT. We can further consider
other transformations such as a subsampled random Fourier transform [19]. To develop highly
efficient algorithms, other transformation techniques are worthy of future investigation.

Acknowlegdements

The authors sincerely thank two reviewers and the associate editor for their comments, which
greatly helped improve this manuscript. Wang’s work research was partially supported by NSF
grant DMS-1812013.

References

[1] Ai, M., Yu, J., Zhang, H., Wang, H., . Optimal subsampling algorithms for big data regressions.
Statistica Sinica doi:10.5705/ss.202018.0439.

[2] Ailon, N., Chazelle, B., 2006. Approximate nearest neighbors and the fast johnson-
lindenstrauss transform, in: Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, ACM. pp. 557–563.

[3] Ailon, N., Chazelle, B., 2009. The fast johnson–lindenstrauss transform and approximate
nearest neighbors. SIAM Journal on computing 39, 302–322.

20

http://dx.doi.org/10.5705/ss.202018.0439


[4] Blackard, J., 1998. Comparison of Neural Networks and Discriminant Analysis in Predicting
Forest Cover Types. Colorado State University. URL: https://books.google.com/books?
id=0z0_NwAACAAJ.

[5] Chen, X., Xie, M.g., 2014. A split-and-conquer approach for analysis of extraordinarily large
data. Statistica Sinica , 1655–1684.

[6] Drineas, P., Magdon-Ismail, M., Mahoney, M.W., Woodruff, D.P., 2012. Fast approximation
of matrix coherence and statistical leverage. Journal of Machine Learning Research 13, 3475–
3506.

[7] Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlós, T., 2011. Faster least squares ap-
proximation. Numerische mathematik 117, 219–249.

[8] Fernandes, K., Vinagre, P., Cortez, P., 2015. A proactive intelligent decision support system for
predicting the popularity of online news, in: Portuguese Conference on Artificial Intelligence,
Springer. pp. 535–546.

[9] Lee, J., Wang, H., Schifano, E.D., 2020. Online updating method to correct for measurement
error in big data streams. Computational Statistics & Data Analysis 149, 106976.

[10] Lin, N., Xi, R., 2011. Aggregated estimating equation estimation. Statistics and Its Interface
4, 73–83.

[11] Ma, P., Mahoney, M.W., Yu, B., 2015. A statistical perspective on algorithmic leveraging. The
Journal of Machine Learning Research 16, 861–911.

[12] Schifano, E.D., Wu, J., Wang, C., Yan, J., Chen, M.H., 2016. Online updating of statistical
inference in the big data setting. Technometrics 58, 393–403.

[13] Wang, C., Chen, M.H., Schifano, E., Wu, J., Yan, J., 2016. Statistical methods and computing
for big data. Statistics and its interface 9, 399.

[14] Wang, C., Chen, M.H., Wu, J., Yan, J., Zhang, Y., Schifano, E., 2018a. Online updating
method with new variables for big data streams. Canadian Journal of Statistics 46, 123–146.

[15] Wang, H., 2019a. Divide-and-conquer information-based optimal subdata selection algorithm.
Journal of Statistical Theory and Practice 13, 46.

[16] Wang, H., 2019b. More efficient estimation for logistic regression with optimal subsamples.
Journal of Machine Learning Research 20, 1–59.

[17] Wang, H., Ma, Y., 2020. Optimal subsampling for quantile regression in big data. Biometrika
, DOI:10.1093/biomet/asaa043doi:10.1093/biomet/asaa043.

[18] Wang, H., Zhu, R., Ma, P., 2018b. Optimal subsampling for large sample logistic regression.
Journal of the American Statistical Association 113, 829–844.

[19] Woolfe, F., Liberty, E., Rokhlin, V., Tygert, M., 2008. A fast randomized algorithm for the
approximation of matrices. Applied and Computational Harmonic Analysis 25, 335–366.

21

https://books.google.com/books?id=0z0_NwAACAAJ
https://books.google.com/books?id=0z0_NwAACAAJ
http://dx.doi.org/10.1093/biomet/asaa043


[20] Wu, J., Chen, M.H., Schifano, E.D., Yan, J., 2018. Online Updating of Survival Analysis.
Technical Report 18-30. University of Connecticut, Department of Statistics.

[21] Xue, Y., Wang, H., Yan, J., Schifano, E.D., 2020. An online updating approach for testing the
proportional hazards assumption with streams of survival data. Biometrics 76, 171–182.

22



Supplementary Materials

Fast Optimal Subsampling Probability Approximation for

Generalized Linear Models

JooChul Lee, Elizabeth D. Schifano, and HaiYing Wang

University of Connecticut

Appendix A. Proof of Theorem 1

In this section, we prove Theorem 1. We first investigate asymptotic properties of subsample
estimators, (β̃T

L , σ̃
2
L)T.

(
β̃L − β̂L
σ̃2
L − σ̂2

L

)
=


(

n∑
i=1

x∗ix
∗T
i

π∗i

)−1 n∑
i=1

x∗i y
∗
i

π∗i
− β̂L(

n∑
i=1

1

π∗i

)−1 n∑
i=1

(y∗i − β̃T
Lx
∗
i )

2

π∗i
− σ̂2

L



=


n∑
i=1

x∗ix
∗T
i

π∗i
0

0

n∑
i=1

1

π∗i


−1 

n∑
i=1

(
x∗i y
∗
i

π∗i
− x∗ix

∗T
i

π∗i
β̂L

)
n∑
i=1

(
(y∗i − β̃T

Lx
∗
i )

2

π∗i
− 1

π∗i
σ̂2
L

)


=


n∑
i=1

x∗ix
∗T
i

π∗i
0

0

n∑
i=1

1

π∗i


−1


n∑
i=1

(
x∗i y
∗
i

π∗i
− x∗ix

∗T
i

π∗i
β̂L

)
n∑
i=1

(
(y∗i − β̂T

Lx
∗
i )

2

π∗i
− 1

π∗i
σ̂2
L

)


+

 0

β̃T
L

n∑
i=1

x∗ix
∗T
i

π∗i
β̃L − β̂T

L

n∑
i=1

x∗ix
∗T
i

π∗i
β̂L + 2(β̂L − β̃L)T

n∑
i=1

x∗i y
∗
i

π∗i




= M̃−1L
1

n

n∑
i=1

Ai + M̃−1L B, (A.1)

where

M̃L =

n∑
i=1


x∗ix

∗T
i

nNπ∗i
0

0
1

nNπ∗i

 ,Ai =


x∗i y
∗
i − x∗ix

∗T
i β̂L

Nπ∗i
(y∗i − β̂T

Lx
∗
i )

2 − σ̂2
L

Nπ∗i

 ,

1



and

B =

n∑
i=1

 0

(β̃L − β̂L)T
x∗ix

∗T
i

nNπ∗i
(β̃L − β̂L)− 2(β̃L − β̂L)T

(
x∗i y
∗
i

nNπ∗i
− x∗ix

∗T
i

nNπ∗i
β̂L

) .
We first discuss M̃L in (A.1). By direct calculation, we know that

E(M̃L|DN ) = M̃, (A.2)

where M̃ =


N∑
i=1

xix
T
i

N
0

0 1

.

Let M̃j1,j2
L be the (j1, j2) entry of the matrix M̃. For 1 ≤ j1, j2 ≤ p,

V
(
M̃j1,j2

L

∣∣∣DN) =
1

n

N∑
i=1

πi

(
xij1xij2
Nπi

− M̃j1,j2

)2

=
1

n

N∑
i=1

πi

(
xij1xij2
Nπi

)2

− 1

n
(M̃j1,j2)2

≤ 1

n

N∑
i=1

πi

(
xij1xij2
Nπi

)2

≤ 1

n

N∑
i=1

‖xi‖4

N2πi

= OP (n−1). (A.3)

For j1, j2 = p+ 1,

V
(
M̃j1,j2

L

∣∣∣DN) =
1

n

N∑
i=1

πi

(
1

Nπ∗i
− M̃j1,j2

L

)2

=
1

n

N∑
i=1

πi

(
1

Nπi

)2

− 1

n
(M̃j1,j2

L )2

≤ 1

n

N∑
i=1

1

N2πi

= OP (n−1). (A.4)

In (A.3) and (A.4), the last equalities are from Assumption 1. Then, from Markov’s inequal-
ity, (A.2), (A.3), and (A.4), conditionally on DN in probability,

M̃L − M̃ = OP |DN
(n−1/2). (A.5)

2



Now, we discuss
1

n

n∑
i=1

Ai in (A.1). Given DN ,A1, ...,An are i.i.d with mean

E(Ai|DN ) =

N∑
i=1

πi


xiyi − xix

T
i β̂L

Nπi
(yi − β̂T

Lxi)
2 − σ̂2

L

Nπi

 = 0, (A.6)

and variance

V(Ai|DN ) =

N∑
i=1


(yi − β̂T

Lxi)
2xix

T
i

N2πi

(e2i − σ̂2
L)eixi

N2πi
(e2i − σ̂2

L)eix
T
i

N2πi

(e2i − σ̂2
L)2

N2πi

 , (A.7)

where ei = yi − β̂T
Lxi.

Let V(Ai|DN )j1,j2 be the (j1, j2) entry of the matrix V(Ai|DN ). For 1 ≤ j1, j2 ≤ p,

V(Ai|DN )j1,j2 =

N∑
i=1

e2ixij1xij2
N2πi

≤
N∑
i=1

e2i ‖xi‖2

N2πi

≤

√√√√ N∑
i=1

e4i
N2πi

N∑
i=1

‖xi‖4

N2πi

= Op(1). (A.8)

In (A.8), the last inequality and equality are from Holder’s inequality and Assumption 1, respec-
tively. For j1, j2 = p+ 1,

V(Ai|DN )j1,j2 =

N∑
i=1

(e2i − σ̂2
L)2

N2πi
≤

N∑
i=1

e4i
N2πi

+ 2σ̂2
L

(
N∑
i=1

e4i
N2πi

) 1
2
(

N∑
i=1

1

N2πi

) 1
2

+ σ̂2
L

N∑
i=1

1

N2πi

= Op(1). (A.9)

In (A.9), the last inequality and equality are from Holder’s inequality and Assumption 1, respec-
tively.
For 1 ≤ j1 ≤ p and j2 = p+ 1,

V(Ai|Dn)j1,j2 =

N∑
i=1

(e2i − σ̂2
L)eixij1

N2πi

=

N∑
i=1

e3i ‖xi‖ − σ̂2
Lei‖xi‖

N2πi

≤

(
N∑
i=1

e4i
N2πi

) 3
4
(

N∑
i=1

‖xi‖4

N2πi

) 1
4

− σ̂2
L

(
N∑
i=1

e4i
N2πi

) 1
4
(

N∑
i=1

‖xi‖4

N2πi

) 1
4
(

N∑
i=1

1

N2πi

) 1
2

= Op(1). (A.10)

3



In (A.10), the last inequality and equality are from Holder’s inequality and Assumption 1, respec-
tively. From (A.8), (A.9), and (A.10), we have

V(Ai|DN ) = Op(1). (A.11)

For every ε > 0 and some δ > 0,

n∑
i=1

E

(∥∥∥∥ 1

n2
Ai

∥∥∥∥2 I(‖Ai‖ > n
1
2 ε)|DN

)
≤ 1

n1+δ/2εδ

n∑
i=1

E
(
‖Ai‖2+δI(‖Ai‖ > n1/2ε)|DN

)
≤ 1

n1+δ/2εδ

n∑
i=1

E
(
‖Ai‖2+δ|DN

)
=

1

nδ/2N2+δεδ

N∑
i=1

|ei|2+δ‖xi‖2+δ + |e2i − σ̂2
L|2+δ

π1+δ
i

=
1

nδ/2N2+δεδ

{
N∑
i=1

|ei|2+δ‖xi‖2+δ

π1+δ
i

+
N∑
i=1

|e2i |2+δ

π1+δ
i

}

=
1

nδ/2εδ


√√√√ N∑

i=1

|ei|2(2+δ)
N2+δπ1+δ

i

N∑
i=1

‖xi‖2(2+δ)
N2+δπ1+δ

i

+

N∑
i=1

|e2i |2+δ

N2+δπ1+δ
i

}
= OP (n−δ/2). (A.12)

The first inequality and the last equality are from Holder’s inequality and Assumption 2, respec-
tively. Then, we have, as n,N →∞,

n∑
i=1

E
(
‖n−1/2Ai‖2I(‖Ai‖ > n1/2ε)|DN

)
→ 0. (A.13)

This result indicates that the Lindeberg-Feller conditions are satisfied. Thus, by the Lindeberg-
Feller Central Limit Theorem (Proposition 2.27 of van der Vaart, 1998), we obtain conditionally on
DN ,

1

n1/2
{V(Ai|DN )}−1/2

n∑
i=1

Ai → N(0, I). (A.14)

We also discuss B in (A.1). We know that from (A.6),

E

{
1

n

n∑
i=1

(
x∗i y
∗
i − x∗ix

∗T
i β̂L

Nπ∗i

)∣∣∣∣∣DN
}

= 0, (A.15)

and from (A.8),

V

{
1

n

n∑
i=1

(
x∗i y
∗
i − x∗ix

∗T
i β̂L

Nπ∗i

)∣∣∣∣∣DN
}

= Op(n
−1). (A.16)

4



From Markov’s inequality, (A.15) and (A.16), conditionally on DN in probability,

1

n

n∑
i=1

x∗i y
∗
i − x∗ix

∗T
i β̂L

Nπ∗i
= oP |DN

(1). (A.17)

Note that M̃L = OP |DN
(1) from (A.5). Combining this with (A.17), we have conditionally on DN

in probability,

β̃L − β̂L =

(
n∑
i=1

x∗ix
∗T
i

nNπ∗i

)−1
1

n

n∑
i=1

(
x∗i y
∗
i − x∗ix

∗T
i β̂L

Nπ∗i

)
= oP |DN

(1). (A.18)

Thus,

B =

 0

(β̃L − β̂L)T
n∑
i=1

x∗ix
∗T
i

nNπ∗i
(β̃L − β̂L)− 2(β̃L − β̂L)T

1

n

n∑
i=1

(
x∗i y
∗
i − x∗ix

∗T
i β̂L

Nπ∗i

)
= oP |DN

(1) + oP |DN
(1)

= oP |DN
(1). (A.19)

From (A.5),

M̃−1L − M̃−1 = −M̃−1(M̃L − M̃)M̃−1L = OP |DN
(n−1/2). (A.20)

Then, from (A.19) and (A.20),(
β̃L − β̂L
σ̃2
L − σ̂2

L

)
= M̃−1L

1

n

n∑
i=1

Ai + M̃−1L B

= M̃−1
1

n

n∑
i=1

Ai + (M̃−1L − M̃−1)
1

n

n∑
i=1

Ai + oP |DN
(1)

= M̃−1
1

n1/2
{V(Ai|DN )}1/2 1

n1/2
{V(Ai|DN )}−1/2

n∑
i=1

Ai + oP |DN
(1).

By Slutsky’s Theorem, we obtain conditional on DN in probability,(
β̃L − β̂L
σ̃2
L − σ̂2

L

)
→ N(0, M̃−1Vc

LM̃
−1),

in distribution, where Vc
L = n−1{V(Ai|DN )}.

Let g(a, b) = (aT,
√
b)T for a specific vector a and value b. By applying the Delta method, we show

that conditional on DN in probability,(
g(β̃L, σ̃L)− g(β̂L, σ̂L)

)
=

(
β̃L − β̂L
σ̃L − σ̂L

)
→ N(0,V),

in distribution, where VL = ∇gTM̃−1VcM̃−1∇g = M−1VcM−1 and ∇g =

Ip×p 0

0
1

2σ̂L

.

5



Appendix B. Proof of Theorem 2

Note that tr(V) = tr(M−1VcM−1) and ei = yi − β̂T
Lxi.

tr(M−1VcM−1) =
1

n

{
tr

(
(XTX)−1

N∑
i=1

e2ixix
T
i

πi
(XTX)−1

)
+ tr

(
N∑
i=1

(e2i − σ̂2
L)2

4πiN2σ̂2
L

)}

=
1

n

N∑
i=1

1

πi

{
tr
(
(XTX)−1e2ixix

T
i (XTX)−1

)
+

(e2i − σ̂2
L)2

4N2σ̂2
L

}

=
1

n

N∑
i=1

1

πi

{
e2i ‖(XTX)−1xi‖2 +

(e2i − σ̂2
L)2

4N2σ̂2
L

} N∑
i=1

πi

≥ 1

n

N∑
i=1

{
e2i ‖(XTX)−1xi‖2 +

(e2i − σ̂2
L)2

4N2σ̂2
L

}
.

The last inequality is from the Cauchy-Schwarz inequality and the equality holds if and only if

πi ∝

√
e2i ‖(X

TX)−1xi‖2 +
(e2i − σ̂2

L)2

4N2σ̂2
L

.

Appendix C. Proof of Theorem 3

The following Lemmas are needed to derive Theorem 3. Let ‖ · ‖F be the Frobenius norm.

Lemma 1. (Theorem 2.1 of Drineas et al. [4]) Let A(i) be the i-th row of A and B(j) be the i-th
column of B. Suppose sampling probabilities pi are such that

pi ≥ α
‖A(i)‖‖B(i)‖∑n
j=1 ‖A(j)‖‖B(j)‖

,

for some α ∈ (0, 1]. Construct C and R with Algorithm 1 in Drineas et al. [4], and assume that
ν1 ∈ (0, 1/3). Then with probability at least 1− ν1, we have

‖AB − CR‖F ≤
4
√

log 1/ν1
α
√
s

‖A‖F ‖B‖F .

Lemma 2. (Theorem 1.1 of Achlioptas [1]) Let x1, ..., xn be an arbitrary set of points, where xi ∈
Rp and let ε ∈ (0, 1/2] be an accuracy parameter. If r2 ≥

1

ε21
(12 log n+ 6 log 1/ν2), with probability

at least 1− ν2,
(1− ε1)‖xi‖2 ≤ ‖T2xi‖2 ≤ (1 + ε1)‖xi‖2.

6



Now, we establishing Theorem 3.

‖(M−1G XTU)(i) − (T2M̂
−1
G XTU)(i)‖

= ‖(M−1G XTU)(i) − (M̂−1G XTU)(i) + (M̂−1G XTU)(i) − (T2M̂
−1
G XTU)(i)‖

≤ ‖(M−1G XTU)(i) − (M̂−1G XTU)(i)‖

+ ‖(M̂−1G XTU)(i) − (T2M̂
−1
G XTU)(i)‖

≤ ‖(M−1G XTU)(i) − (M̂−1G XTU)(i)‖+ (1 + ε1)‖M̂−1G ‖F ‖(X
TU)(i)‖

≤ ‖M−1G ‖F ‖M̂
−1
G ‖F ‖MG − M̂G‖F ‖(XTU)(i)‖

+ (1 + ε1)‖M̂−1G ‖F ‖(X
TU)(i)‖

≤ σmax
(
M−1G

)
σmax

(
M̂−1G

)
σ2
max

(
W1/2X

)
p2

4
√

log 1/ν2
α
√
r3

‖(XTU)(i)‖

+ (1 + ε1)σmax

(
M̂−1G

)√
p‖(XTU)(i)‖

≤ σ−1min (MG)σ−1min

(
M̂G

)
σ2
max

(
W1/2X

) 4p2
√

log 1/ν2
α
√
r3

‖(XTU)(i)‖

+ (1 + ε1)σ−1min

(
M̂G

)√
p‖(XTU)(i)‖

≤
‖(XTU)(i)‖
γσmin (MG)

(
σ2
max

(
W1/2X

)
σmin (MG)

4p2
√

log 1/ν2
α
√
r3

+ (1 + ε1)
√
p

)
,

where the second inequality is from Lemma 2, the last third inequality is from Lemma 1 by letting
A = B = W1/2X, C = D = RW1/2X, and α = 1/N , and the last inequality is from the assumption

σmin

(
M̂G

)
≥ γσmin (MG) for some γ ∈ (0, 1].

Appendix D. Algorithm via Singular Value Decomposition Approach for Gaussian
linear model

Denote the Singular Value Decomposition (SVD) of X as X = UDVT, where U is a N × p
matrix, D is a p× p diagonal matrix and V is a p× p matrix. Since X(XTX)−2XT = UD−2UT =
UD−1(UD−1)T, we can express

‖(XTX)−1xi‖ = ‖(D−1UT)(i)‖, i = 1, ..., N,

where (D−1UT)(i) is the ith column of D−1UT. Thus, we focus on approximating ‖(D−1UT)(i)‖
for all i by using the idea for approximating statistical leverage scores proposed in [3]. Denote the
SVD of T1X as T1X = UT1XDT1XVT

T1X
where T1 is a SRHT of X. We approximate D−1UT as

D−2T1X
VT

T1XXT = D−2T1X
VT

T1XVDUT. (D.1)

Since the computing time for D−2T1X
VT

T1X
XT requires O(Np2), we further consider a JLT for the

columns of D−2T1X
VT

T1X
, say T2D

−2
T1X

VT
T1X

. After constructing (T2D
−2
T1X

VT
T1X

)XT, we approxi-

mate ‖(D−1UT)(i)‖ as

‖(T2D
−2
T1X

VT
T1XXT)(i)‖, i = 1, ..., N.

7



Algorithm 5 Random projection based FASA for (8)

1. Construct T1X where T1 is a SRHT of X. Let its SVD be T1X = UT1XDT1XVT
T1X.

2. Construct T2D
−2
T1X

VT
T1X where T2 is a JLT for the rows of D−2

T1X
VT

T1X. After that, perform

(T2D
−2
T1X

VT
T1X)XT.

3. Replacing ‖(X
T

X)−1xi‖ by ‖(T2D
−2
T1X

VT
T1XXT)(i)‖ in (8), approximate the optimal subsampling

probability as

π̌L3
i =

√
ĕ2i ‖(T2D

−2
T1X

VT
T1X

XT)(i)‖2 + (ĕ2i − σ̆2
L)2/(4n2σ̆2

L)∑N
j=1

√
e2j‖(T2D

−2
T1X

VT
T1X

XT)(j)‖2 + (ĕ2j − σ̆2
L)2/(4n2σ̆2

L)
i = 1, ..., N,

where (T2D
−2
T1X

VT
T1XXT)(i) is the ith column of T2D

−2
T1X

VT
T1XXT.

where (T2D
−2
T1X

VT
T1X

XT)(i) is the ith column of T2D
−2
T1X

VT
T1X

XT. The computing time to per-

form (T2D
−2
T1X

VT
T1X

)XT is O(Npr2) time.

Appendix E. Additional numerical results

Appendix E.1. Comparison of MSEs between πGi and πLi in linear model setting.

In this section, we further compare performance between ASP-πL and the A-optimal subsam-
pling probabilities in (4) (ASP-πG). Since Ai et al. [2] considered generalized linear regression
assuming the dispersion parameter is known, ASP-πG use the A-optimal subsampling probabil-
ities determined without considering σ2 in this example. The model setup is the same as that
in Section 4.1.1. Figure A.1 provides the results of MSE. It is seen that ASP-πL and ASP-πG

show similar performance in Cases 1 and 2, while ASP-πL gives better results in Case 3 and 4.
Also, we approximate πGi in (4) by applying Algorithm 3 and 4, and the first two steps in Algo-
rithm 5 (FASA.RP-πG, FASA.RS-πG and FASA.SVD-πG), and compare them with FASA.RP-πL,
FASA.RS-πL and FASA.SVD-πL. Figure A.2 presents that FASA.RP-πL and FASA.RP-πG have
similar MSEs for Case 1 and 2, but FASA.RP-πL results in smaller MSEs than FASA.RP-πG for
Cases 3 and 4. Likewise, FASA.SVD-πL compared with FASA.SVD-πG tends to give smaller MSEs
in Cases 3 and 4. The results for FASA.RS-πL and FASA.RS-πG are similar in all cases.

8



−
1.

3
−

1.
1

−
0.

9
−

0.
7

Case 1

n

lo
g(

M
S

E
)

400 600 800 1000

ASP−πL

ASP−πG

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Case 2

n

lo
g(

M
S

E
)

400 600 800 1000

−
3.

4
−

3.
0

−
2.

6

Case 3

n

lo
g(

M
S

E
)

300 500 700 1000

−
2.

6
−

2.
4

−
2.

2
−

2.
0

−
1.

8

Case 4

n

lo
g(

M
S

E
)

400 600 800 1000

Figure A.1: Logarithm of MSEs for varied subsample size n at a fixed n0 = 400 in the linear model setting. ASP-πL

uses A-optimal subsampling probabilities based on (8), and ASP-πG uses A-optimal subsampling probabilities based
on (4).

9



−
1.

2
−

1.
0

−
0.

8
−

0.
6

Case 1

n

lo
g(

M
S

E
)

400 600 800 1000

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

FASA.RP−πG

FASA.RS−πG

FASA.SVD−πG

−
0.

2
0.

0
0.

2
0.

4

Case 2

n
lo

g(
M

S
E

)
400 600 800 1000

−
3.

4
−

3.
0

−
2.

6

Case 3

n

lo
g(

M
S

E
)

400 600 800 1000

−
2.

6
−

2.
2

−
1.

8

Case 4

n

lo
g(

M
S

E
)

400 600 800 1000

Figure A.2: Logarithm of MSEs for varied subsample size n at a fixed n0 = 400 in the linear model setting.
FASA.RP-πL, FASA.RS-πL and FASA.SVD-πL use subsampling probabilities approximated based on the Algo-
rithm 3, Algorithm 4 and Algorithm 5, respectively, for the A-optimal subsampling probabilities in (8). FASA.RP-
πG, FASA.RS-πG and FASA.SVD-πG use subsampling probabilities approximated by Algorithm 1 and 2, and the
first two steps in Algorithm 5, respectively, for the A-optimal subsampling probabilities in (4).

10



Appendix E.2. MSEs, empirical sizes, and empirical powers for different pilot sample sizes, r1, r2
and r3

We conduct extra simulations to examine the performance for different pilot sample sizes using
datasets from Case 1 in linear regression and logistic regression examples. Subsample size was
fixed at n = 1000. As shown in the left panel of Figure A.3, MSEs for ASA.RP-πL, FASA.RS-
πL, FASA.SVD-πL and ASP-πL decrease as n0 increases. The right panel of Figure A.3 presents
the performance under logistic regression. ASA.RP-πG, FASA.RS-πG and ASP-πL are worse than
UNIF when n0 = 300, but they give better results for the MSE when larger pilot sample sizes are
used.

−
1.

0
−

0.
9

−
0.

8
−

0.
7

−
0.

6

Linear regression

n0

lo
g(

M
S

E
)

300 400 500 600

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

ASP−πL

UNIF
−

1.
30

−
1.

20
−

1.
10

−
1.

00

Logistic regression

n0

lo
g(

M
S

E
)

300 400 500 600

FASA.RP−πG

FASA.RS−πG

ASP−πG

UNIF

Figure A.3: Logarithm of MSEs for different pilot sample size n0 at a fixed n = 1000 in the linear model and logistic
model settings.

For different r1, r2 and r3, we consider datasets from Case 1 in linear regression and logistic
regression examples and (r1, r2) = (102, 7), (103, 10), (104, 13), and we set r1 = r3.

Figure A.4 shows the results for MSE and CPU time in the linear regression example. As
expected, the proposed algorithms result in smaller MSE and longer computing time as r1 and r2
increase. For FASA.RP-πL and FASA.SVD-πL, the MSE declines about 3.3 and 1 percent when
(r1, r2) increase from (102, 7) to (103, 10) and from (103, 10) to (104, 13), respectively. However, the
computing time rise about 1.2 and 1.3-fold, respectively. We also find that for FASA.RS-πL, the
MSE decreases about 5 and 0.6 percent whereas the computing time takes 1.3 and 1.4 fold longer,
when (r1, r2) increase from (102, 7) to (103, 10) and from (103, 10) to (104, 13), respectively.

As shown in Figure A.5, similar performance is presented in the logistic regression example.
When (r1, r2) = (102, 7) increase to (103, 10), FASA.RP-πG and FASA.RS-πG give 3.9 and 4.4
percent drop for MSE, but 1.3 and 1.2 fold increase for the computing time, respectively. When
(r1, r2) = (103, 10) increase to (104, 13), the computing time for FASA.RP-πG and FASA.RS-πG

decrease 1.2 and 1.4 fold, but the MSE decreases only 1.2 and 1.5 percent, respectively.

11



−
1.

22
−

1.
18

−
1.

14
−

1.
10

Linear Regression

(r1,r2)

lo
g(

M
S

E
)

(102,7) (103,10) (104,13)

FASA.RP−πL

FASA.RS−πL

FASA.SVD−πL

0.
00

0.
10

0.
20

0.
30

Linear Regression

(r1,r2)

T
im

e

(102,7) (103,10) (104,13)

Figure A.4: Logarithm of MSEs and CPU time for varied r1 and r2 at a fixed n0 = 400, n = 1000 in the linear model
setting. For FASA.RS-πG, r3 is the same size as r1.

−
1.

65
−

1.
63

−
1.

61
−

1.
59

Logistic Regression

(r1,r2)

lo
g(

M
S

E
)

(102,7) (103,10) (104,13)

FASA.RP−πG

FASA.RS−πG

0.
00

0.
10

0.
20

0.
30

Logistic Regression

(r1,r2)

T
im

e

(102,7) (103,10) (104,13)

Figure A.5: Logarithm of MSEs and CPU time for varied r1 and r2 at a fixed n0 = 400, n = 1000 in the logistic
model setting. For FASA.RS-πG, r3 is the same size as r1.

12



Appendix E.3. MSEs and empirical statistical tests for larger N and p

Table A.1: Average of MSE, and the empirical type I error for β4 and power for β1, β2 and β3 in linear model
using data from Case 1 with different full data size N and number of covariates p at fixed n = 2000 and n0 = 1000.
Repetition is 300.

N = 217 N = 220

p = 50 p = 80 p = 150 p = 50 p = 80 p = 150
MSE

FASA.RP-πL 0.2371 0.3893 0.7759 0.2345 0.3933 0.7842
FASA.RS-πL 0.2365 0.3937 0.7795 0.2317 0.3963 0.7810

FASA.SVD-πL 0.2465 0.4069 0.8026 0.2411 0.4137 0.8240
ASP-πL 0.2280 0.3751 0.7552 0.2301 0.3813 0.7618

Empirical type I error
FASA.RP-πL 0.0600 0.0467 0.0400 0.0500 0.0233 0.0367
FASA.RS-πL 0.0433 0.0600 0.0367 0.0267 0.0433 0.0400

FASA.SVD-πL 0.0567 0.0567 0.0433 0.0500 0.0333 0.0600
ASP-πL 0.0800 0.0500 0.0633 0.0267 0.0567 0.0500

Empirical power for β1
FASA.RP-πL 0.3700 0.3067 0.3467 0.3800 0.3867 0.4333
FASA.RS-πL 0.3533 0.3200 0.3400 0.2967 0.3700 0.3633

FASA.SVD-πL 0.4000 0.2867 0.3133 0.4000 0.3967 0.3667
ASP-πL 0.3833 0.3467 0.3467 0.4000 0.3933 0.4500

Empirical power for β2
FASA.RP-πL 0.6467 0.7400 0.6667 0.7433 0.7133 0.6633
FASA.RS-πL 0.6567 0.7400 0.6733 0.7400 0.7533 0.6600

FASA.SVD-πL 0.6633 0.7167 0.6100 0.6833 0.7233 0.6467
ASP-πL 0.6700 0.7633 0.6700 0.7467 0.7733 0.6800

Empirical power for β3
FASA.RP-πL 0.8967 0.9300 0.8700 0.9367 0.9500 0.8900
FASA.RS-πL 0.9333 0.9533 0.8867 0.9567 0.9500 0.9067

FASA.SVD-πL 0.9200 0.9167 0.8667 0.9233 0.9267 0.9033
ASP-πL 0.9033 0.9433 0.9133 0.9533 0.9367 0.9233

13



Table A.2: Average of MSE, and the empirical type I error for β4 and power for β1, β2 and β3 in logistic model
using data from Case 1 with different full data size N and number of covariates p at fixed n = 2000 and n0 = 1000.
Repetition is 300

N = 217 N = 220

p = 50 p = 80 p = 150 p = 50 p = 80 p = 150
MSE

FASA.RP-πG 0.1560 0.2572 0.5327 0.1502 0.2535 0.5271
FASA.RS-πG 0.1529 0.2565 0.5385 0.1525 0.2516 0.5215

ASP-πG 0.1503 0.2452 0.5165 0.1462 0.2446 0.5086
Empirical type I error

FASA.RP-πG 0.0867 0.0367 0.0600 0.0433 0.0400 0.0400
FASA.RS-πG 0.0467 0.0467 0.0333 0.0267 0.0467 0.0400

ASP-πG 0.0667 0.0333 0.0467 0.0433 0.0367 0.0467
Empirical power for β1

FASA.RP-πG 0.3700 0.3800 0.2767 0.2967 0.2800 0.2533
FASA.RS-πG 0.3400 0.3833 0.2700 0.2800 0.2433 0.1367

ASP-πG 0.2967 0.3767 0.2333 0.2667 0.2533 0.2567
Empirical power for β2

FASA.RP-πG 0.6633 0.6133 0.7167 0.6567 0.7067 0.6067
FASA.RS-πG 0.6767 0.6500 0.7100 0.7000 0.6467 0.6767

ASP-πG 0.6800 0.6733 0.7167 0.7433 0.6833 0.6700
Empirical power for β3

FASA.RP-πG 0.9067 0.9467 0.9200 0.9400 0.9400 0.9067
FASA.RS-πG 0.9267 0.9267 0.9333 0.9533 0.9333 0.9133

ASP-πG 0.9333 0.9600 0.9533 0.9500 0.9500 0.9067

References

References

[1] Achlioptas, D., 2003. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of computer and System Sciences 66, 671–687.

[2] Ai, M., Yu, J., Zhang, H., Wang, H., . Optimal subsampling algorithms for big data regressions.
Statistica Sinica doi:10.5705/ss.202018.0439.

[3] Drineas, P., Magdon-Ismail, M., Mahoney, M.W., Woodruff, D.P., 2012. Fast approximation of
matrix coherence and statistical leverage. Journal of Machine Learning Research 13, 3475–3506.

[4] Drineas, P., Mahoney, M.W., Muthukrishnan, S., 2006. Sampling algorithms for l 2 regression
and applications, in: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pp. 1127–1136.

14

http://dx.doi.org/10.5705/ss.202018.0439

	Introduction
	Models and Optimal Subsampling Probabilities
	Optimal Subsampling probability with known dispersion parameter in generalized linear models
	Optimal subsampling probability in Gaussian linear model

	Fast Approximation of Subsampling Probability
	Subsampling probability approximation in generalized linear models
	Subsampling probability approximation for Gaussian linear model

	Numerical examples
	Simulation studies
	Linear Regression
	Logistic Regression

	Online News Popularity Data Analysis
	Forest Cover Type Data Analysis

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Algorithm via Singular Value Decomposition Approach for Gaussian linear model
	Additional numerical results
	Comparison of MSEs between iG and iL in linear model setting.
	MSEs, empirical sizes, and empirical powers for different pilot sample sizes, r1, r2 and r3
	MSEs and empirical statistical tests for larger N and p


