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For massive survival data, we propose a subsampling algorithm to effi-
ciently approximate the estimates of regression parameters in the additive
hazards model. We establish consistency and asymptotic normality of the
subsample-based estimator given the full data. The optimal subsampling prob-
abilities are obtained via minimizing asymptotic variance of the resulting esti-
mator. The subsample-based procedure can largely reduce the computational
cost compared with the full data method. In numerical simulations, our method
has low bias and satisfactory coverage probabilities. We provide an illustrative
example on the survival analysis of patients with lymphoma cancer from the
Surveillance, Epidemiology, and End Results Program.
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1 INTRODUCTION

Advancements in health information technology have led to an influx of massive data. One common feature of massive
data is the huge number of observations (large n), which lays a heavy burden on storage and computation. In recent years
substantial research effort has been devoted to the statistical analysis of massive data. For example, Zhao et al1 considered
a partially linear framework for modeling massive heterogeneous data. Battey et al2 investigated hypothesis testing and
parameter estimation using the “divide and conquer” algorithm. Shi et al3 studied the “divide and conquer” method
for cubic-rate estimators. Jordan et al4 presented a communication-efficient surrogate likelihood method for distributed
statistical inference problems. Volgushev et al5 proposed a two-step distributed inference for quantile regression with
massive datasets.

Another approach to the analysis of massive data is subsampling, for example, Ma et al6 proposed a leveraging-based
subsampling procedure. Wang et al7 and Wang8 developed optimal subsampling methods for logistic regression. Wang
et al9 provided an information-based optimal subdata selection approach in the context of linear models. Wang and Ma10

investigated optimal subsampling for quantile regression. Zhang and Wang11 proposed a distributed subsampling proce-
dure for big data linear models. Note that the “divide and conquer” method aims at analyzing the full data with parallel
or distributed computing platforms, while the subsampling method focuses on fast calculation with limited computing
resources in practical applications.

The above-mentioned articles are mainly focused on completely observed (uncensored) data. Only a limited
number of articles have studied the topics on massive survival data. For example, Kawaguchi et al12 developed a
new scalable sparse Cox regression method for high-dimensional survival data with massive sample sizes. Wang
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et al13 proposed an efficient “divide and conquer” algorithm to fit sparse Cox regression with massive datasets.
Xue et al14 proposed an online updating approach for testing the proportional hazards assumption with streams of
survival data.

As a competitive alternative to the Cox proportional hazards (PH) model, the additive hazards (AH) model15,16

has several advantages: examining additive associations vs multiplicative associations, not assuming PH, and avoid-
ing issues with the interpretation of the hazard ratio. These advantages may also scale well to the massive data
case, while Xue et al14 demonstrated the complexity of examining PH with massive data. To the best of our
knowledge, subsampling procedures have not been developed for censored survival data. In this article, we pro-
pose a subsampling-based estimation method for massive survival data in the context of AH model. There are
several advantages of our method. First, we propose a subsample-based estimator to approximate the full data esti-
mator, and our method effectively reduces the computational CPU time. Second, the subsample-based estimator
has an explicit expression, which is easy to calculate in practical applications. Third, we establish the asymptotic
distribution of the subsample-based estimator given full data, which is very useful from the view of statistical
inference.

The remainder of this article is organized as follows. In Section 2, we review the AH model and propose a general
subsampling algorithm. Asymptotic properties of the subsample estimator are established. In Section 3, we give a desirable
subsampling strategy. In Section 4, we evaluate our method through numerical simulations. A real example of lymphoma
cancer is illustrated in Section 5. Section 6 concludes this article with some discussions. Technical proofs of theoretical
results, Tables S.1 to S.6, an additional simulation study, and R codes for our proposed method are given in the Supporting
Information.

2 METHODS

2.1 Notations and estimation of AH model

Let Ti be the failure time and Ci be the censoring time, i= 1, … , n. Denote the observed follow-up time by T̃i =
min (Ti,Ci), where Ti and Ci are assumed to be independent in this article. The failure indicator is Δi = I(Ti ≤ Ci), and
the censoring rate is 𝛿 = 1 − n−1 ∑n

i=1 Δi. Denote the observed-failure counting process by Ni(t) = I(T̃i ≤ t,Δi = 1), and
the at-risk indicator by Yi(t) = I(T̃i ≥ t). Following Lin and Ying,16 the intensity of Ni(t) with AH function is

dΛi(t) = Yi(t){dΛ0(t) + 𝜽
′Xidt}, 1 ≤ i ≤ n, (1)

where 𝜽 = (𝜃1, … , 𝜃p)′ is a vector of regression parameters belonging to a compact subset of Rp, Xi = (Xi1, … ,Xip)′ is a
vector of covariates, and Λ0(t) = ∫ t

0 𝜆0(s)ds is an unknown baseline cumulative hazards function. From Lin and Ying,16

an estimator �̂�ZE can be obtained by solving the estimating equation Ψ(𝜽) = 0, where

Ψ(𝜽) = 1
n

n∑
i=1

∫
𝜏

0
{Xi − X(t)}{dNi(t) − Yi(t)𝜽′Xidt}. (2)

Here X(t) =
∑n

i=1 Yi(t)Xi∕
∑n

i=1 Yi(t), and 𝜏 > 0 is the length of the study. For convenience, denote the full data by n =
(Xfull, T̃full,𝚫full), where Xfull = (X1, … ,Xn)′ is the covariate matrix, T̃full = (T̃1, … , T̃n) consists of the observed follow-up
times, and 𝚫full = (Δ1, … ,Δn) consists of the failure indicators. Furthermore, (Xi, T̃i,Δi) are independent observations,
i= 1, … , n. We rewrite (2) as

Ψ(𝜽) = 1
n

n∑
i=1

𝜓i(𝜽), (3)

where𝜓i(𝜽) = ∫ 𝜏

0 {Xi − X(t)}{dNi(t) − Yi(t)𝜽′Xidt}, i= 1, … , n. When the sample size n is very large, it is time-consuming
to calculate �̂�ZE due to the heavy computational burden. To deal with this problem, we propose a subsampling-based
procedure. The basic idea is as follows: assign subsampling probabilities 𝜋i > 0 for full data (Xi, T̃i,Δi) with

∑
i∈S0

𝜋i = 𝛿

and
∑

i∈S1
𝜋i = 1 − 𝛿, where 𝛿 is the censoring rate, S0 = {i ∶ Δi = 0} and S1 = {i ∶ Δi = 1} are the index sets of censored
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and noncensored individuals, respectively. Draw a random subsample of size r(≪n) from the full data with replacement
according to subsampling probabilities {𝜋i}n

i=1. Denote the corresponding subsample as (X∗
i , T̃∗

i ,Δ∗
i ) with subsampling

probabilities 𝜋∗
i , for i= 1, … , r. Based on this subsample, we propose a weighted estimating function

U∗(𝜽) = 1
nr

r∑
i=1

1
𝜋∗

i
U∗

i (𝜽), (4)

where U∗
i (𝜽) = ∫ 𝜏

0 {X∗
i − X

∗
(t)}{dN∗

i (t) − Y∗
i (t)𝜽

′X∗
i dt}, with X

∗
(t) = {

∑r
i=1 𝜋

∗−1
i Y∗

i (t)X
∗
i }∕{

∑r
i=1 𝜋

∗−1
i Y∗

i (t)}, N∗
i (t) =

I(T̃∗
i ≤ t,Δ∗

i = 1) and Y∗
i (t) = I(T̃∗

i ≥ t), i= 1, … , r. Later we will show that U∗(𝜽) is asymptotically unbiased towards (3)
given n. Hence, we can get a subsample-based estimator �̃� by solving U∗(𝜽) = 0, and use �̃� to approximate the full data
estimate �̂�ZE. Our method can effectively reduce the computational burden, and the comparison of CPU time is given in
the simulation section.

2.2 Subsampling algorithm and asymptotic properties

In this section, we propose a subsampling algorithm for the subsample estimator �̃� as follows:

Algorithm 1. Subsampling Algorithm

Step 1 (Sampling): assign subsampling probabilities 𝜋i > 0 for the full datan with
∑

i∈S0
𝜋i = 𝛿 and

∑
i∈S1

𝜋i = 1 − 𝛿. Draw
a random subsample of size r(≪ n) from the full data with replacement according to {𝜋i}n

i=1. Denote the corresponding
subsample as (X∗

i , T̃∗
i ,Δ

∗
i ) together with 𝜋∗

i , for i = 1,… , r.
Step 2 (Estimation): We obtain a subsampling-based estimator �̃� satisfying U∗(�̃�) = 0 with the subsample in Step 1, where
�̃� has an explicit expression

�̃� =

[
1

nr

r∑
i=1

1
𝜋∗

i ∫
𝜏

0
Y∗

i (t){X∗
i − X̄∗(t)}⊗2dt

]−1 [
1

nr

r∑
i=1

1
𝜋∗

i ∫
𝜏

0
{X∗

i − X̄∗(t)}dN∗
i (t)

]
, (5)

where c⊗2 = cc′ for a vector c.

Given n, the consistency and asymptotic normality of �̃� are needed to determine the optimal subsampling probabil-
ities (OSP) in Section 3. Under Assumptions (A.1) to (A.7) in the Supporting Information, as n→∞ and r →∞, for any
𝜖 > 0, with probability approaching one, there exist finite Δ𝜖 and r𝜖 , such that

P(||�̃� − �̂�ZE|| ≥ r−1∕2Δ𝜖|n) < 𝜖, (6)

for all r ≥ r𝜖 . This consistency ensures that we can efficiently approximate �̂�ZE by the subsample-based estimator �̃�. Hence,
we use �̃� rather than �̂�ZE to reduce the computational burden.

Next, we establish the asymptotic normality of �̃�. Under Assumptions (A.1) to (A.8) in the Supporting Information,
as n→∞ and r →∞, conditional on n, we have

𝚺−1∕2(�̃� − �̂�ZE)
d
→ N(0, I), (7)

where
d
→ denotes convergence in distribution, 𝚺 = −1𝚪−1 with

 = 1
n

n∑
i=1

∫
𝜏

0
Yi(t){Xi − X(t)}⊗2dt, (8)

and

𝚪 = 1
rn2

n∑
i=1

1
𝜋i ∫

𝜏

0
{Xi − X(t)}⊗2dNi(t). (9)
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3 SUBSAMPLING STRATEGIES

We consider how to specify the subsampling probabilities {𝜋i}n
i=1. A naive choice is the uniform subsampling strategy

with 𝜋i = n−1, for i= 1, … , n. However, these uniform subsampling probabilities (UNIF) may not be optimal, and a
nonuniform subsampling method could have a better performance.7 Our idea is to determine the OSP by minimizing the
asymptotic variance matrix 𝚺 of �̃� in (7). Since 𝚺 is a matrix, the meaning of “minimizing” needs to be carefully defined.
For this purpose, we use the trace to induce a complete ordering of the asymptotic variance matrix.17 The asymptotic
mean squared error (AMSE) of �̃� is equal to the trace of 𝚺, which is given by

AMSE(�̃�) = tr(𝚺), (10)

where tr(⋅) denotes the trace of a matrix.
As mentioned above, the subsampling probabilities derived by minimizing tr(𝚺) require the calculation of −1, which

takes substantial time in the case of large n. Because  and 𝚪 are nonnegative definite, and 𝚺 = −1𝚪−1, simple matrix
algebra yields that tr(𝚺) = tr(𝚪−2) ≤ [tr(𝚪2)]1∕2[tr(−4)]1∕2 ≤ tr(𝚪)tr(−2) ≤ n𝜆max (−2)tr(𝚪), where 𝜆max (⋅) denotes
the maximum eigenvalue of a matrix. That is, the minimizer of tr(𝚪)minimizes an upper bound of tr(𝚺). In fact,𝚺 depends
on 𝝅i only through 𝚪, and  is free of 𝝅i. Hence, we suggest to determine the subsampling probabilities by directly
minimizing tr(𝚪), which can effectively speed up the subsampling algorithm. Note that

tr(𝚪) = tr

(
1

rn2

n∑
i=1

∫ 𝜏

0 {Xi − X(t)}⊗2dNi(t)
𝜋i

)

= 1
rn2

n∑
i=1

tr(∫ 𝜏

0 {Xi − X(t)}⊗2dNi(t))
𝜋i

= 1
rn2

[∑
i∈S0

tr(∫ 𝜏

0 {Xi − X(t)}⊗2dNi(t))
𝜋i

+
∑
i∈S1

tr(∫ 𝜏

0 {Xi − X(t)}⊗2dNi(t))
𝜋i

]

= 1
rn2

∑
i∈S1

tr(∫ 𝜏

0 {Xi − X(t)}⊗2dNi(t))
𝜋i

.

Due to dNi(t)= 0 for i∈ S0, the corresponding subsampling probabilities {𝜋i}i∈S0 are not included in tr(𝚪). Hence, we
cannot determine {𝜋i}i∈S0 by minimizing tr(𝚪). We point out that 𝜋i > 0 is a basic requirement to ensure the asymptotic
unbiasedness of U∗(𝜽). In this case, one choice for the subsampling probabilities of censored individuals is 𝜋mΓ

i = 𝛿∕K
for i∈ S0, where K denotes the number of elements in S0. Till now, the key point is to assign subsampling probabilities
for noncensored individuals. The following result gives the subsampling probabilities 𝜋mΓ

i for i∈ S1.
Under Assumptions (A.1) to (A.8) in the Supporting Information, if the subsampling probabilities are chosen as

𝜋mΓ
i = (1 − 𝛿) ⋅

tr1∕2{∫ 𝜏

0 {Xi − X(t)}⊗2dNi(t)}∑
i∈S1

tr1∕2{∫ 𝜏

0 {Xi − X(t)}⊗2dNi(t)}
, for i ∈ S1 (11)

then tr(𝚪) attains its minimum, where 𝛿 = 1 − n−1 ∑n
i=1 Δi is the censoring rate. Of note, since

∑
i∈S0

𝜋i = 𝛿 and
∑

i∈S1
𝜋i =

1 − 𝛿, a subsample has a similar censoring rate with the full data. In this case, a subsample can potentially capture the
censoring property of the full data. Numerical simulation indicates that this choice works well in practice.

In what follows, the subsample estimator �̆� can be obtained by replacing 𝜋i with 𝜋mΓ
i in (5), i= 1, … , n. To reduce the

computational burden, we propose to estimate the covariance matrix of �̆� with one subsample as follows:

�̆� = ̆−1�̆�̆−1
, (12)

where

̆ = 1
nr

r∑
i=1

1
𝜋∗

i
∫

𝜏

0
Y∗

i (t){X∗
i − X

∗
(t)}⊗2dt,

�̆� = 1
n2r2

r∑
i=1

1
𝜋∗

i

2 ∫
𝜏

0
{X∗

i − X
∗
(t)}⊗2dN∗

i (t),
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and {𝜋∗
i }

r
i=1 are the corresponding subsampling probabilities for a subsample. The standard errors (SEs) of components in

�̆� are the square roots of the diagonal elements of �̆�. We will evaluate the performance of (12) using numerical simulations
in Section 4.

4 NUMERICAL STUDIES

In this section, we conduct three simulation studies to assess (1) our method’s performance with optimal and UNIF in
comparison to the full data approach, (2) the gain in computation time, and (3) our method’s performance with mild vs
heavy censoring and how the censoring proportion could affect the choice of r. First, we generate failure times (T1, … , Tn)
from the AH model with hazards function 𝜆(t|X) = 1 + 𝜽

′X, where the true parameter is 𝜽 = (−1,−0.5, 0, 0.5, 1)T with
p= 5. We consider four cases for the generation of covariate matrix X,

Case I: X ∼ N(0,𝚺), where Σij = 0.5|i−j|.
Case II: X ∼ N(0,𝚺), where Σij = 0.5I(i≠j).

Case III: X= (X1, … , X5)T , and Xi are independent exponential random variables with probability density function
f (x)= 2e−2xI(x > 0), i= 1, … , 5.

Case IV: X ∼ t5(0,𝚺), where X follows a multivariate t distribution with degree 5 and covariance matrix Σij = 0.5|i−j|.
Note that the above Cases I and II are symmetric, Case III is asymmetric, and Case IV is heavy-tailed. The censoring

time Ci are generated from the uniform distribution over (0, 3), which leads to about 28% censoring rate. The observed
follow-up times are T̃i = min (Ti,Ci), for i= 1, … , n. We carry out computation on a sever with 128 GB memory using
R software. In Table 1, we report the estimation results from “the proposed method with OSP” vs “the proposed method
with UNIF” for Case I (other cases are given in Tables S.1 to S.3 of the Supporting Information) including the estimated
bias (bias) given by the sample mean of the estimates minus the full data estimator �̂�ZE, the estimated standard error
(ESE) of the estimates, the sampling standard error (SSE) of the estimates, and the empirical 95% coverage probability
(CP). Given n, the above simulation results are based on L= 1000 replications with n= 105, r = 100, 300, and 500. It can
be seen from the results that both estimators are unbiased. The ESE and SSE of subsample estimator are close to each
other, and the coverage probabilities are satisfactory. Their performances become better as the subsample size r increases.
Moreover, both ESE and SSE of the OSP-based estimates are smaller than those of UNIF-based method.

For further comparison, let

MSE = 1
L

L∑
𝓁=1

||�̆�(𝓁) − �̂�ZE||2, (13)

where �̆�
(𝓁) is from the 𝓁th replication, 𝓁 = 1, … , L. In Figure 1, we present the MSEs of each method. From the results,

we can see that the MSEs of OSP are smaller than those of UNIF. To evaluate the estimation performances of OSP and
UNIF towards different distribution of covariates, we define the estimation efficiency of OSP-based estimator relative to
UNIF as

Relative efficiency = MSE(�̆�unif)
MSE(�̆�osp)

,

where MSE is define in (13), �̆�unif and �̆�osp are the subsample estimators with UNIF and OSP, respectively. Figure 2
presents the relative efficiency towards different settings of covariates. We can conclude that �̆�osp is more efficient than
�̆�unif, especially in Cases III and IV.

We conduct the second simulation to evaluate the computational efficiency of the proposed subsampling algorithm,
where the mechanism of data generation is the same as the first simulation. For fair comparison, we record the CPU time
with one core based on the mean calculation time of 1000 repetitions of each subsample-based method. In Table 2, we
report the results for the computing time for Case I with r = 100, n= 104, 2× 104, 5× 104, and 105. The computing time
for the full data method is given in the last row. The UNIF requires the least computing time, because its subampling
probabilities, 𝜋i = 1∕n, do not take time to compute. Note that the computational burden for the full data method is heavy,
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T A B L E 1 Simulation results on the subsample estimator �̆� with Case I

OSP UNIF
r bias ESE SSE CP bias ESE SSE CP

𝜃1 = −1 100 0.0465 0.2565 0.2483 0.961 0.0642 0.2665 0.2656 0.952
300 0.0177 0.1378 0.1339 0.963 0.0184 0.1426 0.1423 0.939
500 0.0101 0.1054 0.1101 0.940 0.0136 0.1087 0.1155 0.945

𝜃2 = −0.5 100 0.0273 0.2146 0.2139 0.954 0.0322 0.2234 0.2303 0.956
300 0.0074 0.1126 0.1135 0.955 0.0100 0.1155 0.1080 0.966
500 0.0035 0.0852 0.0849 0.960 0.0034 0.0875 0.0889 0.951

𝜃3 = 0 100 0.0001 0.1908 0.1871 0.959 0.0043 0.1957 0.2026 0.945
300 0.0029 0.0984 0.0975 0.945 0.0030 0.1002 0.1022 0.948
500 0.0006 0.0744 0.0723 0.959 0.0006 0.0760 0.0761 0.946

𝜃4 = 0.5 100 0.0238 0.2120 0.2054 0.965 0.0333 0.2186 0.2174 0.957
300 0.0126 0.1115 0.1132 0.952 0.0176 0.1146 0.1192 0.938
500 0.0079 0.0846 0.0883 0.939 0.0078 0.0870 0.0890 0.961

𝜃5 = 1 100 0.0519 0.2547 0.2466 0.966 0.0613 0.2670 0.2742 0.957
300 0.0236 0.1376 0.1364 0.951 0.0290 0.1420 0.1462 0.943
500 0.0124 0.1047 0.1055 0.946 0.0128 0.1088 0.1123 0.937

Note: “OSP” denotes the proposed method with optimal subsampling probabilities; “UNIF” denotes the proposed method with uniform
subsampling probabilities; “bias” denotes the sample mean of the estimates minus the estimator �̂�ZE; “ESE” denotes the estimated standard error
of the estimates; “SSE” denotes the sampling standard error of the estimates; “CP” denotes the empirical 95% coverage probability towards �̂�ZE .

F I G U R E 1 The MSEs for different subsampling methods [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 2 Relative efficiency for different settings of covariates
[Color figure can be viewed at wileyonlinelibrary.com]

T A B L E 2 The CPU time for Case I with r = 100 (seconds) n

Method 104 2× 104 5× 104 105

UNIF 13.847 13.870 13.896 13.926

OSP 21.990 26.349 51.674 148.560

Full data 40.853 115.781 871.220 4476.960

Note: “OSP” and “UNIF” are given in the footnotes of Table 1.

T A B L E 3 The CPU time for Case I with
n= 105 (seconds)

r

Method 200 400 600 800 1000

UNIF 14.012 14.419 14.617 14.903 15.363

OSP 149.952 150.439 152.584 153.621 155.384

Full data 4476.960

Note: “OSP” and “UNIF” are given in the footnotes of Table 1.

for example, the CPU time is about 4476 seconds (n= 105). As the sample size n increases, the computational advantage
of our proposed method becomes more convincing. Moreover, in Table 3 we report the computing time for Case I with
n= 105, r = 200, 400, 600, 800, and 1000, respectively. The results also indicate that our subsampling-based algorithm has
great computation advantages over the full data method.

We conduct the third simulation to evaluate how the subsample-based method performs with different censoring
rates. The simulation settings are the same as the first simulation, except that censoring times are generated from uniform
distributions over (0, 6), (0, 3), and (0, 2), with corresponding censoring rate 16%, 28%, and 38%, respectively. In Table 4,
we report the bias, ESE, SSE, and CP of the OSP-based subsample estimate �̆�1 with Case I (other cases are given in Tables
S.4 to S.6 of the Supporting Information), where �̆�i are similar and omitted, for i= 2, … , 5. It can be seen from the results
that the ESE and SSE become larger as the censoring rate 𝛿 increases. Hence, we suggest to use a larger subsample size r
if the survival data is heavily censored in practice.

5 A REAL DATA EXAMPLE

We apply our proposed method to a lymphoma cancer dataset in the Surveillance, Epidemiology, and End Results program
(https://seer.cancer.gov/). There were 111 283 lymphoma cancer patients with full information between 1975 to 2007 in

http://wileyonlinelibrary.com
https://seer.cancer.gov/
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𝜹 bias ESE SSE CP

r = 100 16% 0.0468 0.2393 0.2427 0.951

28% 0.0465 0.2565 0.2483 0.961

38% 0.0486 0.2917 0.2965 0.946

r = 300 16% 0.0089 0.1282 0.1238 0.953

28% 0.0177 0.1378 0.1339 0.963

38% 0.0259 0.1586 0.1664 0.935

r = 500 16% 0.0099 0.0980 0.0913 0.958

28% 0.0101 0.1054 0.1101 0.940

38% 0.0011 0.1205 0.1189 0.954

Note: 𝛿 is the censoring rate; “Bias,” “ESE,” “SSE,” and “CP” are given in the
footnotes of Table 1.

T A B L E 4 Simulation results on OSP-based �̆�1 under
varying censoring rates (Case I)

T A B L E 5 Estimation results for the lymphoma cancer data with one subsample

UNIF OSP

𝜽 Est SE CI Est SE CI

r = 200 𝜃1 0.0065 0.0011 (0.0045, 0.0099) 0.0079 0.0010 (0.0060, 0.0085)

𝜃2 0.0005 0.0023 (−0.0033, 0.0067) 0.0017 0.0019 (−0.0006, 0.0042)

r = 400 𝜃1 0.0077 0.0009 (0.0059, 0.0096) 0.0079 0.0008 (0.0062, 0.0095)

𝜃2 0.0017 0.0017 (−0.0016, 0.0050) 0.0011 0.0016 (−0.0021, 0.0043)

r = 600 𝜃1 0.0081 0.0007 (0.0068, 0.0095) 0.0075 0.0006 (0.0062, 0.0085)

𝜃2 0.0002 0.0014 (−0.0022, 0.0026) 0.0011 0.0012 (−0.0035, 0.0019)

Note: CI, the 95% confidence interval towards �̂�ZE; Est, the subsample estimator; SE, the standard error.

USA. For analysis, we set the censoring time as the first 60 months after being diagnosed as lymphoma cancer. Among
those 111 283 subjects, the total number of event is 46 067 and the censoring rate is 58.6%. The risk factors Xi = (Xi1,Xi2)′
are age (centered and scaled) and biological sex (male = 1 and female = 0). Our task is to approximate the �̂�ZE in model
(1) with our subsample-based method.

For comparison, we also report the full data based estimate �̂�ZE = (�̂�1, �̂�2)′ with �̂�1 = 0.0077 and �̂�2 = 0.0011,
respectively. In Table 5, we report the subsample estimator (Est), the SE and the 95% confidence interval towards
�̂�ZE (CI) with one subsample, where the subsample size r = 200, 400, and 600, respectively. The results in Table 5
indicate that both UNIF and OSP based estimators are close to �̂�ZE. The SEs of OSP-based estimators are smaller
than those of UNIF. The effects of age and gender are positive, which agree with the findings in Mukhtar et al.18

Moreover, it seems that age (𝜃1) is a significant risk factor. To further check the rationality of our method, we
give bias, ESE and SSE of the subsample-based estimates based on 1000 subsamples in Table 6, where r = 200,
400, and 600, respectively. It can be seen from the results that both subsample-based estimators are unbiased, and
the ESE is close to SSE. Hence, it is desirable to use one subsample with our method when analyzing real data
in practice.

6 CONCLUDING REMARKS

In this article, we have proposed a subsampling algorithm for the AH model with massive survival data. The
subsample-based method can effectively approximate the full data estimator. The main advantage of our method is its
much reduced computational burden. From the view of statistical efficiency, the OSP-based estimator has a smaller
SE than the UNIF method. Hence, we recommend the OSP when applying our method in practical applications. In
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T A B L E 6 Bias and (ESE, SSE) for the
lymphoma cancer data

𝜽 UNIF OSP

r = 200 𝜃1 −0.00016 (0.00123, 0.00125) −0.00009 (0.00113, 0.00122)

𝜃2 −0.00014 (0.00239, 0.00242) −0.00011 (0.00222, 0.00233)

r = 400 𝜃1 −0.00018 (0.00122, 0.00122) −0.00009 (0.00112, 0.00118)

𝜃2 0.00012 (0.00238, 0.00237) −0.000004 (0.00222, 0.00232)

r = 600 𝜃1 −0.00003 (0.00070, 0.00071) −0.00002 (0.00064, 0.00068)

𝜃2 0.00002 (0.00136, 0.00145) 0.00001 (0.00127, 0.00135)

Note: “Bias,” “ESE,” “SSE,” “UNIF,” and “OSP” are given in the footnotes of Table 1.

conclusion, it is desirable to choose our subsampling approach over the methods of Kawaguchi et al12 or Xue et al14 when
we have limited computing resources at hand.

Of note, the UNIF approach is different from bootstrap. Specifically, the UNIF method uses one subsample to approx-
imate the full data estimator, and its main purpose is to reduce the computational time. However, the classic bootstrap
needs many samples with full-size by repeatedly sampling, which aims to conduct statistical inference (eg, estimating SEs
or CIs). To further improve our method, we can consider an iterative subsampling procedure. Specifically, we perform L
replications of our proposed approach. Let �̃� = 1

L

∑L
𝓁=1 �̆�

(𝓁), where �̆�
(𝓁) is the subsampling-based estimator from the 𝓁th

replication, for 𝓁 = 1, … , L. The asymptotic properties of �̃� needs further research. Second, the simulations and real data
example indicate that the proposed method works well with a moderate subsample size (eg, r = 500). Our method has
a higher estimation efficiency with a larger subsample, while it requires more computing resource. Hence, the recom-
mended subsample size is taken according to the available computing resource at hand. Third, it is interesting to extend
our proposed methods to other survival models, such as the Cox model19 and the accelerated failure time model.20 Fourth,
a known limitation of the AH approach is that the hazard is not constrained to be positive. Therefore, it is interesting to
assess the model fit or appropriateness of the AH model in the massive data setting.
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