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SUMMARY. We propose a framework for inference based on an “iterative likelihood function”,
which provides a unified representation for a number of iterative approaches, including the EM
algorithm and the generalized estimating equations. The parameters are decoupled to facilitate
construction of the inference vehicle, to simplify computation, or to ensure robustness to model
misspecification and then recoupled to retain their original interpretations. For simplicity, through-
out the paper we will refer to the log-likelihood as the “likelihood”. We define the global, local,
and stationary estimates of an iterative likelihood and, correspondingly, the global, local, and sta-
tionary attraction points of the expected iterative likelihood. Asymptotic properties of the global,
local, and stationary estimates are derived under certain assumptions. An iterative likelihood is
usually constructed such that the true value of the parameter is a a point of attraction of the ex-
pected log-likelihood. Often, one can only verify that the true value of the parameter is a local or
stationary attraction, but not a global attraction. We show that when the true value of the parameter
is a global attraction, any global estimate is consistent and asymptotically normal; when the true
value is a local or stationary attraction, there exists a local or stationary estimate that is consistent
and asymptotically normal, with a probability tending to 1. The behavior of the estimates under
a misspecified model is also discussed. Our methodology is illustrated with three examples: 1)
estimation of the treatment group difference in the level of censored HIV RNA viral load from an
AIDS clinical trial; 2) analysis of the relationship between forced expiratory volume and height in
girls from a longitudinal pulmonary function study; and 3) investigation of the impact of smoking
on lung cancer in the presence of DNA adducts. Two additional examples are in the supplementary
materials, GEEs (Generalized Estimating Equations) with missing covariates and an unweighted
estimator for big data with subsampling.

KEY WORDS: Asymptotic properties, attraction, censoring, EM algorithm, generalized estimat-

ing equations, mean score method.

1The authors thank the Editor, an associate editor and two referees for their insightful suggestions and comments

that have greatly improved an earlier version of this paper. Liang’s research was partially supported by NSF grant

DMS-1620898.



1. INTRODUCTION

Estimation procedures with iterations are widely used for statistical inference. Examples in-

clude the Newton method, the expectation-maximization (EM) algorithm, and the method for alter-

nately solving generalized estimating equations (GEE) (Liang and Zeger, 1986). In most settings,

iterations are considered as a numerical technique that circumvents otherwise computationally in-

tractable tasks rather than a statistically meaningful notion. An exception to this may be the EM

algorithm, into which extensive research has been conducted for a better understanding of the

underlying concepts.

This article proposes a framework for inference based on an “iterative likelihood function”,

which provides a unified representation for a number of iterative approaches, including the EM

algorithm and the GEE. In fact, any system of estimating functions can be expressed as an iterative

likelihood, albeit not uniquely. This approach is closely related to the method of decoupling de-

scribed by Hand and Crowder (1996). It iteratively alternates between decoupling the parameters

and recoupling them. The parameters are decoupled to facilitate construction of the inference ve-

hicle, to simplify computation, or to ensure robustness of estimation to model misspecification and

recoupled to retain their original interpretations. For simplicity, we will refer to the log-likelihood

as simply the likelihood.

We define the global, local, and stationary estimates from an iterative likelihood and, corre-

spondingly, the global, local, and stationary attraction points of the expectation of the iterative

likelihood. An iterative likelihood is usually constructed such that the true value of the parameter

is an attraction point of its expectation. Often, it is unrealistic to expect the true value to be a

global attraction, but verification for local or stationary attraction is likely. We show that when
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the true value is a global attraction, any global estimate is consistent and asymptotically normal;

when the true value is a local or stationary attraction, there exists a local or stationary estimate that

is consistent and asymptotically normal, with a probability tending to 1. Our asymptotic variance

reduces to the “sandwich” estimate when the iterative likelihood degenerates to a conventional

likelihood-based function and to an estimate of Louis’s correction (Louis, 1982), or another simple

alternative, in computing the variance for the EM algorithm. The behavior of the estimates under

a misspecified model is also discussed. A modified Newton algorithm that is straightforward to

implement is proposed to find estimates from an iterative likelihood.

We use three real, but simplified, examples to illustrate the proposed methodology. The first in-

volves estimating the treatment group difference in the level of censored HIV RNA viral load from

an AIDS clinical trial, where the EM algorithm for accommodating the censoring is represented

in the context of an iterative likelihood. The second is an analysis of the relationship between

FEV1 and height in girls from a longitudinal study of lung function, where an iterative likelihood

related to GEE is used. The third is an investigation of the impact of smoking on lung cancer in

the presence of DNA adducts, where the mean score method for missing covariates is extended.

In Section 2, we introduce the concept of the iterative likelihood, along with three examples.

Section 3 gives the asymptotic properties of an iterative likelihood and discusses the robustness

of estimation. In Section 4, we focus on obtaining estimates from an iterative likelihood and the

asymptotic variance. Section 5 revisits the three examples with real data followed by extensive

simulation studies in Section 6 to exam the performance of the proposed method on the three

examples. Some concluding remarks are given in Section 7 and all technical proofs are included

in the supplementary materials. The supplementary materials also contain two examples, GEEs

(Generalized Estimating Equations) with missing covariates and an unweighted estimator for big
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data with subsampling.

2. CONCEPT

2.1. Definition of the iterative likelihood and examples

Let Yi, i = 1, 2, . . . , N , be the response vector from the ith subject, with the distribution of the

Y s being partially characterized by parameters θ in the parameter space Θ. We consider only the

case where Θ is a bounded and convex subspace of aK-dimension Euclidean space, noting that the

extension beyond Euclidean space is natural, but requires further research. To rule out a parameter

or estimate being on the boundary, we assume throughout that the parameter space is open. We use

θ for a general parameter, while θ or θ′ indicates a typical parameter value We express any value

of θ, θ, and derivatives of scalar functions of θ with respect to θ as 1×K vectors.

For simplicity, we use the term “likelihood” instead of “log likelihood function”, despite the

latter being more accurate. Let li(θ, θ′) = li(θ, θ
′;Yi) be a function of θ, θ′, Yi, and potential

covariates, where θ and θ′ are two possibly distinct values of θ. We refer to

LN(θ, θ′) =
N∑
i=1

li(θ, θ
′) =

N∑
i=1

li(θ, θ
′;Yi) (1)

as an iterative likelihood for θ if it is used for inference about θ. Unlike a conventional likelihood-

based function such as quasi- or pseudo-likelihood, which involves only θ, an iterative likelihood

involves both θ and θ′. We use the term “iterative” as θ′ represents an intermediate value of θ in the

estimation iterations. As detailed later, separation of θ and θ′ in notation renders great generality

by encompassing a variety of statistical methods with convenience for statistical conceptualization,

mathematical representation, and computational programming, while retaining connection to the

conventional likelihood-based framework. We consider three examples as follows. Section 5 will

revisit them with detailed discussions and analyses of real data.
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Example 1 (EM algorithm) Let Zi and Xi be the complete response and its predictors for the ith

subject, respectively, and fZ(z|x; θ) be the conditional distribution of Zi given Xi, characterized

by parameters θ. The response Zi may be subject to missingness. The potentially masked or miss-

ing response is denoted by Yi. The predictors, Xi, are always observed. We may define an iterative

likelihood for θ as

LN(θ, θ′) =
N∑
i=1

li(θ, θ
′), with li(θ, θ

′) =

∫
{log fZ(z|Xi; θ)} fZ|Y (z|Yi, Xi; θ

′)dz, (2)

where fZ|Y (z|y, x; θ) is the conditional distribution of Zi given Yi. Here fZ|Y (z|y, x; θ) is just

fZ(z|x; θ) if the ith response is totally missing, i.e., Yi does not contain a measurement.

The EM algorithm (Dempster et al., 1977) for estimating θ can be represented in the form of

LN(θ, θ′). Consider only local maximization (maximization over θ with θ′ fixed) at the M-step. At

each iteration, the E-step substitutes the value of θ from the previous iteration for θ′ in LN(θ, θ′);

the M-step maximizes LN(θ, θ′) locally over θ while fixing θ′. At convergence, the final estimate

θ̂N will be such that for any value θ in its neighborhood,

LN(θ̂N , θ̂N) =
N∑
i=1

∫
{log fZ(z|Xi; θ̂N)} fZ|Y (z|Yi, Xi; θ̂N)dz

≥
N∑
i=1

∫
{log fZ(z|Xi; θ)} fZ|Y (z|Yi, Xi; θ̂N)dz = LN(θ, θ̂N).

Example 2 (GEE) Let Yi = (Yi1, . . . , YiMi
) be the responses of the ith subject, where Mi is the

number of observations from the ith subject. We model the mean, standard deviation and correla-

tion as,

EYij = mij(b), (3a)

SdYij = dij(b, a), (3b)
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Corr(Yij1 , Yij2) = rij1j2(b, a, c), (3c)

respectively, where mij(), dij(), and rij1j2() are known functions characterized by parameter vec-

tors b, (b, a) and (b, a, c). We define an iterative likelihood for θ = (b, a, c) as,

LN(θ, θ′)
def.
= L

(m)
N (b, θ′) + L

(d)
N (a, θ′) + L

(r)
N (c, θ′), (4)

where θ = (b, a, c), θ′ = (b′, a′, c′), and

L
(m)
N (b, θ′)

def.
= −

N∑
i=1

∑
j1,j2

{W (m)
ij1j2

(θ′) ·D(m)
ij1

(b) ·D(m )
ij2

(b)}, (5a)

L
(d)
N (a, θ′)

def.
= −

N∑
i=1

∑
j

[W
(d)
ij (θ′) · {D(d)

ij (b′, a)}2], (5b)

L
(r)
N (c, θ′)

def.
= −

N∑
i=1

∑
j1,j2

[W
(r)
ij1j2

(θ′) · {D(r)
ij1j2

(b′, a′, c)}2], (5c)

with

D
(m)
ij (b)

def.
= Yij −mij(b), (6a)

D
(d)
ij (a, b′)

def.
= {Yij −mij(b

′)}2 − d2
ij(b
′, a), (6b)

D
(r)
ij1j2

(c, a′, b′) =
Yij1 −mij1(b

′)

dij1(b
′, a′)

Yij2 −mij2(b
′)

dij2(b
′, a′)

− rij1j2(b
′, a′, c), (6c)

where the weights W (m)
ij1j2

(θ′), W
(d)
ij (θ′), and W

(r)
ij1j2

(θ′) can take arbitrary nontrivial forms. We

chooseW (m)
ij1j2

(θ′) to be the (j1, j2) element of the inverse of the covariance matrix of {D(m)
i1 (b), . . . ,

D
(m)
iMi

(b)} under a certain working model, and W (d)
ij (θ′) and W (r)

ij1j2
(θ′) the inverses of the variances

of D(d)
ij (b′, a′) and D(r)

ij1j2
(b′, a′, c′), respectively.

Consider the following algorithm for estimating θ, which is similar to the GEE method (Liang

and Zeger, 1986; Zeger and Liang, 1986) when (3b) and (3c) are combined into a covariance model
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to be estimated empirically. At each step, update the values of b, a, and c to be the maximizers of

L
(m)
N (b, θ′), L

(d)
N (a, θ′), and L(r)

N (c, θ′), respectively, while fixing θ′ = (b′, a′, c′) at its value obtained

from the previous iteration. At convergence, the final estimate θ̂N = (b̂N , âN , ĉN) will be such

that for any θ = (b, a, c), LN(θ̂N , θ̂N) = L
(m)
N (b̂N , (b̂N , âN , ĉN)) + L

(d)
N (âN , (b̂N , âN , ĉN)) +

L
(r)
N (ĉN , (b̂N , âN , ĉN)) ≥ L

(m)
N (b, (b̂N , âN , ĉN)) + L

(d)
N (a, (b̂N , âN , ĉN)) + L

(r)
N (c, (b̂N , âN ,

ĉN)) = LN(θ, θ̂N).

The iterative likelihood (4) can be naturally extended into nonparametric settings. Consider

modeling the mean response using smoothing splines. Let (X [1]
ij , . . . ., X

[K(m)]
ij ) be the 1×K(m) row

vector of the predictors for the jth response of the ith subject and b = (b[1](), . . . ,b[K(m)]()) be

the “parameter”, where b[k]() is an unknown smoothing spline corresponding to X [k]
ij . For specific

splines b = (b[1](), . . . , b[K(m)]()), one can replace (3a) and (5a) by EYij = mij(b) =
K(m)∑
k=1

b[k](X
[k]
ij ),

and L(m)
N (b, θ′)

def.
= −

N∑
i=1

∑
j1,j2

{W (m)
ij1j2

(θ′)·D(m)
ij1

(b)·D(m )
ij2

(b)}−
N∑
i=1

K(m)∑
k=1

[
sk
∫ {d2b[k](t)

dt2

}2

dt

]
, respec-

tively, where sk is a pre-fixed or unknown nonnegative smoothing parameters reflecting the penalty

for non-smoothness of b[k](t). Even though detailed investigation of its properties requires more

research, this extension from a parametric setting to nonparametric smoothing splines is intuitive

and straightforward. The derivative of the iterative likelihood defined here can be used to define

a system of penalized estimating equations (Fu, 2003). A direct extension of estimating functions

into a nonparametric setting would involve higher level mathematics (Hastie and Tibshirani, 1990,

p 105-136) even in its formulation.

Example 3 (Missing covariates problem) Let Yi be the response of the ith subject and Xi and

Zi be its predictors. While Yi and Xi are observed for all subjects, Zi is missing for some sub-

jects with a probability depending on Yi and Xi. Let Ri be 1 if Zi is observed and 0 otherwise,
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fY |Z(y|z, x; b) be the conditional distribution of Yi given Zi and Xi, characterized by parameters b

and fZ|Y (z|y, x; a) be the conditional distribution of Zi given Yi and Xi, characterized by parame-

ters a. Note that fY |Z and fZ|Y do not constitute a likelihood decomposition and thus b and a are

not functionally independent. Even so, we treat them as separate parameters and define an iterative

likelihood for θ = (b, a) as

LN(θ, θ′) =
N∑
i=1

li(θ, θ
′), with li(θ, θ′) = li((b, a), (b′, a′))

def.
= l

(0)
i (b, a′) + l

(1)
i (a), (7)

where θ = (b, a), θ′ = (b′, a′) and l(0)i (b, a′)
def.
= Ri·log fY |Z(Yi|Zi, Xi; b)+(1−Ri)·

∫
{log fY |Z(Yi|z,

Xi; b)}fZ|Y (z|Yi, Xi; a
′)dz, l

(1)
i (a)

def.
= Ri·log fZ|Y (Zi|Yi, Xi; a).We denoteL(0)

N (b, a′)
def.
=

N∑
i=1

l
(0)
i (b, a′)

and L(1)
N (a)

def.
=

N∑
i=1

l
(1)
i (a).

When Yi is conditionally independent of Xi given Zi, and (Yi, Xi) is discrete with a small

number of possible realizations and a is nonparametric, this reduces to the mean score method

proposed by Reilly and Pepe (1995). In general, the estimate θ̂N = (b̂N , âN) satisfies

∂LN(θ, θ′)

∂θ

∣∣∣
θ=θ′=θ̂N

=

{
∂L

(0)
N (b, a′)

∂b

∣∣∣
b=b̂N ,a′=âN

,
∂L

(1)
N (a)

∂a

∣∣∣
a=âN

}
= 0.

The above three examples illustrate the generality of the iterative likelihood in representing a

number of seemingly unrelated statistical approaches.

2.2. Estimates from an iterative likelihood

A simple algorithm for estimating θ from an iterative likelihood LN(θ; θ′) is as follows.

Algorithm 1. Step 1. Set l = 0 and θ(0) to be an initial value of θ;

Step 2. Increment l to l+1 and set θ(l+1) to be (2.a) a value of θ that maximizesLN(θ, θ(l)), (2.b)

a value of θ that locally maximizesLN(θ, θ(l)), or (2.c) a root of the equations ∂LN(θ, θ(l))/∂θ = 0;

Step 3. Repeat Step 2.a, 2.b, or 2.c until convergence and set θ̂N to be θ(l+1).
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Depending on whether Step 2a, 2b, or 2c is used in the iterations, we can give a hierarchy of

definitions for the estimate θ̂N from the iterative likelihood LN(θ, θ′).

Definition 1. An estimate of θ is referred to as:

(a) a global estimate from LN(θ, θ′) if

LN(θ̂N , θ̂N)− LN(θ, θ̂N) ≥ 0 for any θ ∈ Θ; (8a)

(b) a local estimate from LN(θ, θ′) if an open neighborhood of θ̂N exists such that

LN(θ̂N , θ̂N)− LN(θ, θ̂N) ≥ 0 for any θ in the neighborhood; (8b)

(c) a stationary estimate from LN(θ, θ′) if

∂LN(θ, θ′)

∂θ

∣∣∣
θ=θ′=θ̂N

= 0. (8c)

By definition, a global estimate must be a local estimate, which must be a stationary estimate. In

Example 1, 2, or 3, Algorithm 1 with Step 2.b, 2.a, or 2.c is used, yielding a local, global, or

stationary estimate, respectively. Further, we define a neighborhood of the estimates in each of the

three types.

Definition 2. For an iterative likelihood LN(θ, θ′) and a given ε > 0, we refer to the subsets of the

parameter space Θ,

Θ̂
(global)
εN

def.
= {θ ∈ Θ : there exists a global estimate θ̂N such that ||θ − θ̂N || ≤ ε},

Θ̂
(local)
εN

def.
= {θ ∈ Θ : there exists a local estimate θ̂N such that ||θ − θ̂N || ≤ ε},

Θ̂
(stationary)
εN

def.
= {θ ∈ Θ : there exists a stationary estimate θ̂N such that ||θ − θ̂N || ≤ ε},

as ε−neighborhoods of the global, local, and stationary estimates, respectively, where || · || is the

Euclidean norm for a vector or square matrix.
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By definition, Θ̂
(global)
0N , Θ̂

(local)
0N , and Θ̂

(stationary)
0N are the neighborhoods of global, local, and sta-

tionary estimates, respectively. As detailed later, one has to search in one of these three sets for a

consistent and asymptotically normal estimate, depending on the condition for the true value of θ

to satisfy in the expectation of LN(θ, θ′). Note that (8c) is a system of estimating equations, which

is implied by (8b), which is implied by (8a). Thus, there always exists a system of estimating

functions corresponding to any iterative likelihood. Likewise, any system of estimating equations

can be expressed in the form of an iterative likelihood. To see this, let θ = (θ[1], . . . ,θ[K]) be the

parameters and GN(θ) = (G
[1]
N (θ), . . . , G

[K]
N (θ)) be a system of estimating functions. Correspond-

ingly, we can define

LN(θ, θ′) =
K∑
k=1

wk
θ[k]∫
−∞

G
[k]
N (θ∗)|θ∗

[k]
=α, θ∗

[−k]
=θ′

[−k]
dα

 ,

where wk is a non-zero weight and the subscript [−k] indexes the elements in a vector except the

k-th one. Note ∂LN(θ, θ′)/∂θ|θ=θ′=θ̂N = 0. However, the expression of an iterative likelihood cor-

responding to a system of estimating equations may not be unique because one may obtain different

iterative likelihoods by using different weights or permuting the order of elements in θ. Of note,

unless the derivative matrix of estimating equations with respect to θ is symmetric, a system of

estimating equations cannot be expressed as a likelihood-based function such as quasi-likelihoods

(McCullagh and Nelder, 1989, p. 333-334), which does not involve θ′. Thus, introducing θ′ is criti-

cal for ensuring the existence of an iterative likelihood corresponding to every system of estimating

equations.

Despite the connection, an iterative likelihood may be preferred to estimating equations in rep-

resenting an inference vehicle. 1) An iterative likelihood is more directly related to the underlying

statistical model and can possibly be given meaningful interpretations while estimating equations
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are often treated as a computational tool. For example, in a specific case of the weighted least

squares estimation, an iterative likelihood corresponds to a weighted sum of squared losses and it

can be interpreted as a measure of the goodness-of-fit of the underlying statistical model, while a

system of estimating equations does not have this direct interpretation. 2) Extending an iterative

likelihood to a more general parameter space, for example, discrete or functional, is natural and

straightforward while defining estimating equations beyond Euclidean space may be challenging.

3) The representation of iterative likelihood is richer than that of estimating equations because mul-

tiple iterative likelihoods may correspond to one system of estimating equations. This is helpful to

characterize the inference vehicle from more vantage points. Reducing the representation from an

iterative likelihood to estimating equations may result in loss of some useful characteristics of the

inference vehicle. For example, the representation of iterative likelihood allows for a distinction

among global, local, and stationary estimates, which are consistent and asymptotically normal in

different senses under different conditions, as detailed in Section 3.2.

3. THEORY

This section provides a general theory on iterative likelihood. We start with some definitions

in Section 3.1. Section 3.2 focuses on the asymptotic properties for estimates from an iterative

likelihood. Section 3.3 examines estimates under a misspecified model.

3.1. Attraction in the expectation of iterative likelihoods

Consider a sequence of iterative likelihoods {LN(θ, θ′)} as defined in (1). Throughout, we

assume the following regularity conditions:

1) all Y s are independent of each other;

2) the function li(θ, θ′) is twice differentiable with respect to θ and θ′ in the interior of Θ, the
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expectations of its first two derivatives exist, and the order of the expectation and differentiation

operators can be exchanged;

3) both ∂li(θ, θ′)/∂θ and ∂2li(θ, θ′)/∂θ2 are bounded and continuous functions of θ and θ′ uni-

formly for i, θ, θ′ and the data.

We denote

GN(θ)
def.
=

1

N

N∑
i=1

gi(θ), where gi(θ)
def.
=

∂li(θ, θ
′)

∂θ

∣∣∣
θ′=θ

, (9a)

H
(0)
N (θ)

def.
=

1

N

N∑
i=1

h
(0)
i (θ), where h(0)i (θ)

def.
= −∂

2li(θ, θ
′)

∂θ2

∣∣∣
θ′=θ

, (9b)

H
(1)
N (θ)

def.
=

1

N

N∑
i=1

h
(1)
i (θ), where h(1)i (θ)

def.
=
∂2li(θ, θ

′)

∂θ∂θ′

∣∣∣
θ′=θ

, (9c)

HN(θ)
def.
= H

(0)
N (θ)−H(1)

N (θ) =
1

N

N∑
i=1

hi(θ), where hi(θ)
def.
= h

(0)
i (θ)− h(1)i (θ), (9d)

UN(θ)
def.
=

1

N

N∑
i=1

ui(θ), where ui(θ)
def.
=

[{
∂li(θ, θ

′)

∂θ

}t
∂li(θ, θ

′)

∂θ

] ∣∣∣
θ′=θ

. (9e)

Here, GN(θ) is the system of estimating functions corresponding to LN(θ, θ′), with HN(θ) being

the negative Hessian matrix, possibly asymmetric, and UN(θ) the outer product of the elementwise

estimating functions. In HN(θ), H
(1)
N (θ) corresponds to the variability due to θ′ being unknown.

By the notation, θ̂N is a stationary estimate from LN(θ, θ′) ifGN(θ̂N) = 0 and it is a local estimate

if, in addition, ρ(H
(0)
N (θ̂N)) ≥ 0, where ρ(A) is the smallest eigenvalue of (A+At)/2 for a square

matrix A.

To understand the behavior of an estimate from an iterative likelihood, we examine the “attrac-

tion point”, which represents an “estimate in expectation”, with a hierarchy of definitions given

below, corresponding to the hierarchy of definitions for estimates in Definition 1. When the sam-

ple size is large, an estimate is expected to be close to an attraction. In practice, one constructs an
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iterative likelihood such that the true value of the parameter is an attraction in the expectation of

the iterative likelihood under the model assumptions, thereby ensuring that an estimate is close to

the true value in large samples when the model is correctly specified. However, since the behavior

of estimates under a misspecified model is also our interest, we define a sequence of attractions

instead of a fixed attraction, noting that when the model is misspecified, the “estimate in expec-

tation” may depend on N. Consider an example of modeling the mean of Yi, mi as θ and use

θ̂N = (Y1 + · · · + YN)/N to estimate θ. Under the model, all mis reduce to a common value,

which is an attraction point. However, when the model is misspecified, the expectation of θ̂N ,

θ0N = (m1 + · · ·+mN)/N, may depend on N. In fact, {θ0N} may not even converge.

Definition 3. Let {LN(θ, θ′)} be a sequence of iterative likelihoods for θ as defined in (1), with

GN(θ) and HN(θ) defined in (9a) and (9d), respectively. We call a sequence of values of θ, {θ0N},

(a) a sequence of global attraction points in {ELN(θ, θ′)} if there exists a constant C > 0 such

that

||θ − θ0N || ≤ {ELN(θ0N , θ)− ELN(θ, θ)} · C/N for all θ ∈ Θ and N ; (10a)

(b) a sequence of local attraction points in {ELN(θ, θ′)} if there exist constants C > 0 and δ0 > 0

such that

||θ − θ0N || ≤ {ELN(θ0N , θ)− ELN(θ, θ)} · C/N for all θ ∈ Θ, ||θ − θ0N || < δ0 and N ;

(10b)

(c) a sequence of stationary attraction points in {ELN(θ, θ′)} if there exists a positive number

ε0 > 0 such that for all N,

EGN(θ0N) = 0, (10c)
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σ(EHN(θ0N)) > ε0, (10d)

where σ(A) denotes the smallest absolute eigenvalue of (A+ At)/2 for a square matrix A.

When all θ0Ns reduce to a common value θ0, we say θ0 is a global, local, or stationary attraction

when (a), (b), or (c) holds, respectively. By definition, a sequence of global attractions must be a

sequence of local attractions, which must be a sequence of stationary attractions. Note that {θ0N}

is a sequence of local attractions if and only if 1) (10c) holds and 2) there exists ε0 > 0 such that

for all N,

ρ(EHN(θ0N)) > ε0. (11)

The latter is immediate from the Taylor expansion under the regularity condition: 1
N
{ELN(θ0N , θ)−

ELN(θ, θ)} = −(θ−θ0N) EGt
N(θ0N)+ 1

2
(θ−θ0N)

EHN (θ0N )+EHt
N (θ0N )

2
(θ−θ0N)t+rN(θ0N),where

rN(θ0N)/(||θ − θ0N ||2) converge to 0 uniformly for N as ||θ − θ0N || tends to 0. We refer to (10d)

and (11) as uniform nonsingularity and uniform positive definiteness, respectively.

When {θ0N} is a sequence of global attractions, 1) ELN(θ0N , θ)) ≥ ELN(θ, θ) holds, ensuring

that the corresponding estimating equations are unbiased, and 2) θ is close to θ0N if ELN(θ, θ)

nears ELN(θ0N , θ), amounting to convexity and then identifiability of θ at θ0N in ELN(θ, θ′)/N in

some global sense. When {θ0N} is a sequence of local attractions, 1) the estimating equations are

unbiased, and 2) local convexity of ELN(θ, θ′)/N at θ = θ0N , and then local identifiability holds.

When {θ0N} is a sequence of stationary attractions, 1) the estimating equations are unbiased, and

2) local identifiability holds.

3.2. Asymptotic properties

The asymptotic properties of estimates from a sequence of iterative likelihoods are as follows.
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Theorem 1. Let {LN(θ, θ′)} be a sequence of iterative likelihoods for θ as defined in (1 ), with

GN(θ), HN(θ), and UN(θ) denoted in ( 9a), (9d), and (9e), respectively. Let {θ0N} be a sequence

of values of θ. Under the regularity conditions 1)-3), we have:

(a) If {θ0N} is a sequence of global attractions in {ELN(θ, θ′)}, then for any sequence of global

estimates {θ̂N} from {LN(θ, θ′)}, {θ̂N − θ0N} converges in probability to 0;

(b) If {θ0N} is a sequence of local attractions in {ELN(θ, θ′)}, then there exists a sequence of

estimates {θ̂N} from {LN(θ, θ′)} such that for any ε > 0,

lim
N→∞

Pr(||θ̂N − θ0N || ≤ ε and θ̂N is a local estimate) = 1; (12a)

(c) If {θ0N} is a sequence of stationary attractions in {ELN(θ, θ′)}, then there exists a sequence

of estimates {θ̂N} from {LN(θ, θ′)} such that for any ε > 0,

lim
N→∞

Pr(||θ̂N − θ0N || ≤ ε and θ̂N is a stationary estimate) = 1; (12b)

(d) If {θ0N} is a sequence of global, local, or stationary attractions in {ELN(θ, θ′)} and {θ̂N} is

a sequence of estimates from {LN(θ, θ′)} such that {θ̂N − θ0N} converges in probability to

0, then {
√
N(θ̂N − θ0N)} is asymptotically normally distributed with mean 0 and variance

matrix,

{EHN(θ0N)}−1 · EUN(θ0N) ·
[
{EHN(θ0N)}t

]−1
. (12c)

The proof of the theorem is provided in the supplementary materials.

Results (a) and (d) imply that if the true value of θ is a global attraction, any sequence of

global estimates will be consistent and asymptotically normal, but the theorem does not ensure the

existence of a global estimate. When LN(θ, θ′) is a true likelihood, which does not involve θ′, the
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true value is generally a global attraction, even though exceptions do exist (e.g. Ferguson, 1982).

Often, an iterative likelihood is constructed such that the true value can be verified as a local or

stationary attraction, but not a global attraction. When the true value is a local attraction, Results

(b) and (d) imply that there exists a consistent and asymptotically normal estimate that is a local

estimate, with a probability tending to 1. Similarly, when the true value is a stationary attraction,

Results (c) and (d) imply that there exists a consistent and asymptotically normal estimate that is

a stationary estimate, with a probability tending to 1. In either case, the global estimate is not

necessarily consistent; but the set of local or stationary estimates will include a consistent and

asymptotically normal estimate, with a probability tending to 1. When the set includes only one

estimate, one can be quite certain that that estimate is consistent and asymptotically normal if the

sample size is large. When the set includes multiple estimates, however, the iterative likelihood

may not lend itself useful for identifying a consistent and asymptotically normal estimate from the

set and one may rely on the substantive knowledge, the statistical model, or other criteria (e.g.,

Heyde and Morton, 1998) to choose an estimate. This might be considered the price for using an

iterative likelihood as opposed to a true likelihood, although such problems sometimes occur even

when a true likelihood is used. In conclusion, when the true value of the parameter is a global

attraction, any global estimate is consistent and asymptotically normal; when the true value can

only be verified as a local or stationary attraction, one has to search in the set of all possible local

or stationary estimates to find a consistent and asymptotically normal estimate.

To better understand the practical implication of the true value of the parameter being a local

or stationary attraction, we may rewrite (12a) and (12b) as

lim
N→∞

Pr{θ0N ∈ Θ̂
(local)
εN } = 1, and lim

N→∞
Pr{θ0N ∈ Θ̂

(stationary)
εN } = 1,
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respectively, saying the probability that any neighborhood of local or stationary estimates covers

the true value is close to 1 when the sample size is large enough.

Result (d) says that for a sequence of estimates {θ̂N}with {θ̂N−θ0N} converging in probability

to 0, {
√
N(θ̂N − θ0N)} is asymptotically normally distributed with mean 0 and variance matrix

(12c). When (θ̂N − θ0N) converges in probability to 0, we may use

HN(θ̂N) = H
(0)
N (θ̂N)−H(1)

N (θ̂N) = −
N∑
i=1

{
∂2li(θ, θ

′)

∂θ2
+
∂2li(θ, θ

′)

∂θ∂θ′

} ∣∣∣
θ=θ′=θ̂N

, and

UN(θ̂N) =
N∑
i=1

[{
∂li(θ, θ

′)

∂θ

}t
∂li(θ, θ

′)

∂θ

] ∣∣∣
θ=θ′=θ̂N

,

to approximate HN(θ0N) and UN(θ0N), respectively. It follows from the law of large numbers and

Result (a) of Lemma 1 in the Appendix that both HN(θ0N)−EHN(θ0N) and UN(θ0N)−EUN(θ0N)

converge in probability to 0. Thus, the asymptotic variance (12c) can be approximated by

{H(0)
N (θ̂N)−H(1)

N (θ̂N)}−1 · UN(θ̂N) · [{(H(0)
N (θ̂N)}t − {H(1)

N (θ̂N)}t]−1, (13)

whereH(1)
N reflects the additional variability in the estimation of θ due to θ′ being estimated. When

θ′ is absent from LN(θ, θ′), where H(1)
N (θ̂N) = 0, (13) reduces to the “sandwich” estimate (e.g.

Huber, 1967). We term (13) robust variance.

If all θ0Ns are equal to θ0 and for all i,

E{ui(θ0)− hi(θ0)} = 0, (14)

then EUN(θ0) = EHN(θ0), and (12c) will be equal to {EUN(θ0)}−1 or {HN(θ0)}−1, implying that

the asymptotic variance of
√
N(θ̂N − θ0N) can be approximated by either

2{HN(θ̂N) +H t
N(θ̂N)}−1, or (15)

{UN(θ̂N)}−1. (16)
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We refer to (15) and (16) as H- and U- variances, respectively. The example given in Section 5.1

satisfies condition (14) and thus the asymptotic variance can also be approximated by the H- or

U- variance. Lindsay (1982) termed (14) as information unbiasedness, which allows an estimating

function to be treated as a score function up to the second order. Gan and Jiang (1999) used (14)

to test consistency and asymptotically efficiency of an estimate from a true likelihood.

3.3. Estimates under a misspecified model

Usually, an iterative likelihood is constructed such that the true value of θ is an attraction under

a working model. Because Theorem 1 ensures that an estimate θ̂N is close to an attraction θ0N

without alluding to correctness of a model, we can discuss the behavior of θ̂N under a misspecified

model by examining θ0N under a model relaxed from the working one. We give a general treatment

here with a specific example discussed in Section 5.2.

Let ϕ0 denote the true distribution of the data. Let Φ∗ denote a working statistical model,

which is a set of possible distributions that may or may not include ϕ0. The model Φ∗ is said to be

misspecified if it does not include ϕ0. Let Φ∗∗ be a model relaxed from Φ∗, that is, a superset of

Φ∗ assumed to include ϕ0. When θ0N is either a global, local, or stationary attraction in ELN(θ, θ′)

under Φ∗∗, θ0N satisfies

∂ELN(θ, θ′)

∂θ

∣∣∣
θ=θ′=θ0N

= EGN(θ0N) = 0, (17)

where the expectation is taken with respect to the unknown true distribution ϕ0 in Φ∗∗. If θ0N

is uniquely identified by (17) under Φ∗∗ along with the respective condition for global, local, or

stationary attraction, one can express θ0N as a function of ϕ0 under Φ∗∗, θ0N = θN [ϕ0; Φ∗∗]. For

the working model Φ∗, let θN [ϕ0; Φ∗] be the expression of θN [ϕ0; Φ∗∗] under the constraints given

by Φ∗. Depending on whether θN [ϕ0; Φ∗] is a global, local, or stationary attraction under Φ∗∗, the
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respective asymptotic property in Theorem 1 follows. Note that θN [ϕ0; Φ∗] may not always be

global, local, or stationary attraction under Φ∗∗. For example in GEE, if one is only interested

in the mean parameters and they are correctly specified, then θN [ϕ0; Φ∗] can be global, local, or

stationary attraction even when the variance and data distribution are misspecified. However, if

variance parameters are also of interest, then θN [ϕ0; Φ∗] may not be a global, local, or stationary

attraction. In this case, θ0N in Theorem 1 need to be replaced by θN [ϕ0; Φ∗]. A specific example

along with more detailed discussions on this will be presented in Section 5.2.

Let {θ̂N } be a sequence of estimates such that {θ̂N − θ0N} = {θ̂N − θN [ϕ0; Φ∗∗]} converges

in probability to 0 under Φ∗. Consider a subvector of θ, β, with corresponding components β0N ,

β̂N , βN [ϕ0; Φ∗∗] and βN [ϕ0; Φ∗] in θ0N , θ̂N , θN [ϕ0; Φ∗∗] and θN [ϕ0; Φ∗], respectively. Because

βN [ϕ0; Φ∗] can be treated as the true value of β when the working model is correctly specified, it

would be independent of N . When βN [ϕ0; Φ∗∗] is also independent of N and can be attached with

the same interpretation as βN [ϕ0; Φ∗], we can say that β̂N , which is obtained from the working

model Φ∗, is consistent and asymptotically normal under a relaxed model Φ∗∗.

Often, one can achieve this robustness with an iterative likelihood in the form LN(θ, θ′) =

L
(0)
N (β, θ′) + L

(1)
N (λ, θ′), where θ = (β, λ) and ∂EL(0)

N (β, θ′)/∂β = 0 holds at β = β0 with

λ being any value under Φ∗∗. This is facilitated by the separation of θ and θ′, which allows the

construction of estimating functions for β independently of λ while fixing θ′ = (β′, λ′), thereby

ensuring the robustness of estimating β under a misspecified model Φ∗.

4. ESTIMATION

This section focuses on finding estimates from an iterative likelihood and their asymptotic

variance. Even though Algorithm 1 can be used to find estimates, it is inadequate: 1) It requires

the availability of a procedure for performing maximization or solving equations; 2) It may be
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inefficient in that at each iteration θ may be updated to a value further away from θ′ while θ′ and

θ are eventually required to be the same; 3) It does not ensure that all global, local, or stationary

estimates can be found.

We present an algorithm for finding estimates from LN(θ, θ′) in (1), with GN(θ), H(0)
N (θ),

H
(1)
N (θ), and HN(θ ) defined in (9a), (9b), (9c) and (9d), respectively. Section 4.1 describes a

modified Newton method, which is easy to program and possibly more efficient than Algorithm

1. In Section 4.2, we discuss evaluations of derivatives, which are required in implementing the

algorithms and computing the asymptotic variance.

4.1. A modified Newton algorithm

A modified Newton method for finding a stationary estimate from LN(θ, θ′) is as follows.

Algorithm 2. Step 1. Set l = 0 and θ(0) to be an initial value of θ;

Step 2. Increment l to l + 1 and set θ(l+1) to be K(θ(l)), where

K(θ) = θ +GN(θ) {H(0)
N (θ)}−1, (18)

Step 3. Repeat Step 2 until convergence and set θ̂N to be θ(l+1).

While Step 2 of Algorithm 1 involves a multiple-step search for a maximizer or a stationary

value of L(θ, θ(l)) with respect to θ, Step 2 of Algorithm 2 uses a single-step search. Algorithm

2 may be more efficient in that it saves computation for updating θ to a value further away from

θ′ = θ(l). We may impose some constraints on (18) such as LN(θ(l+1), θ(l)) > LN(θ(l), θ(l)) for

finding estimates of a specific type. We may also multiply by a constant, say ζ ∈ (0, 1], to the

last term of (18) to make the algorithm more stable. In Example 1 of the EM algorithm, the

constraint LN(θ(l+1), θ(l)) > LN(θ(l), θ(l)) would ensure each iteration increases the observed data

likelihood. If H(0)
N (θ) were replaced by HN(θ) in (18), Algorithm 2 would reduce to the regular
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Newton procedure. The following theorem gives sufficient conditions for an iteration sequence

from Algorithm 2 to converge.

Theorem 2. Let θ̂N be a stationary estimate from LN(θ, θ′). Then, there exists an open neigh-

borhood of θ̂N such that for any initial value θ(0) in that neighborhood, the iteration sequence

θ(0), θ(1), θ(2), . . . , from Algorithm 2, where θ(l+1) = K(θ(l)), l = 1, 2, . . . , and K() is defined in

(18), converges to θ̂N provided that (i) H(0)
N (θ) and GN(θ) are differentiable with respect to θ at

θ = θ̂N ; (ii) The largest absolute eigenvalue of the matrixH(1)
N (θ̂N) ·{H(0)

N (θ̂N)}−1 is smaller than

1.

The proof of the theorem is provided in the supplementary materials. Condition (i) holds

when the iterative likelihood is smooth enough. Heuristically, Condition (ii) means that LN(θ, θ′)

is more sensitive to θ than to θ′. As shown in Section 5 for our examples, this often holds in

applications. The importance of this theorem is more theoretical than practical. It ensures that,

given the conditions, any iteration sequence from Algorithm 2 with an initial value close enough

to a stationary estimate will converge to that estimate. In practice, one may generate a sequence of

initial values. Under Conditions (i) and (ii), if Algorithm 2 is repeated over this sequence of initial

values long enough, the probability that all the estimates can be found is close to 1. If no sequence

converges, the regular Newton method may be used.

Our goal is to identify the sets of global, local, and stationary estimates, namely, Θ̂
(global)
0N ,

Θ̂
(local)
0N , and Θ̂

(stationary)
0N . After each application of Algorithm 2 that results in a converging se-

quence, we include the estimate θ̂N in Θ̂
(stationary)
0N ; if further ρ(H

(0)
N (θ̂N)) > 0, we include θ̂N in

Θ̂
(local)
0N . Finally, we include θ̂N in Θ̂

(global)
0N if it is confirmed to be a global estimate. This may

be achieved probabilistically by generating a random but ergodic sequence of values for θ and

comparing LN(θ, θ̂N) with LN(θ̂N , θ̂N). However, this confirmation is unnecessary when the true
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value is not verified as a global attraction or Θ̂
(stationary)
0N or Θ̂

(local)
0N can be otherwise narrowed down

to a reasonable estimate.

4.2. Evaluations of derivatives and asymptotic variance

In Algorithm 2, GN(θ) and H(0)
N (θ) are evaluated while in a regular Newton method, GN(θ)

and HN(θ) are evaluated. Algorithm 2 may be preferred in that H(0)
N (θ) is easier to evaluate

than HN(θ). Specifically, Algorithm 2 only requires evaluations of the first two derivatives of

LN(θ, θ′) with respect to θ while fixing θ′. In all the three examples given, these evaluations are

straightforward. Even so, we indicate that this advantage may be less important as tools such as

automatic differentiation (Griewank and Corliss, 1991) for evaluating derivatives become readily

available. Automatic differentiation allows one to find accurate derivatives of any programmable

function without recoding the function. To obtain the asymptotic variance (13), one needs to

compute H(0)
N (θ̂N), H

(1)
N (θ̂N), and UN(θ̂N). One obtains H(0)

N (θ̂N) and UN(θ̂N) in evaluating

∂li(θ, θ
′)/∂θ and ∂2li(θ, θ′)/∂2θ at θ = θ′ = θ̂N , which are routinely provided in our estimation

algorithms; one may obtainH(1)
N (θ̂N) in evaluating ∂2li(θ, θ′)/∂θ∂θ′ at θ = θ′ = θ̂N via automatic

differentiation or the finite difference method.

Of note, separation of θ and θ′ in defining an iterative likelihood is helpful for computational

programming. The key is to program a function for the iterative likelihood, which takes two

arguments θ and θ′ and returns individual iterative likelihoods. Evaluating this function and its

derivatives provides all necessary information for implementing the estimation algorithm and for

computing the asymptotic variance.
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5. APPLICATION

5.1. EM algorithm: censored HIV RNA in an AIDS clinical trial

Consider the iterative likelihood (2) for the EM algorithm formulated in Example 1. Note

gi(θ) =
∂li(θ, θ

′)

∂θ

∣∣∣
θ′=θ

=

[
∂

∂θ

∫
{log fZ(z|Xi; θ)} · fZ|Y (z|Yi, Xi; θ

′)dz

] ∣∣∣
θ′=θ

=
1

fY (Yi|Xi; θ)

{
∂

∂θ

∫
fZ(Yi, z|Xi; θ)dz

}
=

∂

∂θ
{log fY (Yi|Xi; θ)}

is actually the score function for the observed data. Note hi(θ) = −∂gi(θ)/∂θ and ui(θ) = gti(θ)

gi(θ). Thus, for the true value of θ, θ0, Egi(θ0) = 0 and Ehi(θ0) = Eui(θ0), which ensures that,

under mild conditions, θ0 is a local attraction and that (14) holds. However, θ0 may not be a global

attraction. This is expected because Result (a) of Theorem 1 would have otherwise implied that

any estimate obtained via the EM algorithm with global maximization at the M-step is consistent,

contradicting to the observation (Boyles, 1983; Wu, 1983) that an estimate obtained via the EM

algorithm is not necessarily even a maximum likelihood estimate nor consistent.

It follows from Results (b) and (d) of Theorem 1 that one needs to search in the set of all local

estimates for a consistent and asymptotically normal estimate. In this particular application to the

EM algorithm, such an estimate can be identified by comparing the likelihood

N∑
i=1

log fY (Yi|Xi; θ) =
N∑
i=1

log

[∫ {
fZ(z|Xi; θ) · fY |Z(Yi|Xi, z; θ

}
dz

]

for the values of θ in the finite set of local estimates. The iterative likelihood (2) itself, like the EM

algorithm, however, does not provide a direct way to identify such an estimate.

Because (14) holds, the asymptotic variance can be approximated by either the robust variance

(13), the H-variance (15) or the U-variance (16). Note HN(θ0) = H
(0)
N (θ0) − H

(1)
N (θ0), where

H
(0)
N (θ0) is the observed complete data information and H

(1)
N (θ0) is the observed missing data
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information (Louis, 1982). Thus, the H-variance is an estimate for the Louis’ corrected variance

for the EM algorithm. The U-variance is easier to compute because UN(θ0) =
N∑
i=1

{gti(θ0)gi(θ0)}

is a direct output from every iteration. This simple formula for computing the variance was noted

by Meilijson (1989). Finally, when information unbiasedness (14) is questionable, one can always

use the robust variance (13).

Note that both (2) and
N∑
i=1

log fY (Yi|Xi; θ) are iterative likelihoods corresponding to the esti-

mating equations,
∑N

i=1
∂{log fY (Yi|Xi;θ)}

∂θ
= 0, where the latter is a degenerate iterative likelihood

that does not involve θ′. The advantages for using the former over the latter in computation comes

at the expense of the need to search the set of local estimates for a consistent and asymptotically

normal estimate.

Consider a specific example from the AIDS Clinical Trial Group Study 398 (Hammer et al.,

2002), a randomized trial to compare antiviral strategies in treating HIV-infected subjects with HIV

RNA viral load greater than 1,000 copies/mL at randomization (week 0). Our interest is to compare

the HIV RNA level at week 24 between the two treatment groups: those who were randomized to

take double protease inhibitor (PI) and those to take single PI. For simplicity, we only use the

231 subjects who had not taken non-nucleoside reverse transcriptase inhibitor (NNRTI) for more

than 7 days by week 0 and who had HIV RNA measurements at weeks 0 and 24, with 152 and

79 subjects in the double PI and single PI groups, respectively. Due to technical limitations to

the assay, some HIV RNA values are not directly observed, but are known to be below or above

a certain detection limit. In our data, all HIV RNA values at week 0 are actually observed, but

26.4% of the measurements at week 24 were censored below detection limits, with the detection

limits ranging from 7 to 45 copies/mL.

For subject i, let Zi denote the complete data, the actual level of HIV RNA in log10 at week
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24 and Ci be the censoring limit. We may reasonably assume that Zi and Ci are independent

of each other and thus effectively treat Ci as fixed. The observed response Yi can be written as

{max(Zi, Ci), I(Zi ≤ Ci)}. Let Xi = (X
[1]
i , X

[2]
i ) be the covariates, where X [1]

i is the treatment

indicator (1 = double PI and 0 = single PI), and X [2]
i is the HIV RNA value in log10 at week 0. We

assume that Zi is normally distributed with mean b1 + b2X
[1]
i + b3X

[2]
i and variance exp(2a1). We

define an iterative likelihood for θ = (b0,b1,b2, a0), LN(θ, θ′) as in (2), with

fZ(z|x; θ) =
1√

2π exp(a1)
exp

{
−(z − b1 − b2x[1] − b3x[2])2

2 exp(2a1)

}
,

fZ|Y (z|y, x; θ) = I(z > C) + I(z ≤ C) · exp

{
−(z − b1 − b2x[1] − b3x[2])2

2 exp(2a1)

}
·[∫ C

−∞
exp

{
−(s− b1 − b2x[1] − b3x[2])2

2 exp(2a1)

}
ds

]−1
.

Starting with a reasonable initial value, we use Algorithm 2 to find a stationary estimate from

LN(θ, θ′). We then define an initial box as this estimate plus and minus 20 times the robust standard

deviation. We repeat Algorithm 2 for 100 initial values randomly generated from this initial box.

It turns out all the sequences that meet the convergence criteria converge to the same stationary

estimate and we conclude that the stationary estimate is unique. By Theorem 1, it is consistent

and asymptotically normal, with a probability tending to 1. Because H(0)
N (θ̂N) is the observed

complete data information and H(1)
N (θ̂N) is the observed missing data information, Condition (ii)

of Theorem 2 would hold in expectation. For the AIDS data, the matrix H(1)
N (θ̂N) · {H(0)

N (θ̂N)}−1

is positive definite and its largest eigenvalue is 0.4, and Condition (ii) holds. The numerical results

are presented in Table 1 with the standard deviations obtained via the robust, H- and U- variances

given in (13), (15) and (16), respectively. It turns out that patients taking double protease inhibitor

did have lower HIV RNA levels at week 24 at the significance level of 0.05, and the initial HIV

RNA value at week 0 has a positive effect on the HIV RNA level at week 24. We also apply the
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original EM algorithm to analyze this data set and the results are identical to those obtained from

the iterative likelihood using Algorithm 2.

5.2. GEE: FEV1 in a pulmonary function study

Consider the iterative likelihoodLN(θ, θ′) in (4) for the model formulated in Example 2. We are

interested in the case when the model is misspecified. Consider a hierarchy of four statistical mod-

els: Φ0 = {EYij = mij,SdYij = dij,Corr(Yij1 , Yij2) = rij1j2}, Φ1 = {EYij = mij(b),SdYij =

dij, Corr(Yij1 , Yij2) = rij1j2}, Φ2 = {EYij = mij(b),SdYij = dij(b, a),Corr(Yij1 , Yij2) = rij1j2},

Φ3 = {EYij = mij(b),SdYij = dij(b, a),Corr(Yij1 , Yij2) = rij1j2(b, a, c)}, where mij , dij, and

rij1j2 denote the unconstrained individual values for mean, standard deviation, and correlation,

respectively, while mij(), dij(), and rij() are the mean, standard deviation, and correlation mod-

els, respectively, which denote the known functions mapping the parameter values b, (b, a), and

(b, a, c) to the mean, standard deviation, and correlation, respectively. Models Φ1, Φ2, and Φ3

correspond to the following three assumptions. (i) The mean model is correctly specified; (ii) The

mean and standard deviation models are correctly specified; and (iii) The mean, standard deviation,

and correlation models are correctly specified.

Note that Φ3 is a subset of Φ2, which is a subset of Φ1, which is a subset of Φ0. Even though

the construction of the iterative likelihood (4) for θ = (b, a, c) is based on the working statistical

model Φ3, it follows from (5a-5c) and (6a-6c) that under Φ0,

ELN (θ, θ′) = ELN ((b, a, c), (b′, a′, c′))

= C(θ′)−
N∑
i=1

∑
j1,j2

(
W

(m)
ij1j2

(θ′)[{mij1 −mij1(b)}{mij2 −mij2(b)}]
)

−
N∑
i=1

∑
j

(
W

(d)
ij (θ′) [d2ij + {mij −mij(b

′)}2 − d2
ij(b
′, a)]2

)
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−
N∑
i=1

∑
j1j2

(
W

(r)
ij1j2

(θ′)

[
rij1j2 · dij1 dij2 + {mij1 −m ij1(b

′)} {mij2 −mij2(b
′)}

dij1(b′, a′) dij1(b′, a′)
− rij1j2(b

′, a′, c)

]2)
,

where θ = (b, a, c), θ′ = (b′, a′, c′), and C(θ′) depends on θ′ but not on θ. Assume that mij , dij ,

and rij are chosen so that there exists a sequence of stationary attraction points in {ELN(θ, θ′)}.

Let θ0N = (b0N , a0N , c0N) denote the value of θ = (b, a, c) such that

∂ELN(θ, θ′)

∂b

∣∣∣
θ′=θ=θ0N

= 0,
∂ELN(θ, θ′)

∂a

∣∣∣
θ′=θ=θ0N

= 0,
∂ELN(θ, θ′)

∂c

∣∣∣
θ′=θ=θ0N

= 0. (19)

Under model Φ3, θ0N would degenerate to the value θ0 = (b0, a0, c0) such that

mij −mij(b0) = 0, (20a)

dij − dij(b0, a0) = 0, (20b)

rij1j2 − rij1j2(b0, a0, c0) = 0. (20c)

In that case, the condition for θ0N = θ0 to be a global attraction can be easily characterized. For

example, the following conditions are sufficient: 1) For any ε > 0, there exists δ(ε) > 0 such that

||(b − b0, a − a0, c − c0)|| > ε would imply that mij(b),dij(b, a), and rij1j2(b, a, c) differ from

mij(b0),dij(b0, a0), and rij1j2(b0, a0, c0), respectively, by at least δ(ε) in Euclidean metric; and 2)

There exist ξ, η, 0 < ξ < η, such that as a Mi ×Mi matrix, {W (m)
ij1j2

(θ′)− ξ·I(j1 = j2)} is positive

definite, {W (m)
ij1j2

(θ′) − η·I(j1 = j2)} is negative definite, and W (d)
ij (θ′) and W (r)

ij1j2
(θ′) are within

[ξ, η].Under model Φ2 or Φ1, θ0N would degenerate to θ0N = (b0, a0, c0N) or θ0N = (b0, a0N , c0N),

respectively, where b0 and a0 satisfy (20a) and (20b). In such a case, the condition for (b0, a0) or

b0 to be a global attraction when c0N or (a0N , c0N) is fixed at any unknown values can also be

similarly characterized, but formalizing these conditions requires extended definitions of attraction

from the entire parameter vector into a subvector, for which Theorem 1 can be improved. To

limit the length of the article, we assume here directly that θ0N is a global attraction under Φ1,
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Φ2, or Φ3. Thus, by Theorem 1, for any sequence of global estimates {θ̂N}, {θ̂N − θ0N} =

{(b̂N − b0N , âN − a0N , ĉN − c0N)} converges in probability to 0, with asymptotic normality.

Our interest is the behavior of θ̂N when the working model Φ3 misspecifies the distribution of

the data. We use the notation defined in Section 3.3. First, consider a relaxed model Φ1 and β = b.

It follows from (19) that βN [ϕ0; Φ1] is the value of b, b0 such that (20a) holds for all i and j and so

is βN [ϕ0; Φ3]. Hence, both βN [ϕ0; Φ1] and βN [ϕ0; Φ3] are independent of N and can be attached

with the same interpretation as parameters characterizing means mijs. Second, consider a relaxed

model Φ2 and β = (b, a). It follows from (19) that βN [ϕ0; Φ1] is the value of (b, a), (b0, a0)

such that (20a) and (20b) hold for all i and j and so is βN [ϕ0; Φ2]. Hence, both βN [ϕ0; Φ2] and

βN [ϕ0; Φ3] are independent of N and can be attached with the same interpretation as parameters

characterizing means mijs and standard deviations dijs. Under either the relaxed model Φ1 or Φ2,

the global estimate b̂N or (b̂N , âN), obtained from the working model Φ3, will still be consistent

and asymptotically normal.

In conclusion, under some mild conditions, estimates b̂N , (b̂N , âN), and (b̂N , âN , ĉN) con-

verge in probability to b0, (b0, a0), and (b0, a0, c0), as they are originally defined, with asymptotic

normality, when assumptions (i), (ii), and (iii) hold, respectively. Therefore, our estimation pro-

cedure based on the iterative likelihood yields a consistent and asymptotically normal estimate for

the mean parameters even when the standard deviation and correlation models are misspecified,

and for the standard deviation parameters even when the correlation model is misspecified.

Consider a specific example from an observational study (Laird et al., 1992; Wang et al., 1993)

designed to characterize the pulmonary function growth in children aged from 6 to 18 years old. In

this study, 300 girls were enrolled in grade 1 or 2 and seen annually until high school graduation

or loss to follow up. At each visit, spirometry of the pulmonary function was conducted by asking
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the participants to exhale air with maximal force and velocity into a closed chamber. We focus

on the forced expiratory volume (FEV1), the volume of air (in liter) exhaled in the first second of

the manoeuvre, a measure widely used as an indicator of respiratory health. Our objective is to

characterize the dependence of FEV1 on height. Let Yij be the FEV1 in log for the ith subject at the

jth visit and Xij be the corresponding height in meters. We use the iterative likelihood LN(θ, θ′)

defined in (4) with the following model specification:

EYij = mij(b) = b1 + b2Xij, (21a)

SdYij = dij(a, b) = exp(a1 + a2mij(b)) = exp(a1 + a2(b1 + b2Xij)), (21b)

Corr(Yij1 , Yij2) = rij1j2(c, a, b) =
I(j1 = j2)

1 + exp(2c1)
+

exp(2c1) · exp{− exp(c2)|Xij1 −Xij2|}
1 + exp(2c1)

,

(21c)

with θ = (b, a, c), where b = (b1,b2), a = (a1, a2), and c = (c1, c2).

We first find an initial box in a similar manner as in Section 5.1. We repeat Algorithm 2 for

100 initial values randomly generated from this initial box. It turns out all the sequences that

meet the convergency criteria converge to the same stationary estimate. So the obtained stationary

estimate is a global estimate. By Theorem 1, this estimate is consistent and asymptotically normal.

Because the expectation of H(1)
N (θ) at the true value of θ is 0 and so will H(1)

N (θ̂N) be close to

0, Condition (ii) of Theorem 2 would hold in expectation. For this FEV1 dataset, the largest

absolute eigenvalue of H(1)
N (θ̂N) · {H(0)

N (θ̂N)}−1 is 0.25, and Condition (ii) holds. However, the

information unbiasedness (14) does not hold because gti(θ) is not a score function. We even do

not fully specify the distribution of the data. So the H- and U- variances are not applicable here.

The numerical results are presented in Table 2 with the standard deviations obtained via the robust

variance. Height has a significantly positive effect on the FEV1. We also use the original GEE
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approach with various correlation structures to analyze the data. The results for parameter b are all

similar. The GEE approach does not have an established procedure for estimating the variances of

estimators for parameters in the correlation structures.

5.3. Mean score method: smoking induced lung cancer

Consider the iterative likelihood LN(θ, θ′) defined in (7) for the model formulated in Example

3. We assume fY |Z(y|z, x; b) and fZ|Y (z|y, x; b) are correctly specified with θ0 = (b0, a0) being

the true value of θ = (b, a). Noting that Ri and Zi are conditionally independent of each other

given Xi and Yi, we have

Egi(θ0) =

{
E
∂l

(0)
i (b, a0)

∂b

∣∣∣
b=b0

, E
∂l

(1)
i (a)

∂a

∣∣∣
a=a0

}

=

(
EY

[
ERZ|Y

{
Ri

∂ log fY |Z(Yi|Zi, Xi; b)

∂b

∣∣∣Yi}+

ER|Y (1−Ri|Yi) · EZ|Y

{
∂ log fY |Z(Yi|Zi, Xi; b)

∂b

∣∣∣Yi}] ∣∣∣
b=b0

,

EY

[
ER|Y (Ri|Yi) · EZ|Y

{
∂ log fZ|Y (Zi|Yi, Xi; a)

∂a

∣∣∣Yi}] ∣∣∣
a=a0

)
= 0.

Therefore, (10c) holds. Further, we have

Ehi(θ0) = −E
{
∂2li(θ, θ

′)

∂θ2
+
∂2li(θ, θ

′)

∂θ∂θ′

} ∣∣∣
θ′=θ=θ0

= EY

∣∣∣∣∣∣∣∣
hi10 0

hi20 hi30

∣∣∣∣∣∣∣∣ , (22)

where hi10 = EZ|Y {Gt
0(Yi|Zi, Xi)G0(Yi|Zi, Xi)}, hi20 = {r(Yi, Xi) − 1} EZ|Y {Gt

1(Yi|Zi, Xi)

G0(Zi|Yi, Xi)}, hi30 = r(Yi, Xi) EZ|Y {Gt
1(Zi|Yi, Xi)G1(Zi|Yi, Xi)}, and

G0(y|z, x) =
∂ log fY |Z(y|z, x; b)

∂b

∣∣∣
b=b0

, G1(z|y, x) =
∂ log fZ|Y (z|y, x; a)

∂a

∣∣∣
a=a0

,

r(y, x) = ER|Y (R|Y = y,X = x).
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When a is null, that is, the conditional distribution of Zi given Yi and Xi is known, E[hi(θ0) +

hti(θ0)]/2 will reduce to the upper left expression in the matrix in (22), which will be nonnegative

definite. When a is unknown, E[hi(θ0) + hti(θ0)]/2 will be nonnegative definite if 4 r(Yi, Xi) ≥

(r(Yi, Xi)−1)2, namely, r(Yi, Xi) > 3−
√

8 ≈ 17.2%.Under some conditions ensuring uniformity

with respect toN, we may say that when the conditional distribution of Z given Y andX is known

or the probability of observing Z is greater than 17.2%, the true value (b0, a0) is a local attraction;

otherwise, (b0, a0) may only be verified as a stationary attraction. In the latter case, one may not

exclude a stationary estimate as a consistent and asymptotically estimate even if it is not a local

estimate. That is, a consistent and asymptotically normal estimate could be θ̂N = (b̂N , âN), at

which the negative Hessian matrix, ∂2LN(θ, θ′)/∂θ2|θ=θ′=θ̂N is not positive definite. However,

when a0 is held at any fixed, unknown, value, we can verify that b0 is a local attraction and this

refined condition may be used to narrow down the set of candidate estimates. That again requires

an extension of definitions for attractions and a subsequent extension of Theorem 1 from the entire

parameter vector to a subvector.

For a specific example, consider a case-control study of smoking-induced lung cancer (Garcı́a-

Closas et al., 1997). In this study, cases were patients diagnosed with primary lung cancer, and

admitted for thoracic surgery; controls were friends or spouses of lung cancer, cardiac, or thoracic

surgery patients. Information on smoking history was available on 846 cases and 938 controls. The

study assessed a variety of biomarkers believed to be associated with the pathway from smoking

exposure to lung cancer. We focus on DNA adducts (number per 108 nucleotides) in blood cells,

measured on a sample of consecutively available cases and on controls matched to cases based on

smoking status (never, former and current) and other covariates. In total, 80 subjects have mea-

surements on DNA adducts. The availability of marker data depends not only on exposure and
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other covariates, but also on outcome. For example, selection of controls for measurements on

DNA adducts by matching to cases on smoking status is a process in which the decision depends

on exposure (smoking status) and outcome (case-control status). Our objective is to evaluate the

usefulness of DNA adducts in characterizing the pathway from smoking exposure to lung cancer,

while appropriately accounting for the dependence of the missingness of marker data on the expo-

sure and outcome. Clearly, a complete case analysis would be biased because the missing data are

not missing completely at random (Little and Rubin, 2002). Such an analysis would also be highly

inefficient because it would use only 80 subjects with DNA adducts out of a total of 1784.

For the ith subject, let Yi be the indicator of lung cancer (1 = case, 0 = control), Xi be the total

packyears, a measure of smoking exposure, and Zi be the level of DNA adducts. For simplicity,

we ignore other covariates. Our interest is to estimate how Yi depends on Xi and Zi. We use the

iterative likelihood (7) with the following model specification, noting that this is a case-control

study and Zi is nonnegative, but can be zero,

fY |Z(y|z, x; b) =
I(y = 0) + I(y = 1) · exp(b1 + b2x+ b3z + b4xz)

1 + exp(b1 + b2x+ b3z + b4xz)
,

fZ|Y (z|y, x; a) = I(z > 0) · 1√
2π exp(a5)

exp

{
−(z − a1 − a2y − a3x− a4yx)2

2 exp(2a5)

}
+I(z = 0) ·

∫ 0

−∞

1√
2π exp(a5)

exp

{
−(s− a1 − a2y − a3x− a4yx)2

2 exp(2a5)

}
ds.

Because the percentage of subjects with measurements on Z is 4.5% (80/1784), which is smaller

than 17.2%, the true value of the parameter is not necessarily a local attraction. Thus, we need to

search in the set of all stationary estimates for a consistent and asymptotically normal estimate.

To implement the method, numerical approximation of the integral in (7) is necessary as there

is no closed-form expression. We adopt the Gauss-Legendre quadrature with 100 points. The

results in this example and the simulation studies in Section 6 indicate that the Gauss-Legendre
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quadrature is efficient and accurate for the problem. If (7) involves multidimensional integration,

the numerical integration on sparse grids method proposed by Heiss and Winschel (2008) can be

used which is an extension of the Gaussian quadrature to multiple dimensions.

We find an initial box in a similar manner as in Section 5.1. We repeat Algorithm 2 for 100

initial values randomly generated from this initial box. It turns out all the iterations that meet the

convergency criteria converge to the same stationary estimate, so the stationary estimate is unique.

By Theorem 1, this estimate is consistent and asymptotically normal. Note that H(0)
N (θ̂N) is a

block diagonal matrix and H
(1)
N (θ̂N) has non-zero elements only in the lower left corner. The

eigenvalues of H(1)
N (θ̂N) · {H(0)

N (θ̂N)}−1 are all 0, so Condition (ii) of Theorem 2 holds. However,

the information unbiasedness (14) does not hold because E{hi(θ0)} is not symmetric, and thus the

H- and U- variances are not applicable. The numerical results are presented in Table 3 with the

standard deviations obtained via the robust variance. We find smoking exposure and the level of

DNA adducts have an interaction effect. For this data set, since the variable Xi is continuous, the

original mean score method is not applicable.

6. SIMULATION STUDIES

In this section, we present the results from extensive simulation studies to access the finite

sample performance of the proposed inferential method and numerical algorithm. The first study

mimics the AIDS Clinical Trial Group Study 398.

Example 4 We generate the complete date Zi from a normal distribution with mean b1 + b2X
[1]
i +

b3X
[2]
i and variance exp(2a1), whereX [1]

i is a Bernoulli random variable with probability of success

being 0.5, X [2]
i is a normal random variable N(0, 2), b1 = −1.5, b2 = −0.5, b3 = 1 and a1 = 0.5.

X
[1]
i and X [2]

i are independent. The censoring limit Ci is a uniform random variable on [−3,−1]
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so that the censor rate is about 46%.

We first ignore the censoring and used least squares method to find initial values. Then we

implement Algorithm 2 to solve the iterative likelihood defined in (2). Table 4 gives the simulation

results. The biases and the standard errors of the estimators decrease as the sample size increases.

The three standard error estimators for parameter b yield reasonable estimates and the confidence

intervals have coverage probabilities close to the nominal level. The coverage probability of the

confidence interval of a is slightly lower than the nominal level when n = 100, but the situation is

ameliorated rapidly as the sample size increases. We have considered various choices of parameter

values, sample sizes and censor rates. The results are similar to those presented in Table 4. We

also implement the original EM algorithm for all the simulation settings and obtained results iden-

tical to those from our method. For the model considered in this example, there are closed-form

expressions in both the E and M steps, so it takes the EM algorithm a slightly shorter time to finish

the simulation than Algorithm 2.

Example 5 The second simulation setup is designed to mimic the study of pulmonary function

growth in children. For subject i, the number of observations, Mi, is sampled from integers be-

tween 1 and 12 with equal probabilities. Then Yijs, j = 1, ..,Mi, are generated from a multivariate

normal distribution with mean, variance and correlation structure specified in (21a)- (21c), where

Xijs are independent normal random variables with mean 0 and variance 0.5, b1 = −2, b2 = 2,

a1 = −2, a2 = 0.1, c1 = −0.5 and c2 = 1.

We use unweighted estimating equations to obtain initial values and then implement Algorithm

2 to solve the iterative likelihood in (4). Table 5 summarizes the simulation results. The estimators

of b and a are nearly unbiased and the bias of the estimator of c drops rapidly as n increases. There
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are some deviations between the coverage probabilities and the nominal level for parameters a and

c, but the performance of the confidence intervals improves with the sample size. For the same

reason as described in Section 5.2, the H- and U- variances are not applicable.

Example 6 In this study we evaluate the performance of the extended mean score method. To be

able to know the true parameters, data are generated from the following model setup.

fY |Z(y|z, x; b) =
I(y = 0) + I(y = 1) · exp(b1 + b2x+ b3z + b4xz)

1 + exp(b1 + b2x+ b3z + b4xz)
, (23a)

fZ|Y (z|y, x; a) =
fY |Z(y|z, x; b0)fZ(z|x; a)∫
fY |Z(y|z, x; b0)fZ(z|x; a)dz

, (23b)

where

fZ(z|x; a) = I(z > 0) · 1√
2π exp(a3)

exp

{
−(z − a1 − a2x)2

2 exp(2a3)

}
+ I(z = 0) ·

∫ 0

−∞

1√
2π exp(a3)

exp

{
−(s− a1 − a2x)2

2 exp(2a3)

}
ds (23c)

In equation (23b), we assume that a is the only unknown parameter in the conditional density of Z.

The true value of b, b0, is used to specify a conditional density of Z so that data can be generated

from the true model. We first generate Zi from (23c) with a1 = 0.3, a2 = 0.2 and a3 = 0.2, and

then generate Yi from (23b) with b1 = −1, b2 = 1, b3 = 1, b4 = −1. For missing probabilities,

we use P (Ri = 0|Yi = 0) = 0.7 and P (Ri = 0|Yi = 1) = 0.6 which yield a missing rate close to

66%. Integrals in (7) and (23b) are approximated numerically by Gauss-Legendre quadrature with

100 points.

In each repetition, the observed data are used to obtain an initial value of b by fitting a logistic

regression and an initial value of a by fitting a liner regression. Algorithm 2 is then used to solve the

iterative likelihood defined in (7). The simulation results are summarized in Table 6. The parameter
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estimators have small biases and standard errors, the variance estimators are fairly accurate, and the

confidence intervals have reasonable coverage probabilities. The performance of each estimator

improves as sample size increases. To exam the performance of the proposed method at a situation

similar to the smoking-induced lung cancer study, we also conducted the simulation experiment

with a large sample size (N = 1000) and a high missing rate around 90%. The method performs

well at this scenario. For the same reason as described in Section 5.3, the H- and U- variances are

not applicable here.

7. CONCLUSION

The framework of iterative likelihood provides a unified representation for a number of sta-

tistical methods. This representation renders great convenience in constructing inference vehicle,

simplifying computation, or maintaining robustness of estimation to model misspecification. As

for asymptotic theory, we present a hierarchy of realistically verifiable conditions, with correspond-

ing strategies for finding a consistent and asymptotically normal estimate, for which the algorithm

described is useful. Aside from illustrating our methodology, the three examples given are also

interesting in their own right. In the first example, all stationary estimates for the EM algorithm

are sought; different asymptotic variances are presented. The second example involves a general

model for unbalanced data, where robustness of the estimates are discussed. In the third exam-

ple, the mean score method is extended, where a parametric model is used to impute the missing

covariates. For the data analysis, positive measure with zero values are handled.

Many issues remained to be addressed. 1) Multiple expressions in terms of iterative likelihood

often exist for a specific system of estimating equations, but how to choose a particular expression

over another is unclear. Presumably, one should take into account both computational conve-

nience in finding estimates and theoretical consideration in verifying the conditions for asymptotic
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properties. 2) Our asymptotic theory and estimation algorithm are limited to the case where the

parameter space is Euclidean and data on different subjects are independent. Extension beyond

Euclidean space is natural, but requires higher level mathematics. For example, the stationarity of

the estimates may be expressed as self-consistency for the iteration operators in a functional space.

Further, the independence among subjects may be relaxed by replacing 1/N by a more general

scaling sequence that stabilizes the second order moments of the iterative likelihood. 3) As seen in

Sections 5.2 and 5.3, one may often verify a higher level of attraction condition for a specific com-

ponent of the parameter vector while holding the rest of the parameters fixed at an unknown value.

It is hopeful to use this refined characterization of an iterative likelihood to improve our asymp-

totic theory. 4) Even though the repeated use of Algorithm 2 as described above can theoretically

yield all estimates and confirm the global estimates, with a probability close to 1, this approach

is computationally expensive and even insurmountable. Further, the assurance is probabilistic and

it is hard to gauge whether the search is thorough enough to be terminated. Further research is

needed on optimization algorithms that find all roots of equations and the global maximizers of a

scaler function efficiently. A possible direction is the application of interval arithmetic.
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Table 1: Example 1: Estimates of the parameters for censored HIV RNA data

Parameter Interpretation Estimate SE (Robust) SE (H) SE (U)
b1 intercept in HIV RNA∗ -2.046 0.913 0.91 0.939
b2 treatment in HIV RNA∗ -0.715 0.287 0.288 0.295
b3 initial HIV RNA in HIV RNA∗ 1.097 0.187 0.186 0.197
a1 log SD of HIV RNA∗ 0.698 0.043 0.057 0.087

∗:at week 24

Table 2: Example 2: Estimates of the parameters for FEV1 data

Parameter Interpretation Estimate SE (Robust)
b1 intercept in mean FEV1 -2.259 0.031
b2 height in mean FEV1 2.053 0.021
a1 intercept in log SD of FEV1 -2.135 0.114
a2 height in log SD of FEV1 0.027 0.117
c1 relative magnitude of serial correlation 0.726 0.494
c2 depenence of serial correlation on lag 0.459 0.277

Table 3: Example 3: Estimates of the parameters for smoking-induced lung cancer data with DNA
adducts

Parameter Interpretation Estimate SE (Robust)
b1 intercept in lung cancer -2.219 0.783
b2 packyears in lung cancer 0.473 0.557
b3 DNA adducts in lung cancer 0.464 0.616
b4 (packyears)*(DNA adducts) in lun cancer 0.945 0.476
a1 intercept in DNA adducts 1.166 0.422
a2 packyears in DNA adducts -0.410 0.309
a3 lung cancer in DNA adducts 0.520 0.574
a4 (packyears)*(lung cancer) in DNA adducts 0.477 0.429
a5 log SD of DNA adducts -0.095 0.110



Table 4: Simulation results for Example 4.

N = 100 N = 200

Parameter b1 b2 b3 a1 b1 b2 b3 a1

Estimate -1.515 -0.474 1.002 0.478 -1.504 -0.507 1.001 0.489
Bias -0.015 0.026 0.002 -0.022 -0.004 -0.007 0.001 -0.011
StD 0.275 0.391 0.152 0.103 0.192 0.274 0.108 0.073
SE (Robust) 0.272 0.374 0.148 0.098 0.192 0.265 0.105 0.071
SE (H) 0.272 0.375 0.151 0.102 0.192 0.265 0.107 0.072
SE (U) 0.279 0.388 0.162 0.111 0.195 0.270 0.111 0.075
CP (Robust) 0.959 0.930 0.938 0.916 0.950 0.943 0.946 0.937
CP (H) 0.958 0.932 0.942 0.937 0.948 0.943 0.948 0.945
CP (U) 0.966 0.944 0.952 0.952 0.948 0.948 0.951 0.950

Note: The estimated values, associated bias, standard error (StD), mean of the standard error
estimator (SE) and the coverage probability (CP) of the 95% confidence interval. H or U indicates
that the the standard error estimator is based on the H- or U- variance estimator.

Table 5: Simulation results for Example 5.

b1 b2 a1 a2 c1 c2

N = 100

Estimate -2.000 2.000 -2.003 0.100 -0.487 1.014
Bias 0.000 0.000 -0.003 0.000 0.013 0.014
StD 0.005 0.009 0.063 0.029 0.242 0.641
SE (Robust) 0.005 0.009 0.067 0.030 0.278 0.676
CP (Robust) 0.944 0.955 0.931 0.920 0.986 0.908

N = 200

Estimate -2.000 2.000 -2.002 0.099 -0.500 0.988
Bias 0.000 0.000 -0.002 -0.001 0.000 -0.012
StD 0.004 0.007 0.045 0.020 0.162 0.419
SE (Robust) 0.004 0.007 0.045 0.020 0.186 0.425
CP (Robust) 0.945 0.955 0.932 0.931 0.980 0.945

Note: The legend is the same as in Table 4.



Table 6: Simulation results for Example 6

b1 b2 b3 b4 a1 a2 a3

N = 200

Estimate -1.021 1.016 1.018 -1.017 0.298 0.189 0.181
Bias -0.021 0.016 0.018 -0.017 -0.002 -0.011 -0.019
StD 0.208 0.213 0.142 0.155 0.179 0.191 0.123
SE (Robust) 0.191 0.207 0.139 0.153 0.181 0.179 0.115
CP (Robust) 0.932 0.945 0.932 0.940 0.955 0.924 0.923

N = 400

Estimate -1.001 1.001 1.000 -1.001 0.300 0.201 0.194
Bias -0.001 0.001 0.000 -0.001 0.000 0.001 -0.006
StD 0.089 0.097 0.061 0.070 0.078 0.082 0.054
SE (Robust) 0.085 0.091 0.062 0.067 0.081 0.081 0.053
CP (Robust) 0.937 0.948 0.954 0.933 0.964 0.945 0.938

Note: The legend is the same as in Table 4.
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SUMMARY. In this document, we present the detailed proofs for the main results and additional

examples.

S.1. A PRELIMINARY LEMMA

Lemma 1. Let {BN(α)} be a sequence of random numbers (scalers, vectors, or matrices) indexed

by α, α ∈ Γ, where Γ is a bounded subspace of an Euclidean space. For notation, we treat BN(α)

as an 1×M vector, where M is the number of elements in BN(α).

(a) If BN(α) is a continuous function of α uniformly for α and the data and for any fixed α,

{BN(α)} converges in probability to 0, then, for any ε > 0, lim
N→∞

Pr(sup
α∈Γ
||BN(α)|| ≤ ε) =

1.

(b) Suppose that for any ε > 0, there exists δ(ε) > 0 such that ||α2 − α1|| ≤ δ(ε), α1, α2 ∈

Γ implies ||E[(BN{α2) − BN(α1)}t · {BN(α2) − BN(α1)}]|| ≤ ε for all N . If for any
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α, {BN(α)} converges in distribution to F (b;α), which is continuous with respect to b,

uniformly for α, then for any b, b ∈ (−∞,∞)M , lim
N→∞

sup
α∈Γ
|Pr(BN(α) < b)− F (b;α)| = 1.

Proof: (a) Because BN(α) is a continuous function of α uniformly for α and the data, for any

ε > 0, there exists δ(ε) > 0 such that for any α1 and α2 satisfying ||α2 − α1|| ≤ δ(ε),

||BN(α2)−BN(α1)|| ≤ ε.

Because Γ is a bounded Euclidean space, there exists a finite number J(ε) such that we can divide

Γ into subsets Γ1, . . . ,ΓJ(ε) with fixed points α1 ∈ Γ1, . . . , αJ(ε) ∈ ΓJ(ε) such that sup
α∈Γj

||α−αj|| ≤

δ(ε) holds for all j = 1, . . . , J(ε). Thus,

sup
α∈Γ
||BN(α)|| = sup

α∈Γ


J(ε)∑
j=1

[I(α ∈ Γj) · ||BN(α)||]


≤ sup

α∈Γ

J(ε)∑
j=1

[
I(α ∈ Γj) · {||BN(αj)||+ ||BN(α)−BN(αj)||}

]
≤ max

j=1,...,J(ε)
||BN(αj)||+ ε.

Letting N tend to∞ and then ε tend to 0, we have the result.

(b) For any two 1×K random vectors, Z and Z ′ with respective distributions P (b) and P ′(b)

and ε > 0, we have P (b− ε)− Pr(Z ′ − Z ≥ ε) ≤ P ′(b) ≤ P (b+ ε) + Pr(Z ′ − Z ≥ ε). Hence,

P (b− ε)− ||E{(Z
′ − Z)t(Z ′ − Z)}||
||ε||2

≤ P ′(b) ≤ P (b+ ε) +
||E{(Z ′ − Z)t(Z ′ − Z)}||

||ε||2
.

Hence,

|P ′(b)− P (b)| ≤ ||E{(Z
′ − Z)t(Z ′ − Z)}||
||ε||2

+ max{P (b+ ε)− P (b), P (b)− P (b− ε)}.

For any ε > 0, let δ∗(ε) > 0 be such that for any α1 and α2 in Γ satisfying ||α2 − α1|| ≤ δ∗(ε),

||E[{BN(α1)−BN(α2)}t{BN(α1)−BN(α2)}]|| ≤ ε and |F (b;α1)− F (b;α2)| ≤ ε.
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Let FN(b;α) denote the distribution of BN(α). Because Γ is a bounded Euclidean space, there

exists a finite number J(ε) such that we can divide Γ into subsets Γ1, . . . ,ΓJ(ε) with fixed points

α1 ∈ Γ1, . . . , αJ(ε) ∈ ΓJ(ε) such that sup
α∈Γj

||α − αj|| ≤ δ∗(ε) holds for all j = 1, . . . , J(ε). Hence,

for any ε > 0, ε ∈ (−∞,∞)M , we have

sup
α∈Γ
|(BN(α) < b)− F (b;α)| = sup

α∈Γ

∣∣∣∣∣∣
J(ε)∑
j=1

I(α ∈ Γj) · {FN(b;α)− F (b;α)}

∣∣∣∣∣∣
≤ sup

α∈Γ

J(ε)∑
j=1

[
I(α ∈ Γj) · {|FN(b, αj)− F (b;αj)|+ |F (b;αj)− F (b;α)|

+|FN(b;α)− FN(b;αj)|}
]

≤ max
j=1,...,J(ε)

{|FN(b, αj)− F (b;αj)|}+ ε

+sup
α∈Γ

J(ε)∑
j=1

I(α ∈ Γj) ·
(
||E[{(BN(α)−BN(αj)}t{BN(α)−BN(αj)}]||

||ε||2

+ max(FN{b+ ε;αj)− FN(b;αj), FN(b;αj)− FN(b− ε;αj)}
)

≤ max
j=1,...,J(ε)

|FN(b, αj)− F (b;αj)|+ ε+
ε

||ε||2

+ max
j=1,...,J(ε)

[max{F (b+ ε;αj)− F (b;αj), F (b;αj)− F (b− ε;αj)}

+|FN(b+ ε;αj)− F (b+ ε;αj)|+ |FN(b;αj)− F (b;αj)|

+|FN(b− ε;αj)− F (b− ε;αj)|
]
.

This term can be further bounded by max
j=1,...,J(ε)

|FN(b, αj)−F (b;αj)|+ε+ε/||ε||2+supα∈Γ[max{F (b+

ε;α)−F (b;α), F (b;α)−F (b− ε;α)}] + max
j=1,...,J(ε)

{|FN(b+ ε;αj)−F (b+ ε;αj)|+ |FN(b;αj)−

F (b;αj)|+ |FN(b− ε;αj)− F (b− ε;αj)|}. Letting N tend to∞, ε to 0, and then ε to 0, we have

the result.
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S.2. PROOF OF THEOREM 1

We define for any θ and θ′ in Θ, QN(θ, θ′)
def.
= ∂LN(θ, θ′)/∂θ, Q0N(θ, θ′)

def.
= EQN(θ, θ′), L0N(θ, θ′)

def.
=

ELN(θ, θ′), G0N(θ)
def.
= EGN(θ), H0N(θ)

def.
= EHN(θ), U0N(θ)

def.
= EUN(θ), TN(θ, θ′)

def.
= LN(θ, θ′)−

ELN(θ, θ′), and A(δ)
def.
= TN(θ+δ (θ′−θ), θ′)−TN(θ, θ′). It follows from the regularity condition

that, for any θ and θ′ in Θ, dA(δ)/dδ = N(θ′−θ) · [QN(θ+δ(θ′−θ), θ′)−Q0N(θ+δ(θ′−θ), θ′)]t

is a continuous function of δ. Thus, there exists δ∗ ∈ (0, 1) such that TN(θ′, θ′) − TN(θ, θ′) =

A(1)− A(0) = dA(δ)
dδ
|δ=δ∗ = N(θ − θ′) · {QN(θ′′, θ′)−Q0N(θ′′, θ′)}t, where θ′′ = θ + δ∗(θ′ − θ)

is also within Θ because Θ is convex. Hence,

|TN(θ′, θ′)− TN(θ, θ′)|
N ||θ′ − θ||

≤ ||QN(θ′′, θ′)−Q0N(θ′′, θ′)|| ≤ sup
θ∗,θ∗∗∈Θ

||QN(θ∗, θ∗∗)−Q0N(θ∗, θ∗∗)||.

For any ε > 0, we have

Pr(||θ̂N − θ0N || ≤ ε) ≥ Pr

(
C{L0N(θ0N , θ̂N)− L0N(θ̂N , θ̂N)}

N ||θ̂N − θ0N ||
≤ ε

)

≥ Pr

(
C{LN(θ0N , θ̂N)− LN(θ̂N , θ̂N)}

√
N ||θ̂N − θ0N ||

≤ 0

)

−Pr

(
C|(LN{θ̂N , θ̂N)− L0N(θ̂N , θ̂N)} − {LN(θ0N , θ̂N)− L0N(θ0N , θ̂N)}|

N ||θ̂N − θ0N ||
> ε

)

= 1− Pr

(
|TN(θ̂N ; θ̂N)− TN(θ0N , θ̂N)|

N ||β̂N − θ0N ||
>

ε

C

)

≥1− Pr

(
sup

θ∗,θ∗∗∈Θ
|QN(θ∗, θ∗∗)−Q0N(θ∗, θ∗∗)| > ε

C

)
.

The regularity condition ensures that QN(θ∗, θ∗∗) − Q0N(θ∗, θ∗∗) is a continuous function of

(θ∗, θ∗∗) uniformly for (θ∗, θ∗∗) ∈ Θ × Θ and the law of large numbers ensures that QN(θ∗,

θ∗∗)−Q0N(θ∗, θ∗∗) converges in probability to 0 as N tends to∞. Letting N tend to∞ and then

ε to 0, and applying Lemma 1 (a), we have lim
N→∞

Pr(||θ̂N − θ0N || ≤ ε) = 1, which yields (a).
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We now prove (b). For an 1×K vector e, we denote rN(e)
def.
= GN(θ0N + e)−G0N(θ0N) + e

H0N(θ0N). Let ε0 > 0 be the lower bound of ρ(EHN(θ0N)) = ρ(H0N(θ0N)). It follows from

the regularity condition and the Taylor expansion of G0N(θ0N + e) around e = 0 that for any ε,

0 < ε ≤ ε0, we can find δ(ε), 0 < δ(ε) ≤ ε such that for all N , θ, and e, ||e|| < δ(ε) ≤ ε,

||G0N(θ0N + e) − G0N(θ0N) + e · H0N(θ0N)|| ≤ ε||e||/2 ≤ ε0||e||/2, and ||H0N(θ0N + e) −

H0N(θ0N)|| ≤ ε/4 ≤ ε0/4.

We now consider a probability subspace Ωε = { sup
||e||≤δ(ε)

||GN(θ0N + e) − G0N(θ0N + e)|| ≤

ε0δ(ε)/2} ∩ { sup
||e||≤δ(ε)

||HN(θ0N + e)−H0N(θ0N + e)|| ≤ ε0/4}. For any data point in Ωε, 1×K

vectors e and η, ||e|| ≤ δ(ε) ≤ ε, ||η|| = 1, we have ||rN(e)|| = ||G0N(θ0N + e) − G0N(θ0N) +

e H0N(θ0N) +GN(θ0N + e)−G0N(θ0N + e)|| ≤ ε0||e||/2 + ε0δ(ε)/2 = ε0δ(ε), and

η HN(θ0N + e) ηt = η H0N(θ0N) ηt + η [HN(θ0N + e)−H0N(θ0N + e)] ηt

+η{H0N(θ0N + e)−H0N(θ0N)} ηt

≥ ρ(H0N(θ0N + e))− ε0/4− ε0/4 ≥ ε0 − ε0/4− ε0/4 = ε0/2.

Thus, ρ(HN(θ0N + e)) ≥ ε0/2. For the operator S that maps e to rN(e){H0N(θ0N)}−1,

||S(e)|| = ||rN(e) · {H0N(θ0N)}−1|| ≤ ||rN(e)|| · ||{H0N(θ0N)}−1||

≤ ε0δ(ε) · ρ(H0N(θ0N))−1 ≤ δ(ε).

Thus, S is a continuous function from {e : ||e|| ≤ δ(ε)} to {e : ||e|| ≤ δ(ε)}. The Brouwer fixed

point theorem ensures that there exists êN , ||êN || ≤ δ(ε) ≤ ε, such that êN = S(êN) = rN(êN) ·

[H0N(θ0N)]−1.We define θ̂N as a statistic such that for any data point in Ωε, θ̂N = θ0N+êN . Hence,

GN(θ̂N) = −êN · H0N(θ0N) + rN(êN) + G0N(θ0N) = −rN(êN) · {H0N(θ0N)}−1 · H0N(θ0N) +

rN(êN) = 0.
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Because ρ(H0N(θ̂N)) = ρ(H0N(θ0N + êN)) > ε0/2 > 0 and

LN(θ, θ̂N) = LN(θ̂N , θ̂N) + (θ − θ̂N) ·Gt
N(θ̂N)

− 1

2
(θ − θ̂N) · HN(θ̂N) + {HN(θ̂N)}−1

2
· (θ − θ̂N)t + o(||θ − θ̂N ||),

there exists a neighborhood of θ̂N such that for any θ in the neighborhood, LN(θ̂N , θ̂N) ≥ LN(θ,

θ̂N), indicating that for any fixed data point in Ωε, θ̂N is a local estimate from LN(θ, θ′). Hence,

Pr(||θ̂N − θ0N || ≤ ε and θ̂N is a local estimate)

= Pr(||êN || ≤ ε and θ̂N is a local estimate)

≥ Pr(Ωε)

= Pr
(
{ sup
||e||≤δ(ε)

||GN(θ0N + e)−G0N(θ0N + e)|| ≤ ε0δ(ε)/2}

∩{ sup
||e||≤δ(ε)

||HN(θ0N + e)−H0N(θ0N)|| ≤ ε0/4}
)
.

The regularity condition ensures that both GN(θ0N + e)−G0N(θ0N + e) and HN(θ0N + e)−

H0N(θ0N) are continuous functions of e uniformly for e, ||e|| ≤ δ(ε), and the law of large numbers

ensures that for any fixed e both converge in probability to 0 as N tends to∞. Letting N tend to

∞ and applying Lemma 1(a), we have lim
N→∞

Pr(||θ̂N − θ0N || < ε and θ̂N is a local estimate) = 1.

The proof of (c) is similar. We now prove (d). By the definition of global, local, or stationary

attractions, there exists ε0 > 0 such that (10c) and (10d) hold. For {θ̂N} with {θ̂N − θ0N}

converging in probability to θ1, using Taylor expansion along with the regularity condition, we

have

0 = GN(θ̂N) = GN(θ0N) + (θ̂N − θ0N) ·HN(θ0N) + op

(∥∥∥θ̂N − θ0N

∥∥∥)
= GN(θ0N) + (θ̂N − θ0N) · {H0N(θ0N) + op(1)}.
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It follows from the regularity condition and (10d) that

√
N(θ̂N − θ0N) = −

√
N ·GN(θ0N) · {H0N(θ0N) + op(1)}−1

= −
√
N ·GN(θ0N) · {H0N(θ0N)}−1 · {1 + op(1)} (s.1)

We denote BN(α) = −
√
N · {GN(α)−G0N(α)}, α ∈ Θ. For a fixed α ∈ Θ, we have

E{BN(α)} = E[−
√
N · {GN(α)−G0N(α)}] = 0

Var{BN(α)} = Var[−
√
N · {GN(α)−G0N(α)}]

=
1

N

N∑
i=1

Var{gi(θ)} = EUN(α) = U0N(α).

It follows from the central limit theorem that for any fixed α, BN(α) converges in distribution

to F (b;α), the multivariate normal distribution with mean EBN(α) = 0 and variance matrix

Var{BN(α)} = U0N(α). Further, for any α1, α2 in Θ, we have

||E{(BN(α1)−BN(α2)}t{BN(α1)−BN(α2))}||

= || 1
N

N∑
i=1

Var{gi(α2)− gi(α1)}||

≤ 1

N

N∑
i=1

||Var{gi(α2)− gi(α1)}||.

We denote h∗i (α)
def.
= hi(α)−Ehi(α) = −[∂gi(α)/∂α−E∂gi(α)/∂α]. It follows from the regularity

condition and the Taylor expansion that

{gi(α2)− gi(α1)} − E{gi(α2)− gi(α1)} = h∗i (α1) (α1 − α2) + ei(α1, α2),

where ||ei(α1, α2)||/||α2 − α1|| converges to 0 uniformly for i and α1 as ||α2 − α1|| tends to 0.

Thus, we have from the above equation,

Var{gi(α2)− gi(α1)} = E[{h∗i (α1) (α1 − α2) + ei(α1, α2)}t {h∗i (α1) (α1 − α2) + ei(α1, α2)}]
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= E[(α1 − α2)t {h∗i (α1)}t h∗i (α1) (α1 − α2)]

+E[(α1 − α2)t {h∗i (α1)}t ei(α1, α2)]

+E{eti(α1, α2) h∗i (α1) (α1 − α2)}+ E{eti(α1, α2) ei(α1, α2)}.

It follows from the regularity condition that ||Var[gi(α2) − gi(α1)]|| converges to 0 uniformly for

i and α1 as ||α2 − α1|| tends to 0. Therefore, for any ε > 0, there exists δ(ε) > 0 such that

||α2−α1|| ≤ δ(ε) implies ||E[{BN(α2)−BN(α1)}t{BN(α2)−BN(α1)}]|| ≤ ε.Applying Lemma

1(b) and the regularity condition, we have that lim
N→∞

sup
α∈Θ
|Pr(BN(α) < b) − F (b;α)| = 1. Thus,

lim
N→∞

|Pr(BN{θ0N) < b}−F (b; θ0N)| = 1. Finally, it follows from (s.1) and (10c) that
√
N(θ̂N −

θ0N) = BN(θ0N) · [EHN(θ0N)]−1 · [1 + op(1)] is asymptotically normally distributed with mean 0

and variance matrix (12c).

S.3. PROOF OF THEOREM 2

Note from (8c) and (9a) that θ̂N satisfies K(θ̂N) = θ̂N . It follows from Condition (i) that K(θ) is

differentiable at θ̂N . Further,

∂

∂θ
K(θ)|θ=θ̂N = I +

[
∂GN(θ)

∂θ
· {H(0)

N (θ)}−1

] ∣∣∣
θ=θ̂N

+

[
GN(θ) · ∂

∂θ
{H(0)

N (θ)}−1

] ∣∣∣
θ=θ̂N

= I −HN(θ̂N) · {H(0)
N (θ̂N)}−1 = H

(1)
N (θ̂N) · {H(0)

N (θ̂N)}−1.

It follows Condition (ii) that the largest absolute eigenvalue of ∂K(θ)/∂θ|θ=θ̂N is smaller than 1.

Applying Ostrowski theorem (Ortega, 1987, ,p. 145) to K() yields the result.

S.4. ADDITIONAL EXAMPLES

Example 7 (GEE with missing covariates) Further consider the GEE with missing covariates.

Along the notation in Example 2 of the manuscript; i.e., let Yi = (Yi1, . . . , YiMi
) be the responses,
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Xi = (Xi1, . . . , XiMi
) be the covariates (just one-dimensional for notational simplicity) of the ith

subject, whereMi is the number of observations from the ith subject. Let δij = 1 ifXij is observed

and δij = 0 otherwise. Assume that the X’s are missing at random (MAR) in the sense that

π(Yij, ζ) = P (δij = 1|Xij, Yij) = P (δij = 1|Yij),

which is parameterized by ζ . We model the mean, standard deviation and correlation as in Example

2.

We define an iterative likelihood for θ = (b, a, c, ζ) as,

LN(θ, θ′)
def.
= L

(m)
N (b, θ′) + L

(d)
N (a, θ′) + L

(r)
N (c, θ′), (s.2)

where θ = (b, a, c, ζ), θ′ = (b′, a′, c′, ζ ′), and

L
(m)
N (b, θ′)

def.
= −

N∑
i=1

∑
j1,j2

{W (m)
ij1j2

(θ′) ·D(m)
ij1

(b) ·D(m )
ij2

(b)} δij1
π(Yij1 , ζ

′)

δij2
π(Yij2 , ζ

′)
, (s.3a)

L
(d)
N (a, θ′)

def.
= −

N∑
i=1

∑
j

[W
(d)
ij (θ′) · {D(d)

ij (b′, a)}2]
δij1

π(Yij1 , ζ
′)

δij2
π(Yij2 , ζ

′)
, (s.3b)

L
(r)
N (c, θ′)

def.
= −

N∑
i=1

∑
j1,j2

[W
(r)
ij1j2

(θ′) · {D(r)
ij1j2

(b′, a′, c)}2]
δij1

π(Yij1 , ζ
′)

δij2
π(Yij2 , ζ

′)
, (s.3c)

L
(π)
N (ζ, θ′)

def.
= −

N∑
i=1

∑
j1,j2

{W (π)
ij1j2

(θ′) ·D(π)
ij1

(ζ) ·D(π)
ij2

(ζ)}, (s.3d)

with

D
(m)
ij (b)

def.
= Yij −mij(Xij; b), (s.4a)

D
(d)
ij (a, b′)

def.
= {Yij −mij(Xij; b

′)}2 − d2
ij(b
′, a), (s.4b)

D
(r)
ij1j2

(c, a′, b′) =
Yij1 −mij1(Xij; b

′)

dij1(bi
′, a′)

Yij2 −mij2(Xij; b
′)

dij2(Xij; b′, a′)
− rij1j2(b

′, a′, c) (s.4c)

Dπ
ij(ζ) = δij − π(Yij, ζ). (s.4d)
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Example 8 (Unweighted estimator for big data subsampling) Let {(Xi, Yi)}Ni=1 be the indepen-

dent full data of size N from the joint distribution of (X, Y ), where Y is the response variable and

X is the covariate variable. Let the joint density of (X, Y ) be fXY (x, y; θ) = fY |X(y|x; β)fX(x;α),

where θ = (β, α), fY |X(y|x; β) is the conditional density of Y givenX , and fX(x;α) is the density

of X . With big data where N is super large, using the full data to estimate θ is computationally ex-

pensive, so a popular practical solution is to select a smaller subsample to perform calculation (e.g.

Avron et al., 2010; Ma et al., 2015; Mahoney, 2011; Meng et al., 2014; Zhang et al., 2020). For

estimation efficiency, nonuniform sampling probabilities are recommended where the sampling

probabilities depend on the data. For example, optimal subsampling assigns larger probabilities

to more informative data points (Wang et al., 2018). Let π(Xi, Yi) be the sampling probability

such that πn(Xi, Yi) = Pr(δi = 1|Xi, Yi), i = 1, ..., N , where n is the expected subsample size

so that E{πn(Xi, Yi)} = n and δi is the indicator variable signifying if (Xi, Yi) is included in the

subsample (δi = 1 if the i-th data point is selected in the subsample and δi = 0 otherwise). Al-

though uniform sampling is often used, there is increasing interest in optimal subsampling where

a more inforrmative data point is given a larger value of π(Xi, Yi) (Mahoney, 2011; Zhang et al.,

2020). For a selected subsample, a commonly used estimator is the inverse probability weighted

estimator, the maximizer of
N∑
i=1

δi log fXY (Xi, Yi; θ)

π(Xi, Yi)
. (s.5)

However, the estimator θ̂W gives smaller weights to more informative data points, so it is not effi-

cient. To solve this issue, methods have been proposed to correct the bias in the naive unweighted

estimator (Fithian and Hastie, 2014; Scott and Wild, 1986; Wang, 2019), and Wang (2019) has

proved that the unweighted estimator with bias correction has a higher estimation efficiency. How-
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ever, the aforementioned investigations exclusively focused on the logistic regression because the

bias correction terms depends on the special structure of the logistic regression. A general approach

to avoid the inefficient inverse probability weighting is not available for optimal subsampling.

The proposed iterative likelihood framework gives general solutions beyond logistic regression

for subsampled data. From Bayes’ theorem, the density of (X, Y ) for the sampled observation

with δ = 1 is

fXY (x, y|δ = 1; θ) =
fY |X(y|x; β)fX(x;α)πn(x, y)∫

π̄(x; β)fX(x;α)dx
(s.6)

where

π̄n(x; β) =

∫
fY |X(y|x; θ)πn(x, y)dy (s.7)

often have closed form expression in optimal subsampling.

Letting θ = (β, α) and θ′ = (β′, α′), we define an iterative likelihood as

LN(θ, θ′) =
N∑
i=1

δili(θ, θ
′), (s.8)

where

li(θ, θ
′) = log fY |X(y|x; β) + log fX(x;α′)− log

∫
π̄n(x; β)fX(x;α′)dx. (s.9)

The above iterative likelihood procedure is innovative in multiple aspects. 1) It gives a gen-

eral solution to avoid the inverse probability weighting. In addition, our theoretical results in the

paper apply, assuming n and N goes to infinity. Note that in subsampling for a given expected

subsample size n, the density of (X, Y ) given δ = 1 is a sequence that changes with n and N , so

the standard i.i.d. argumentation for MLE does not directly applies. 2) Our theoretical results are

unconditional, and it is about the true parameter. This is different from existing results for optimal

subsampling estimators where the distributional results are often conditional on the observed data,
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and the theoretical properties are about approximating the full data estimator instead of estimating

the true parameter, e.g., Ai et al. (2020); Keret and Gorfine (2020); Wang et al. (2018); Yao and

Wang (2019); Yu et al. (2020); Zhang and Wang (2021); Zuo et al. (2021), among others. 3) We

believe the resulting estimator has the highest estimation efficiency among regular asymptotically

unbiased estimators. However, a rigorous proof needs further investigations.

Of course for the additional estimation efficiency, the iterative likelihood has to pay a price in

regression problems. If β is the only parameter of interest, then the weighted estimator can be

obtain thorough maximizing
N∑
i=1

δi log fY |X(y|x; β)

π(Xi, Yi)
, (s.10)

without estimating α. We point out this because we do not want oversell iterative likelihood. Every

method has its advantages and disadvantages. From the above example, we see that the iterative

likelihood provides a general solution to an important problem by looking at it from a broader

view. This is definitely one of the advantages of iterative likelihood. Our paper is the first paper

about iterative likelihood and we do not expect it to solve all the problems. We hope the paper can

be a start in this direction.
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