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Abstract In applications, the traditional estimation procedure generally begins with model selection.

Once a specific model is selected, subsequent estimation is conducted under the selected model without

consideration of the uncertainty from the selection process. This often leads to the underreporting

of variability and too optimistic confidence sets. Model averaging estimation is an alternative to this

procedure, which incorporates model uncertainty into the estimation process. In recent years, there

has been a rising interest in model averaging from the frequentist perspective, and some important

progresses have been made. In this paper, the theory and methods on frequentist model averaging

estimation are surveyed. Some future research topics are also discussed.

Key words Adaptive regression, asymptotic theory, frequentist model averaging, model selection,

optimality.

1 Introduction

Traditional data analysis generally includes two stages: The first is to select an appropriate
model, and the second is to make inference under the selected model as if this model had been
given in advance. In reality, this process ignores the additional uncertainty or even bias in-
troduced by model selection procedure and thus often underreports variance (or mean squared
error) or reports too optimistic coverage probability of claimed confidence interval. An alter-
native to this process is model averaging. A model averaging estimator compromises across a
set of competing models, and in doing so, incorporates model uncertainty into the conclusions
about the unknown parameters. Besides, model averaging estimator often improves the risk in
estimation because it provides a kind of insurance against selecting a very poor model.

The concept of model averaging, including frequentist model averaging (FMA) and Bayesian
model averaging (BMA), appeared in about 1960s and most of the early papers focused on
economic fields; see, for example, [1–5]. Compared with the FMA approach, there has been
an enormous literature on the use of the BMA approach where the uncertainty on model is
considered by setting a prior probability to each candidate model. Some examples include [6–
10]. But, as commented by Hjort and Claeskens[11], in using the BMA approach, there exist
some problems such as how to set prior probabilities and how to deal with the priors when
they are in conflict with each other. In contrast, the FMA approach requires no priors and the
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corresponding estimators are totally determined by data. Therefore, the FMA approach has
received much attention over last decade; see, for example, [11–17].

The application of the FMA approach can be dated back to the work of Bates and Granger[1]

on forecast combination. Recently, with the development of theory on this approach, it has been
used in many fields. For instance, Claeskens, Croux and ven Kerckhoven[18] applied the ap-
proach to a study of diabetic retinopathy; Kapetanios, Labhard, and Price[19] used it to forecast
UK inflation; Pesaran, Schleicher, and Zaffaroni[20] discussed its use as a way dealing with the
risk of inadvertently using false models in portfolio management; and Wan and Zhang[21] applied
it to tourism research. More extensively, the monograph by Claeskens and Hjort[22] presents
many empirical illustrations on the use of the technique. Our current paper is devoted to make
a review on the theory and specific operating methods of the FMA approach.

This paper is organized as follows. We first introduce the definition of the FMA estimators
in Section 2, and then summarize the asymptotic theories of the FMA estimators in Section 3
and discuss the choice methods of the weights in the FMA estimators in Section 4. We consider
model averaging based on various regression procedures in Section 5. Some future research
topics are included in Section 6.

2 Definition of FMA Estimators

In this section, we take a linear model as an example to illustrate the definition of the FMA
estimator. The extension to more general framework is straightforward. Consider the following
linear model:

y = Xβ + Zγ + ε, (1)

where y(n × 1) is a vector of response variable, X(n × p) and Z(n × q) are the non-random
regressor matrices, β(p× 1) and γ(q × 1) are the parameter vectors, and ε(n× 1) is a random
error vector. We assume that (X, Z) has full column rank p+ q. Here, X contains the variables
that must be included in the model fitting, while Z contains the “doubtful” variables that may
be included in the model.

Clearly, by setting some components of γ = (γ1, γ2, · · · , γq)t to be zeros, there are totally
2q candidate models. Assume that our purpose is to estimate β. Let β̂(S) be the estimator of β
under the candidate model S, where S is a subset of {1, 2, · · · , q}, and the candidate model S
means the model with β and γj (j ∈ S) as unknown parameters. The traditional data analysis
method takes the selected model as the one given in advance, and reports only the variance or
mean squared error of β̂(S) if the candidate model S is selected, while the actual estimator is

β̂ =





β̂(S1), if the first model (say, S1) is selected,
...

...
β̂(S2q ), if the 2q-th model (say, S2q ) is selected.

For simplicity, we rewrite the above estimator as

β̂ =
∑

S

λ(S | data)β̂S ,

where

λ(S | data) =
{

1, if the candidate model S is selected;
0, otherwise,

and ‘data’ means that the weights are determined based on the data and no priors are involved,
which is also a difference between the FMA and BMA approaches.
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The above estimator is the usual pre-test estimator which is not continuous and thus inad-
missible (see [23]). So naturally, we consider the smoothed weights λ(S|data) and accordingly,
the model averaging estimator is given by

β̂ =
∑

S

λ(S|data)β̂S ,

where 0 ≤ λ(S|data) ≤ 1, and
∑
S

λ(S|data) = 1. Such an estimator is referenced as the FMA

estimator of β which integrates the model selection and estimation precedure.
Now, we consider more general case. Assume that the quantity of interest is µ, and its

estimator is µ̂S under the candidate model S. Then, the FMA estimator of µ is given by

µ̂ =
∑

S

λ(S | data)µ̂S .

3 Asymptotic Theory of Frequentist Model Averaging Estimators

In this section, we first discuss asymptotic theory of the FMA estimators under parametric
models, then consider its generalization to the case of semiparametric models.

3.1 Asymptotic Theory of the FMA Estimators under Parametric Models

Suppose data come from a model with the density

ftrue = f(y, β, γ) = f(y, β0, γ0 + δ/
√

n), (2)

where β(p× 1) consists of parameters in all candidate models and β0 is its true value, γ(q× 1)
is a vector around γ0 with perturbation δ/

√
n, and γ0 is a known vector, determined by the

statistical problem of interest. This is a local misspecification framework with the null model
when δ = 0. This framework is crucial for deriving asymptotic results and some arguments
on it can be found in [24–25]. By setting some components of δ to be zeros, there exist
totally 2q candidate models. Let the quantity of interest be µtrue = µ(ftrue), where µ(·) is a
known function. Under the candidate model S (the model with β and δj , j ∈ S, as unknown
parameters), the estimator of µtrue is given by

µ̂S = µ(β̂S , γ̂S , γ0, SC ),

where β̂S and γ̂S are the maximum likelihood estimators of β and γS based on the model,
respectively, and SC is the complement of S.

Hjort and Claeskens[11] studied the asymptotic properties of the FMA estimator with the
following form

µ̂H1 =
∑

S

λ(S|Dn)µ̂S , (3)

where λ(S|Dn) is a weight function, and Dn = δ̂full is an estimator of δ under the full model.
Before arriving at the main results, let us introduce some notations. Denote the score function
by (

U(y)
V (y)

)
=

(
∂ log f(y, β0, γ0)/∂β
∂ log f(y, β0, γ0)/∂γ

)
, (4)
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whose (p + q)× (p + q) variance matrix at the null point (βt
0, γ

t
0)

t is

J =
(

J00 J01

J10 J11

)
with inverse J−1 =

(
J00 J01

J10 J11

)
. (5)

Let πS be the projection matrix mapping δ = (δ1, δ2, · · · , δq)t to the sub-vector πSδ = δS with
the components δj (j ∈ S). The following theorem involves asymptotic results of the FMA
estimator µ̂H1.

Theorem 1 If each weight λ(S|·) has at most a countable number of discontinuities, then

√
n(µ̂H1 − µtrue)

d→ Λ = µt
βJ−1

00 ζ + ωt{δ − δ̂(D)}, (6)

where ‘ d→’ denotes convergence in distribution, D∼Nq(δ,Ψ) is the limit of Dn, µβ= ∂µ
∂β |β=β0,γ=γ0 ,

ζ ∼ Np(0, J00) is independent of D, δ̂(D) =
{ ∑

S

λ(S|D)πt
S(πSΨ−1πt

S)−1πS

}
Ψ−1D, Ψ = J11 =

(J11 − J10J
−1
00 J01)−1, and ω = J10J

−1
00 µβ − ∂µ

∂γ |β=β0,γ=γ0 . The mean and variance of Λ are

ωt{δ − Eδ̂(D)} and µt
βJ−1

00 µβ + ωtVar
(
δ̂(D)

)
ω, respectively.

Let |S| be the number of the elements in S. Hjort and Claeskens[11] also studied the Akaike
Information Criterion (AIC)[26] based on the above framework and gave the following result

AICn,S = Dt
nΨ−1(πSΨ−1πt

S)−1Ψ−1Dn − 2|S|+ oP (1), (7)

which means that the AICn,S is approximately determined by S and the estimator of δ under
the full model. This indicates that the model selection estimator by AIC and the averaging
estimators with Akaike weights in [12] and [15] are actually special cases of the estimator in
(3). Further, the authors pointed out that the coverage probability of the confidence interval
introduced by Burnham and Anderson[15] is biased, and then they constructed a confidence
interval with confidence limits listed below and showed that such an interval has an asymptotic
confidence level precisely the same as the intended level 1−2Fnorm(zu) (Fnorm(·) is the standard
normal distribution function):

lown = µ̂H1 − ω̂t[Dn − δ̂(Dn)Dn]/
√

n− zuκ̂/
√

n,

upn = µ̂H1 − ω̂t[Dn − δ̂(Dn)Dn]/
√

n + zuκ̂/
√

n,

where ω̂ and κ̂ are consistent estimators of ω and κ =
√

µt
βJ−1

00 µβ + ωtΨω, respectively, and
zu is the u-th standard normal quantile.

3.2 Asymptotic Theory of the FMA Estimators Under Semiparametric Models

Following the above asymptotic theory under parametric models, Hjort and Claeskens[25]

considered the FMA approach under Cox’s hazard regression models

h(u) = h0(u) exp(Xβ + Zγ) = h0(u) exp(Xβ + Zδ/
√

n), (8)

where, unlike the model (2), the null model corresponds to γ = 0 but not γ = γ0 for simplicity.
Note that some notations in current section share the same definitions as those before, except
that they are defined based on the model (8). For a given parameter of interest µ(β, γ, H0),
where H0 is the cumulative baseline hazard rate, the FMA estimator is defined as

µ̂H2 =
∑

S

λ(S|Dn)µ̂S , (9)
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where µ̂S = µ(β̂S , γ̂S , 0SC , Ĥ0,S), and Ĥ0,S is Aalen-Breslow type estimator of H0 under the
candidate model S. Let

J =
(

J00 J01

J10 J11

)

be the limit of the second order derivatives of the partial likelihood with respect to β and γ
(normalized by n−1 and calculated at the null point (βt

0, 0
t)t). Then the asymptotic results of

the FMA estimator µ̂H2 can be provided as follows.
Theorem 2 Suppose ordinary regularity conditions for Cox’s model hold, and assume that

for each S, the random weight λ(S|Dn) used in (9) is such that λ(S|Dn) tends in distribution
to λ(S|D), in terms of the limit D of Dn, where each λ(S|·) has at most a finite number of
discontinuities. Then

√
n(µ̂H2 − µtrue)

d→ Λ = Λ0 + (ω − κ1)t{δ − δ̂(D)}, (10)

where Λ0 ∼ N(0,Π 2
0 ) is independent of D, κ1 = κ1(t) = {J10J

−1
00 F0(t) − F1(t)} ∂µ

∂H0
, and the

definitions of F0(t), F1(t), and Π0 can be found in [25] (as they are complicated, we omit them
for saving space).

Based on Theorem 2, Hjort and Claeskens[25] also gave a useful representation of AIC for
Cox’s model which is similar to Equation (7).

Furthermore, Claeskens and Carroll[27] showed that all of the results in [11] hold in a com-
monly used semiparametric model, given that the Fisher information matrix for parametric
models is replaced by the semiparametric information bound for semiparametric models, and
maximum likelihood estimators for parametric models are replaced by semiparametric efficient
profile estimators. The semiparametric model in this paper is partially linear model with normal
errors

Yi = Xt
i α + g(Ti) + εi = Xt

i (β
t, δt/

√
n)t + g(Ti) + εi. (11)

For simplicity, the authors considered the case of two candidate models: The full model with
αfull = (βt, γt)t and the null model with αnull = (βt, 0t)t. Then the FMA estimator of the
parameter of interest µtrue = µ(α) is given by

µ̂C = λ(δ̂full)µ(α̂full) + {1− λ(δ̂full)}µ(α̂null), (12)

where α̂full and δ̂full are the estimators of α and δ under the full model, respectively, and α̂null

is the estimator of α under the null model of (11). Based on the same regularity conditions as
those used in a local likelihood setting where one wishes to obtain strong uniform consistency of
the local likelihood estimators, they gave the following asymptotic distribution about averaging
estimator.

Theorem 3 Under the local misspecification assumption,

√
n{µ̂C − µ(α)} d→ Λ = λ(D)Λfull + {1− λ(D)}Λnull, (13)

where D, Λfull, and Λnull are, respectively, the limiting variables of δ̂full,
√

n{µ(α̂full) − µtrue}
and

√
n{µ(α̂null)− µtrue}.

Partition the semiparametric information bound S(α) as well as its inverse in the following
way,

S(α) =
(

Sββ(α) Sβγ(α)
Sγβ(α) Sγγ(α)

)
, S−1(α) =

(
Sββ(α) Sβγ(α)
Sγβ(α) Sγγ(α)

)
,
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then we get

E(Λ) = ωt(δ − E{λ(D)D}),
Var(Λ) = µt

β(Sββ)−1µβ + ωtVar{λ(D)D}ω,

where µβ = ∂µ
∂β |β=β0,γ=0 and ω = SγβS−1

ββ µβ− ∂µ
∂γ |β=β0,γ=0. Subsequently, a confidence interval

with the limits
µ̂− ω̂t[{1− λ(δ̂full)}δ̂full]/

√
n± zuκ̂2/

√
n,

has the probability of coverage converging to an intended level, where zu is the u-th standard
normal quantile as before and κ̂2

2 is a consistent estimator of the variance under the full model
κ2

2 = µt
βS−1

ββ µβ + ωtSγγω.
More recently, Wang[28] generalized Hjort and Claeskens’s[11] results to linear models with

measurement errors, and semiparametric varying coefficient partially linear models with and
without measurement errors in the linear part.

In addition, for the model (1) with normal error assumption, Magnus and Durbin[13] found
that if only the full and null models are considered, then the problem of estimating the co-
efficients of interest by using the FMA estimator is equivalent to that of finding an optimal
estimator of the vector of coefficients of no interest given a single observation from a normal
distribution. This is an interesting result as it implies that irrespective of the model’s structure,
the optimal solution for the N(θ, σ2Iq×q) problem (where Iq×q is an identity matrix) is also
optimal for all regression models with the same value of q. Danilov and Magnus[29] general-
ized the equivalence property to the case of multiple candidate models. Further, Danilov and
Magnus[30] considered forecasting problem. On the other hand, Zou et al.[31] extended Magnus
and Durbin’s findings to the large sample non-normal errors case under the local misspecifica-
tion framework of Hjort and Claeskens[11].

4 Weight Choice for the FMA Estimators

An important issue with the FMA estimators is how to choose weights in estimation. Dif-
ferent weights will result in different risks and asymptotic properties, so in this section we
introduce some work related to weight choice and show that some weight choice methods are
asymptotically optimal, i.e., asymptotically achieving the lowest squared error among a family
of estimators.

4.1 Weight Choice Based on the Information Criterion

Buckland, Burnham, and Augustin[12] began with the following model averaging estimator
of a parameter µ (assumed to be common to all models),

µ̂B =
K∑

k=1

λkµ̂k, (14)

where the index k denotes the k-th candidate model, µ̂k is the estimator of µ on the basis of
the k-th candidate model, λk is the weight associated with µ̂k, and

∑K
k=1 λk = 1.

Assuming that the weights λk (k = 1, 2, · · · ,K) are known constants and the correlation
coefficients between the estimators of parameter under different models equal to one, they gave
the formula of the variance for the estimator µ̂B as follows

Var(µ̂B) =
{ K∑

k=1

λk

√
Var(µ̂k|bk) + b2

k

}2

, (15)
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where bk is the misspecification bias which arises in estimating µ under the k-th candidate
model. This variance can be estimated by substituting Var(µ̂k|bk) and bk with V̂ar(µ̂k|bk) and
b̂k = µ̂k − µ̂B .

However, in practice, the weights have to be estimated, and so Buckland, Burnham, and
Augustin[12] resorted to information criteria of the form

Ik = −2 log(Lk) + `, (16)

where Lk is the maximized likelihood function under the k-th model and ` is a penalty function
of the number of parameters and/or the number of observations. They then recommended to
use the following weights

λk =
exp(−Ik/2)∑K
i=1 exp(−Ii/2)

, k = 1, 2, · · · ,K. (17)

If ` = 2p, where p is the number of parameters, Ik would be AIC and accordingly the estimator is
called smoothed AIC estimator with Akaike weight. Although they did not conduct theoretical
study on such estimators, they presented three numerical examples to demonstrate the virtue
of them. The weights of the form (17) have been widely used in literature. Examples include
[21] and [32–34].

Burnham and Anderson[15] worked further following Buckland, Burnham, and Augustin’s[12]

idea and introduced a formal procedure for inference under multimodels which they termed as
the ‘multimodel inference’. They stated that even if the weights are Akaike weights, the variance
of the estimator can still be estimated by

{ ∑K
k=1 λk

√
Var(µ̂k|bk) + (µ̂k − µ̂B)2

}2. They also
proposed the methods on establishing unconditional confidence intervals, estimating the relative
importance of variables and constructing set for the K-L best model.

4.2 Weight Choice Based on Mallows’ Criterion

Hansen[17] discussed the model averaging in least squares estimation and proposed a method
that selects the weights by minimizing Mallows’ criterion[35]. The model Hansen considered is
a homoskedastic linear regression:

yi = µi + ei, i = 1, 2, · · · , n, (18)

µi =
∞∑

j=1

θjxij , (19)

E(ei|xi) = 0, (20)

E(e2
i |xi) = σ2, (21)

with xi = (xi1, xi2, · · · ) and the assumptions that Eµ2
i < ∞ and (19) converges in mean square.

Consider a sequence of approximating models k = 1, 2, · · · , where the k-th model uses the first
φk elements of xi with 0 < φ1 < φ2 < · · · . (Note that in all Hansen’s work on model averaging,
he termed candidate models as approximating models, since, as he remarked in [36], models
should be viewed as approximations of data generating process. Therefore, we also use the term
‘approximating’ when discuss his work.) Thus, the k-th approximating model is given by

yi =
φk∑

j=1

θjxij + ei, i = 1, 2, · · · , n. (22)
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The corresponding approximating error is
∑∞

j=φk+1 θjxij . Using matrix notation, the model
(22) can be rewritten as

Y = XkΘk + e,

where Y = (y1, y2, · · · , yn)t, Xk is an n × φk matrix with the ij-th element xij , Θk =
(θ1, θ2, · · · , θφk

)t, and e = (e1, e2, · · · , en)t. Denote µ = (µ1, µ2, · · · , µn)t. Let K = K(n) ≤ n
be the approximating model with the largest number of regressors and assume Xt

KXK to be
invertible. Let λ = (λ1, λ2, · · · , λK)t be a weight vector in the unit simplex in RK :

Hn =
{

λ ∈ [0, 1]K :
K∑

k=1

λk = 1
}

, (23)

then the least squares model averaging estimator of ΘK is defined as

Θ̂(λ) =
K∑

k=1

λk

(
Θ̂k

0

)
, (24)

where Θ̂k is the least squares estimator of Θk under the k-th approximating model. Corre-
spondingly, the model averaging estimator of µ is

µ̂(λ) = XKΘ̂(λ) = P (λ)Y, (25)

where P (λ) =
∑K

k=1 λkPk and Pk = Xk(Xt
kXk)−1Xt

k is the projection matrix under the k-th
approximating model.

The Mallows’ criterion for the model averaging estimator is

Cn(λ) =
(
Y −XKΘ̂(λ)

)t(
Y −XKΘ̂(λ)

)
+ 2σ2λtΦ, (26)

where Φ = (φ1, φ2, · · · , φK)t. In applications, Hansen[17] proposed to choose weights by mini-
mizing this criterion, i.e., the selected weight vector is

λ̂ = argmin
λ∈Hn

Cn(λ). (27)

Define the average squared error and expected conditional squared error as Ln(λ) = (µ̂(λ)−
µ)t(µ̂(λ)− µ) and Rn(λ) = E(Ln(λ)|x1, x2, · · · , xn), respectively. Let Hn(N) be the subset of
Hn, where λk’s are restricted to the set {0, 1

N , 2
N , · · · , 1} with some integer N . Denote

λ̂(N) = argmin
λ∈Hn(N)

Cn(λ). (28)

The following theorem shows the asymptotic optimality of µ̂(λ̂(N)) when the weights are con-
strained to Hn(N).

Theorem 4 As n →∞, if
ξn = inf

λ∈Hn

Rn(λ) →∞ (29)

almost surely, and for some fixed integer N < ∞,

E(|ei|4(N+1)|xi) ≤ ce < ∞, (30)
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then
Ln(λ̂(N))
inf

λ∈Hn(N)
Ln(λ)

p→ 1, (31)

where ‘
p→’ denotes convergence in probability, and ce is a positive constant.

The above theorem shows that µ̂(λ̂(N)) asymptotically achieves the lowest possible squared
error when we constrain the weight vector to the discrete set Hn(N), i.e., is asymptotically
optimal. It should be pointed out that Kabaila[37] demonstrated that post-model-selection
estimators with asymptotically efficient property can have rather inefficient small sample per-
formance, this finding is likely to carry over to the FMA estimators.

Furthermore, Hansen[38] proposed to use Mallows’ model averaging method to do forecast
and showed that the Mallows’ criterion is an asymptotically unbiased estimator of both the in-
sample mean squared error and the out-of-sample one-step-ahead mean squared forecast error.
Hansen[39] studied least squares estimation of an autoregressive model with a root close to unity.
He proposed two measures to evaluate the efficiency of the estimators: the asymptotic mean
squared error and forecast expected squared error. Numerical comparison of Mallows’ model
averaging method with many other methods shows that Mallows’ model averaging estimator
often has smaller risk.

More recently, noting that all approximating models considered in [17] are nested and the
asymptotic optimality shown in Theorem 4 is based on a discrete weight set, Wan, Zhang and
Zou[40] improved results of [17] by removing these two restrictions (the removing of the second
restriction is an open problem in [17]). They considered a non-nested framework by allowing
regressors in the approximating model (22) to be any φk regressors belonging to xi. Under some
reasonable conditions, they obtained the asymptotic optimality of µ̂(λ̂) as follows. Note that
λ̂ defined in (27) is more general than λ̂(N) in (28). Also, the condition (33) in the following
theorem is stronger than the condition (29) in Theorem 4.

Theorem 5 As n →∞, if for some integer 1 ≤ G < ∞,

E(|ei|4G|xi) ≤ c∗e < ∞, (32)

and

Kξ−2G
n

K∑

k=1

(
Rn(λo

k)
)G

→ 0, (33)

then
Ln(λ̂)

inf
λ∈Hn

Ln(λ)
p→ 1, (34)

where c∗e is a positive constant, and λo
k is a K × 1 vector in which the k-th element is one and

the others are zeros.

4.3 Weight Choice Based on the Cross-Validation Criterion

Hansen and Racine[41] proposed to select the weights of least squares model averaging es-
timator by minimizing a deleted-1 cross-validation criterion, and the method is termed as
the jackknife model averaging (JMA). Compared with Mallows’ model averaging method, this
method is appropriate for more general linear models, i.e., the random errors are allowed to
be with heteroskedastic variances (σ2

1 , σ2
2 , · · · , σ2

n). In addition, like [40], the approximating
models are allowed to be non-nested. The other set-up of the model considered in [41] is the
same as that in [17].
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The jackknife version of the model averaging estimator of µ is

µ̃(λ) =
K∑

k=1

λkP̃kY , P̃ (λ)Y,

where P̃k = D̃k(Pk − In) + In, D̃k is the n× n diagonal matrix with the i-th diagonal element
being (1 − hk

ii)
−1, hk

ii = Xk,i(Xt
kXk)−1Xt

k,i, and Xk,i is the i-th row of Xk. Let the expected
squared error of µ̃(λ) be R̃n(λ) = E (µ− µ̃(λ))t (µ− µ̃(λ)). The deleted-1 cross-validation
criterion is defined as

CV (λ) =
(
Y − µ̃(λ)

)t(
Y − µ̃(λ)

)
, (35)

and the JMA estimator is µ̂(λ̂∗) with the weights

λ̂∗ = argmin
λ∈Hn

CV (λ).

The following theorem builds the asymptotic optimality of the JMA estimator.
Theorem 6 As n → ∞, if the condition (29) and the following conditions hold almost

surely:

inf
i

σ2
i ≥ cσ > 0 with cσ being a constant; (36)

for some integer G, sup
i

E
(
e4G
i |xi

)
< ∞; (37)

for two constants 0 < c1 < ∞ and c2 > 0, φk ≥ c1k
c2 ; (38)

max
1≤k≤K

max
1≤i≤n

hk
ii → 0, (39)

then

Ln(λ̂∗)
inf

λ∈Hn(N)
Ln(λ)

p→ 1, (40)

and

Rn(λ̂∗)
inf

λ∈Hn(N)
Rn(λ)

p→ 1. (41)

Note that, compared with the asymptotic optimality in Theorems 4 and 5, Theorem 6
additionally contains the asymptotic optimality in the sense of achieving the lowest risk value.

4.4 Weight Choice Based on the Unbiased Estimator of Risk

Under the parametric models discussed in Section 3.1, by deriving the unbiased estimator
of risk, Liang, Zou, and Zhang[42] proposed to choose weights by minimizing the following
criterion:

WC = {ω̂tΨ̂1/2(â∗(Zn)−Zn)}2 + 2ω̂tΨ̂1/2 ∂â∗(Zn)
∂Zt

n

Ψ̂1/2ω̂, (42)

where Zn = Ψ̂−1/2Dn, â∗(Zn) = {∑S λ(S|Zn)Ψ̂S}Zn, Ψ̂S = Ψ̂−1/2πt
S(πSΨ̂−1πt

S)−1πSΨ̂−1/2,
ω̂ and Ψ̂ are the estimators of ω and Ψ , respectively, and all other notations are the same as
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those in Section 3.1. The calculation of the partial derivative in (42) can be done by explicit
formulas or numerical differential methods.

In particular, for non-random weights, i.e., â∗(Zn) =
{ ∑

S

λ(S)Ψ̂S

}
Zn, (42) reduces to

WC =
{

ω̂tΨ̂1/2

( ∑

S

λ(S)Ψ̂S − Iq

)
Zn

}2

+ 2ω̂tΨ̂1/2

{ ∑

S

λ(S)Ψ̂S

}
Ψ̂1/2ω̂.

For the simplest case where only the full and null models are taken into account, we have

WC = (λfull − 1)2
(
ω̂tΨ̂1/2Zn

)2

+ 2λfullω̂
tΨ̂ ω̂.

Thus, the desired weights are given by

λfull = 1− ω̂tΨ̂ ω̂

(ω̂tΨ̂1/2Zn)2
and λnull =

ω̂tΨ̂ ω̂

(ω̂tΨ̂1/2Zn)2
. (43)

It can be seen that the weights obtained in (43) are not exactly the same as those in (5.5)
of Hjort and Claeskens[11]. The reason is that Hjort and Claeskens[11] minimized the risk
function itself, whereas Liang, Zou, and Zhang[42] minimized its unbiased estimator. However,
they are close. In fact, when only δ is the unknown quantity, by noting that E(ωtΨ1/2Z)2 =
ωtΨω + (ωtΨ−1/2δ)2 with Z = Ψ−1/2D, the numerator and denominator of weights in Hjort
and Claeskens[11] are just the expectations of those in (43), respectively. On the other hand,
it can be shown that

√
n(µ̂full − µ̂null) ≈ −ω̂tΨ̂1/2Zn. Thus, the weights in (43) are just the

James-Stein type weights studied in [43].
On the basis of the criterion given in (42), we can assess the performance of a weight form

by calculating its WC value, and compare different weight forms accordingly.
The criterion given in (42) is based on the large sample theory of Hjort and Claeskens[11].

For the small sample case, assuming the model framework in Section 2, Liang et al.[44] derived
a criterion that can also be used to compare different weight forms.

5 Model Averaging Based on Various Regression Procedures

In the previous sections, the structures of candidate models for averaging across are gen-
erally the same. In fact, for the case with different structures of candidate models, model
averaging is also possible. In 2001, Yang[14] gave an algorithm named ‘Adaptive Regression by
Mixing (ARM)’ which can result in a weighted estimator that combines the estimators from dif-
ferent regression procedures. Here the regression procedures can be dramatically different, for
example, including simple linear regression, additive modeling, projection pursuit, and neural
network, etc. Consider the following regression setting

Yi = f(Xi) + σ(Xi) · εi,

where (Xi, Yi)n
i=1 are i.i.d. from the joint distribution of (X, Y ) with Y = f(X) + σ(X) · ε.

The explanatory variable X could be multidimensional with the distribution PX , and the error
term ε is assumed to be independent of X and has the density ς(t) with mean 0 and a finite
variance. The goal is to estimate the regression function f based on the data Zn = (Xi, Yi)n

i=1.
Let %k, 1 ≤ k ≤ K, denote the proposed regression procedures. Also, let f̂k,i(x;Zi) and
σ̂k,i(x) = σ̂k,i(x;Zi) (i ≥ 1) denote the estimators of f and σk by the procedure %k based on
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Zi, respectively. Then the algorithm of the ARM can be described below (n is assumed to be
even for simplicity):

Step 0 Randomly permute the order of the observations.
Step 1 Split the data into two parts Z(1) = (Xi, Yi)

n/2
i=1 and Z(2) = (Xi, Yi)n

i=n/2+1.

Step 2 Obtain the estimates f̂k,n/2(x;Z(1)) of f based on Z(1) for 1 ≤ k ≤ K. Estimate
the variance function σ2(x) by σ̂2

k,n/2(x).

Step 3 For each k, evaluate predictions. For n/2 + 1 ≤ k ≤ n, predict Yi by f̂k,n/2(Xi).
Compute

Ek =

∏n
i=n/2+1 ς

(
(Yi − f̂k,n/2(Xi))/σ̂k,n/2(Xi)

)
∏n

i=n/2+1 σ̂k,n/2(Xi)
.

Step 4 Compute the current weight for procedure %k. Let λk = Ek∑K
k=1 Ek

.
Step 5 Repeat Steps 0–4 (U − 1) more times and average the weights over the U random

permutations. Let λ̂k denote the obtained weight of procedure %k. The final estimator is

f̂n(x) =
K∑

k=1

λ̂kf̂k,n(x). (44)

Many experiments have been done in the paper to show the performance of such an estima-
tor. For analyzing the risk property of this kind of estimators, they constructed a similar but
more general model averaging estimator as follows.

For each n, choose an integer Nn of order n that satisfies 1 ≤ Nn ≤ n. Let λk,n−Nn+1 =
$k, k = 1, 2, · · · , where $′

ks are positive numbers that sum to 1. For n−Nn + 2 ≤ i ≤ n, let

λk,i =
$k

∏i−1
l=n−Nn+1 ς

((
Yl+1 − f̂k,l(Xl+1)

)
/
(
σ̂k,l(Xl+1)

))
/σ̂k,l(Xl+1)

∑∞
k=1 $k

∏i−1
l=n−Nn+1 ς

((
Yl+1 − f̂k,l(Xl+1)

)
/
(
σ̂k,l(Xl+1)

))
/σ̂k,l(Xl+1)

. (45)

Note that
∑
k≥1

λk,i = 1 for each i = n−Nn + 1, · · · , n. Let

f̃i(x) =
∑

k

λk,if̂k,i(x) (46)

and define

f̂n(x) =
1

Nn

n∑

i=n−Nn+1

f̃i(x), (47)

and use %∗ to denote the procedure producing {f̂n, n ≥ 1}.
Define the risk of a procedure % for estimating f at the sample size n as R(f ;n; %) =

E||f−f̂n||2 with the expectation taken under the regression function f and the variance function
σ2, where ‖f − g‖ = (

∫ |f(x)− g(x)|2dPX)1/2. Consider the following two conditions:
A1 The regression function f(x) is uniformly bounded (||f ||∞ ≤ A < ∞), and σ(x) is

uniformly bounded above and below (0 < σ ≤ σ(x) ≤ σ < ∞). Estimators produced by %k also
satisfy these two requirements;

A2 The error density ς is such that for each pair 0 < s0 < 1 and T > 0, there exists a
constant B (depending on s0 and T ) such that

∫
h(x) log

ς(x)
(1/s)ς((x− t)/s)

µ(dx) ≤ B
(
(1− s)2 + t2

)
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for all s0 ≤ s ≤ s−1
0 and −T < t < T .

Theorem 7 below shows the bound of risk of the model averaging estimator, which gives an
important justification for the use of the ARM.

Theorem 7 If ς is known with mean 0 and variance 1, and the conditions A1 and A2 hold,
then for any given countable collection of estimation procedures ∆ = {%k, k ≥ 1}, the estimator

f̂n(x) resulted from the procedure %∗ has the following properties

R(f ;n; %∗) ≤ C1inf
k

( 1
Nn

log
1

$k
+

C2

Nn

n∑

l=n−Nn+1

(
E||σ2 − σ̂2

k,l||2 + E||f − f̂k,l||2
))

, (48)

where the constant C1 depends on A and σ̂, and C2 depends on A, σ
σ , and ς. This upper bound

also applies to the average risk of f̃i, n−Nn + 1 ≤ i ≤ n, that is,

1
Nn

n∑

i=n−Nn+1

E||f − f̃i||2 ≤ C1inf
k

( 1
Nn

log
1

$k
+

C2

Nn

n∑

l=n−Nn+1

(E||σ2− σ̂2
k,l||2 +E||f − f̂k,l||2)

)
.

Risk bound in estimating variance function and the corresponding algorithm are also pro-
vided in Section 6 of [14], we omit them for saving space.

With homoscedastic errors assumption, Yang[45] weakened the two conditions A1 and A2,
and more importantly, gave explicit constants in the risk bound. The model considered is

Yi = f(Xi) + εi, i = 1, 2, · · · , n,

where Xi = (Xi1, Xi2, · · · , Xid), f(·) is the true regression function, and εi is the random error
with mean 0 and variance σ2. Models to be selected or averaged are those with the subsets
of the explanatory variables from {X1, X2, · · · , Xd}. The risk of an estimator is defined as
R(f, f̂) = E||f − f̂ ||2. The general form of the method then can be presented as follows.

For i = n/2+1, let λk,i = 1/K (the number of regression procedures) and for n/2+1 < i ≤ n,
let

λk,i =
(σ̂k,n/2)−(i−n/2−1) exp

(
− 1

2σ̂2
k,n/2

∑i−1
l=n/2+1

(
Yl − f̂k,n/2(X l)

)2
)

∑K
j=1(σ̂j,n/2)−(i−n/2−1) exp

(
− 1

2σ̂2
j,n/2

∑i−1
l=n/2+1

(
Yl − f̂j,n/2(X l)

)2
) . (49)

Then define

λ̃k =
2
n

n∑

i=n/2+1

λk,i (50)

and let

f̃n(x) =
K∑

k=1

λ̃kf̂k,n/2(x) (51)

be the estimator.
The two weakened conditions are:
A3 There exists a constant τ > 0 such that for all i ≥ 1, with probability one, we have

sup
k≥1

||f̂k,i − f ||∞ ≤ √
τσ.
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A4 There exist constants 0 < ξ1 ≤ 1 ≤ ξ2 < ∞ such that

ξ1 ≤
σ̂2

k,i

σ2
≤ ξ2

with probability one for all k ≥ 1 and i ≥ 1.
For simplicity, they gave only the result with Gaussian errors.
Theorem 8 Assume that the errors are Gaussian and that the conditions A3 and A4 are

satisfied. Then the risk of the combined regression estimator f̃n satisfies

E||f̃n − f ||2 ≤ (1 + ξ2 + 9τ/2) inf
k≥1

(4σ2 log K

n
+

1
ξ1

E||f̂k,n/2 − f ||2 +
C(ξ1, ξ2)

σ2
E(σ̂2

k,n/2 − σ2)2
)
,

where C(ξ1, ξ2) = 1/ξ1−1+log ξ2
ξ2
1(1/ξ2−1)2

.

Yuan and Yang[46] went further along Yang’s[45] idea and proposed a method named the
adaptive regression by mixing with model screening (ARMS), which combines models selected
by some criteria instead of all the sub-models in which some bad models may be included.
Here we present a general version of the ARMS method (a version that is easy in computation
can be found in [46]) and give the risk bound of the estimator derived from this method. Let
Γs be a reduced list of candidate models based on any consideration using half of the data.
Then the weights and estimators are similar to (49)–(51) except that “k ∈ {1, 2, · · · ,K}” is
replaced by “k ∈ Γs”: Let k ∈ Γs with the size Ks. For i = n/2 + 1, define λk,i = 1/K and for
n/2 + 1 ≤ i ≤ n, define

λk,i =
(σ̂k,n/2)−(i−n/2−1) exp

(
− 1

2σ̂2
k,n/2

∑i−1
l=n/2+1

(
Yl − f̂k,n/2(X l)

)2
)

∑
j∈Γs

(σ̂j,n/2)−(i−n/2−1) exp
(
− 1

2σ̂2
j,n/2

∑i−1
l=n/2+1

(
Yl − f̂j,n/2(X l)

)2
) . (52)

Then define

λ̃k =
2
n

n∑

i=n/2+1

λk,i (53)

and let
f̃(x) =

∑

k∈Γs

λ̃kf̂k,n/2(x) (54)

be the estimator.
Theorem 9 Assume that the errors are Gaussian and the conditions A3 and A4 are

satisfied. Then for any k ∈ Γ, the risk of the combined regression estimator f̃ using the ARMS
satisfies

E||f̃ − f ||2 ≤τσ2P (k /∈ Γs)+

(1 + ξ2 + 9τ/2)
(2σ2E log Ks

n
+

1
ξ1

E||f̂k − f ||2 +
C(ξ1, ξ2)

σ2
E(σ̂2

k,n/2 − σ2)2
)
.

In particular, when Ks is upper bounded by a constant K0, we have

E||f̃ − f ||2 ≤τσ2P (k∗ ∈/Γs)+

(1 + ξ2 + 9τ/2)
(2σ2E log K0

n
+

1
ξ1

E||f̂k∗ − f ||2 +
C(ξ1, ξ2)

σ2
E(σ̂2

k∗,n/2 − σ2)2
)
,
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where k∗ is the model index in Γ that the corresponding model minimizes the risk.

6 Future Researches

In this paper, we have made a review on the development of the FMA approach. Asymptotic
theory of the FMA estimators has been presented and the choice methods of the weights in
the FMA estimators have been summarized. Although great progress has been made recently,
the research on the FMA approach is a relatively new topic, for which a lot of issues remain
unsolved and further development is needed.

One meaningful work is the generalization of the FMA approach to more complex models
such as the generalized varying coefficient semiparametric partially linear models and trans-
formation models in survival analysis so that the approach can be applied widely in practice.
Accordingly, the optimal choice methods of weight should be investigated. In fact, this issue has
not been completely addressed even for the parametric models. For example, as we mentioned
in Section 4.4, Liang, Zou, and Zhang[42] suggested a criterion of choosing weights. But the
proposed criterion requires a large sample size. What is the corresponding criterion when the
sample size is small? The problem remains unsolved.

In current research on the weight choice, many focus on developing those weights which have
some optimality properties, but no corresponding methods have been provided to estimate the
risks of the resultant estimators. Also, note that in order to evaluate the performance of the
FMA approach, the squared error loss is often utilized. No doubt, other loss functions including
asymmetric loss functions like the LINEX loss is worthy of investigation. On the other hand,
what will happen if different estimation methods are used? For instance, in Section 3.1, what
Hjort and Claeskens[11] considered is the maximum likelihood estimation. How about the M-
estimator?

A problem with the FMA approach arises when the dimension of the optional or doubtful
part of the parameters in the model is high. For example, if there are 10 optional parameters,
then, generally, 210 = 1024 candidate models should be considered, and thus the FMA approach
will usually be very time consuming. Recently, using the equivalence theorem introduced by
Magnus and Durbin[13], Magnus, Powell and Prüfer[9] developed a WALS (weighted-average
least squares) estimator based on Laplace prior. After a transformation, the required computing
time for the WALS estimator is linear with respect to the dimension of the optional parameters
rather than exponential. However, the method in [9] is based on Bayesian point of view. How
to release from the computation burden for the FMA approach is a challenge research topic.

Another interesting question is whether the FMA approach is applicable to complex data.
[25] and [28] have shown that it can be used in modeling censored data and the data with mea-
surement errors. Schomaker, Wan and Heumann[47] studied the FMA approach with missing
observations and two explicit operational approaches were presented and compared. Building
similar theory and methods for some other types of the missing data or other types of complex
data like longitudinal data warrants future researches.

An important reason for adopting model averaging estimation is that the traditional data
analysis method ignores the uncertainty produced by model selection. There is another ap-
proach that automatically incorporates uncertainty from selection stage by selecting variables
and estimating parameters simultaneously. This approach is based on the penalized function
such as SCAD[48] penalized regression and adaptive LASSO[49] methods and sometimes has
“Oracle Properties[48]”. The advantages and disadvantages of the FMA approach compared to
this approach are still unknown and should be explored.
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