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ABSTRACT
Frequentist model averaging is an effective technique to handle model uncertainty. However, calculation of
the weights for averaging is extremely difficult, if not impossible, even when the dimension of the predictor
vector, p, is moderate, because we may have 2p candidate models. The exponential size of the candidate
model set makes it difficult to estimate all candidate models, and brings additional numeric errors when
calculating the weights. This article proposes a scalable frequentist model averaging method, which is
statistically and computationally efficient, to overcome this problem by transforming the original model
using the singular value decomposition. The method enables us to find the optimal weights by considering
at most p candidate models. We prove that the minimum loss of the scalable model averaging estimator
is asymptotically equal to that of the traditional model averaging estimator. We apply the Mallows and
Jackknife criteria to the scalable model averaging estimator and prove that they are asymptotically optimal
estimators. We further extend the method to the high-dimensional case (i.e., p ≥ n). Numerical studies
illustrate the superiority of the proposed method in terms of both statistical efficiency and computational
cost.

ARTICLE HISTORY
Received February 2022
Accepted August 2022

KEYWORDS
Asymptotic optimality;
High-dimensional data;
Jackknife criterion; Mallows
criterion; Singular value
decomposition

1. Introduction

Model averaging is a popular and effective approach in dealing
with model uncertainty and improving prediction accuracy.
Instead of picking a single “best” model according to some
model assessment criterion in traditional model selection, the
model averaging approach advocates the pooling of predictions
by giving higher weights to better models. The approach often
reduces the risk in regression analysis, as “betting” on multiple
models prevent the case of a singly selected model being poor
(Leung and Barron 2006).

In the existing literature, Bayesian model averaging has been
well studied, and there is a large amount of literature on this
approach; see Hoeting et al. (1999), Raftery et al. (1997), and
the references therein. As an alternative, frequentist model aver-
aging on which this article focuses has been gaining increasing
attention. Buckland et al. (1997) suggested using weights based
on exponential Akaike information criterion (AIC) (Akaike
1973) to combine estimates from different candidate models.
Yang (2001) and Yuan and Yang (2005) proposed a mixing esti-
mator. Hjort and Claeskens (2003) provided an asymptotic anal-
ysis of model average estimators in the likelihood-based frame-
work. Hansen (2007) proposed selecting the optimal weights for
model averaging by minimizing a Mallows criterion. Liang et al.
(2011) developed a procedure for selecting optimal weights such
that the resultant estimator has the minimum mean-squared
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error. Hansen and Racine (2012) proposed a jackknife model
averaging method using leave-one-out cross-validation.

When there are p predictors, there are 2p candidate models
to consider. Thus, the size of the candidate model set is usually
enormous, which causes critical issues for obtaining optimal
weights by minimizing a criterion that requires to estimate all
candidate models. For example, given 20 predictors, there are
more than one million candidate models. It would be computa-
tionally difficult to estimate one million models and to obtain
the optimal weights for averaging over them. Calculating so
many weights may also cause the loss of prediction efficiency
due to computational error. Attempts have been made to reduce
this burden in the literature. One approach is to consider a
subset of all possible models by assuming a nested structure
among candidate models (Hansen 2007; Hansen and Racine
2012). However, this nested model structure is not applicable in
some practical problems. For example, in labor economics, it is
not suitable to assume that possible predictors can be expressed
in a nested way (Wooldridge 2003).

In this article, we develop a scalable frequentist model aver-
aging method based on singular value decomposition (SVD),
from which, we obtain the left singular vectors of the predictor
matrix, fit regression models on these singular vectors separately
to get the estimators, and then average these estimators to obtain
a model averaging estimator. This strategy enables us to find
optimal weights by considering at most p candidate models
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instead of 2p candidate models, and greatly advocates the appli-
cability of frequentist model averaging. Magnus and Durbin
(1999) proposed the weighted-average least squares estimator
which transformed covariates based on the relation between the
least squares estimators of interested parameters and that of nui-
sance parameters. The idea of orthogonalization was also used
in Clyde et al. (1996) for Bayesian model mixing. They devel-
oped a Bayesian framework for orthogonalized design matrix
assuming that the normal linear regression model is a correct
model. Similar strategy can also be found in Charkhi et al.
(2016), Jolliffe (1982), and Park (1981). We adopt a pure fre-
quentist approach and we do not assume that the full model is
correct. Compared with the traditional model averaging based
on the original covariates, the improvement of prediction effi-
ciency from the scalable model averaging, as well as computa-
tional gain from orthogonalization, are remarkable.

We prove that the minimum loss of the scalable model aver-
aging estimator is asymptotically equal to that of the traditional
model averaging estimator. This indicates that the best perfor-
mance of the scalable model averaging estimator is asymptoti-
cally as good as the best performance of the traditional model
averaging estimator.

Furthermore, we use Mallows (Hansen 2007) and Jackknife
(Hansen and Racine 2012) weight selections methods to illus-
trate the proposed scalable model averaging, and prove that the
resulting scalable Mallows/Jackknife model averaging estima-
tors are asymptotically optimal, an oracle property established
in the literature (Hansen 2007; Hansen and Racine 2012; Ando
and Li 2014).

Another contribution of our scalable model averaging is its
applicability to high-dimensional data (p ≥ n, with n being the
sample size). Claeskens (2012) suggested averaging estimators
from penalization-based estimation approaches, but she did not
investigate how to average these estimators. Ando and Li (2014)
developed a model averaging approach for high-dimensional
regression. They took an average over candidate models that
are formed by grouping the covariates according to marginal
correlations. In this article we also apply our strategy to the
high-dimensional case, and provide three practical approaches.
The first procedure is to reduce the dimensionality by screening
the original covariates; the second procedure is to reduce the
number of left singular vectors by removing the ones with small
singular values; and the third procedure is to reduce the number
of left singular vectors by the sure independent ranking and
screening (SIRS) method (Zhu 2011). We thank an anonymous
reviewer for suggesting the third idea. A comparison with Ando
and Li’s (2014) approach indicates that our method achieves a
higher estimation efficiency with remarkably lower computa-
tional cost.

The reminder of the article is organized as follows. Section 2
proposes our scalable model averaging method, and show the
asymptotic equivalence in the minimum loss to the traditional
model averaging. Section 3 uses the Mallows and Jackknife
criteria to illustrate the scalable model averaging and estab-
lishes the asymptotic optimality of the resulting estimators. Sec-
tion 4 extends the scalable model averaging method to the high-
dimensional case. Sections 5 and 6 present numerical evidences

from simulated and real datasets. Proofs of the Theorems and
additional numerical results are presented in the supplementary
materials.

2. Scalable Model Averaging

2.1. Model Averaging Estimators

Let {(yi, xi), i = 1, . . . , n} be a random sample, where yi is the
response and xi = (xi1, . . . , xip)� is the predictor vector. Our
working model is the linear regression model:

yi = μi + ei = x�
i θ + ei =

p∑
j=1

θjxij + ei,

where θ = (θ1, . . . , θp)� is the regression coefficient vector and
ei’s are uncorrelated and heteroscedastic model errors such that
E(ei|xi) = 0 and E(e2

i |xi) = σ 2
i . In matrix notation,

y = μ + e = Xθ + e, (1)

where y = (y1, . . . , yn)�, μ = (μ1, . . . , μn)�, e =
(e1, . . . , en)�, and X = (x1, . . . , xn)� is the n × p predictor
matrix. In this and next two sections, we focus on the case of
n � p.

When we are not sure which of the p predictor variables
should be included in a model, there are up to 2p candidate
models to consider. The method of model averaging is to average
all estimates from each individual candidate model. Let M be
the number of candidate models to be considered for averaging.
Since 2p may be too large to handle computationally, all 2p

possible candidate models are not always included for averaging,
for example, the nested model structure (Hansen 2007; Hansen
and Racine 2012) only considered a small proportion of all the
possible candidate models. Thus, in traditional model averaging
methods, it is typically assumed that M � 2p. If all possible
candidate models are included for averaging, then M = 2p. For
m ≤ M, let Xm be the predictors matrix corresponding to the
mth candidate model. The ordinary least square (OLS) estimator
of θ is θ̃m = (X�

mXm)−1X�
my, and the estimator of μ from the

mth candidate is μ̃m = Xmθ̃m. Let w̃ = (w̃1, . . . , w̃M)� be the
weight vector in the unit simplex in R

M :

H̃M =
{

w̃i ∈ [0, 1] :
M∑

m=1
w̃m = 1

}
. (2)

A model averaging estimator of μ is

μ̃(w̃) =
M∑

m=1
w̃mμ̃m. (3)

To choose the weight vector w̃, Mallows model averaging
(Hansen 2007) and Jackknife model averaging (Hansen and
Racine 2012) are commonly used and are proved to be efficient.
Regardless of Mallows model averaging and Jackknife model
averaging, the target function to optimize is a quadratic function
of w̃, for which the numerical solutions have been thoroughly
studied and algorithms are widely available.
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2.2. Scalable Model Averaging Estimators

Now we introduce the scalable model averaging method to
address the computational challenge caused by the exponential
size of the candidate model set. The idea is to use SVD to con-
vert the predictor matrix into a column-orthogonal predictor
matrix.

Denote the SVD of matrix X as X = UDV�, such that
U�U = V�V = Ip, where U is an n × p column-orthogonal
matrix, D is a p × p rectangular diagonal matrix with nonnega-
tive real numbers on the diagonal, V is a p×p orthogonal matrix,
and Ip is the p-dimensional identity matrix. The original model
(1) can be represented as

y = Xθ + e = Uβ + e, (4)

where β = DV�θ .
Let uij be ijth element of U. All the information in the original

predictors xxj’s for the responses is preserved in uij’s. We can
see this from the angle of mean prediction through the hat
matrix, which is defined as H = X(X�X)−1X� for the original
predictors. This matrix converts the observed responses to the
estimated mean responses. The hat matrix from U is identical to
H because

H = X(X�X)−1X� = UU� = U(U�U)−1U�. (5)

Thus, the prediction from the transformed model (4) is equiva-
lent to that from the original model (1).

The model (4) can be rewritten as

yi =
p∑

j=1
βjuij + ei, i = 1, . . . , n. (6)

Notice there are still 2p candidate models in the transformed
model (6). Let Um be the predictor matrix corresponding to the
mth candidate model in the transformed model (6), and denote
the predictor set of the mth candidate model as

Sm = {j : 1 ≤ j ≤ p, j is included in the mth candidate model}.

The OLS estimator β̂m of the regression coefficient from any
candidate model with Um consists of the OLS estimators from
univariate regressions of y on each column of Um. To see this
explicitly, let β̂j be the OLS estimator of βj from the model with
a single predictor u(j), the jth column of U. We have

β̂j =
{ n∑

i=1
u2

ij

}−1 n∑
i=1

uijyi =
n∑

i=1
uijyi = u�

(j)y.

On the other hand, the OLS estimator β̂m from the mth model
with Um is

β̂m = (U�
mUm)−1U�

my = U�
my = (β̂j1 , . . . , β̂jpm )�, (7)

where j1, . . . , jpm are elements of the set Sm, and pm is the size of
Sm. Since columns of U are orthogonal, the marginal estimator
for each βj remains the same as the jth component of the full
model estimator. Note that the transform between β and θ in (4)
is one-on-one when X is column full rank, so we can transform
regression coefficient estimates based on Um to that based on
the original predictors to interpret the results. From (7), the OLS

estimator of any candidate model consists of {β̂j : j ∈ Sm}. Thus,
the prediction based on the mth candidate model Um is

μ̂m = Umβ̂m =
∑
j∈Sm

u(j)β̂j.

For a model averaging estimator, it can be written as a linear
combination of these u(j)β̂j’s, namely,

μ̂(w̃) =
M∑

m=1
w̃mμ̂m =

M∑
m=1

w̃m
∑
j∈Sm

u(j)β̂j

=
p∑

j=1

{ M∑
m=1

w̃mISm(j)
}

u(j)β̂j, (8)

where ISm(j) is the indicator function of the set Sm, that is,
ISm(j) = 1 if j ∈ Sm and 0 otherwise. From Equation (8), if
we define

wj =
M∑

m=1
w̃mISm(j) ∈ [0, 1] (9)

to be the weight, we can obtain the model averaging estimators
under the framework of model (4) by combining (averaging) the
predictions from the p univariate regression models. Let w =
(w1, . . . , wp)� be the weight vector in the simplex

H = {
wj ∈ [0, 1] : j = 1, . . . , p

}
.

The constraint
∑p

j=1 wj = 1 is not needed in the converted
problem because

∑p
j=1 wj = ∑M

m=1
∑p

j=1 w̃mISm(j) is typically
not 1. Since the estimator of μ in the jth univariate regression
model is μ̂(j) = u(j)β̂j, the scalable model averaging estimate of
μ is

μ̂(w) =
p∑

j=1
wjμ̂(j) =

p∑
j=1

wju(j)β̂j. (10)

A direct benefit is that we just need to choose the weights
of size p rather than those of size 2p in traditional model aver-
aging. Since the left singular vector matrix has the same pre-
diction ability as the original predictor matrix as shown in
(5), our scalable model averaging may keep the efficiency of
the traditional model averaging using much less computational
cost. Meanwhile, reducing the size of the weights from 2p to
p may improve the efficiency of frequentist model averaging
for practical application because the reduced weight size may
reduce the numerical error in optimization. These are observed
in numerical studies with synthetic and real datasets.

It is worthwhile to mention that an element of w̃ is the weight
of a candidate model in the original predictors, but an element
of w does not have this interpretation. Unlike the case of the
regression coefficient, the linear transformation from w̃ to w
in (9) is not invertible; we cannot obtain w̃ from w. Thus, we
lose the intuitive interpretability of the estimated weight on the
original candidate models. However, such a loss is not a concern
when the focus is on the accuracy of prediction or estimator.
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2.3. Asymptotical Equivalence of the Minimum Loss

Intuitively, one may expect to pay a price in terms of predictive
efficiency for the huge computational gain. Interestingly, our
method does not pay this price in the large sample sense. We
prove that the minimum loss of our scalable model averaging
estimator is asymptotically equal to that of the model averaging
estimator based on the 2p candidate models with the original
covariates. In contrast, existing model averaging methods often
assume that the number of candidate models is much smaller
than 2p for concerning computational burden, but it is unclear
whether this causes any inflation in the minimum loss. The min-
imum loss of model averaging estimators in a reduced candidate
model space is in general larger unless excluded models are truly
redundant.

Let L̃(w̃) = ‖μ̃(w̃) − μ‖2, where w̃ ∈ H̃, be the sum of
squared loss of the model-averaging estimator μ̃ in (3) using the
original covariates, and L(w) = ‖μ̂(w)−μ‖2, where w ∈ H, be
the sum of squared loss of a scalable model averaging estimator
μ̂(w) in (10). Denote ξn = infw∈H E{L(w)}. We require the
following conditions. For some constants c1, c2, and c3,

Condition C.1. E(e4
i ) ≤ c1 < ∞, for i = 1, . . . , n.

Condition C.2. p/ξn → 0 as n → ∞,

Remark. C.1 is a quite mild condition which requires that the
fourth moments of errors are bounded. C.2 imposes that the
dimension should be a lower order term with respect to the
infimum of the risk of μ̂(w). This assumption is reasonable in
our framework. The condition indicates that no linear model
consisting of available covariate is a correct model, that is,
all candidate models are wrong. When no correct model is
included, it often holds that L(w) = OP(n), and C.2 holds. A
similar assumption for a moderate dimension case was imposed
and discussed in Hansen (2007) and Hansen and Racine (2012).

Theorem 1. Under Conditions C.1 and C.2,
infw∈H L(w)

inf w̃∈H̃2p L̃(w̃)
→ 1, (11)

in probability, as n → ∞, where H̃2p is the weight set defined
in (2) with M = 2p.

Theorem 1 shows that the minimum loss for the scalable
model averaging estimator in (10) is asymptotically the same as
that for the traditional model averaging estimator in (3) using
the original covariates with 2p candidate models. It provides
a theoretical foundation on asymptotical comparison of the
scalable model averaging estimator and the traditional model
averaging estimator. For the traditional model averaging esti-
mator, if M = 2p, that is, all possible candidate models are
included for averaging, we need to estimate 2p candidate models
and calculate 2p weights, while for our scalable model averag-
ing estimator we just need to fit p univariate regressions and
calculate a weight vector of size p instead of 2p. The only extra
cost is to perform a SVD on the predictor matrix X. Thus, our
method greatly reduces the computational cost. Furthermore,
this can be done without paying any penalty in terms of the
estimation efficiency. This result is intuitive: on the one hand,

the left singular vectors of the SVD on the design matrix are
linear combinations of predictors and there is no information
loss in the transformation as shown in (5); on the other hand, the
orthogonality of the singular vectors greatly reduces the weight
size from 2p to p.

3. Scalable MMA and JMA

Theorem 1 in the previous section shows that the scalable
model averaging estimator and the traditional model averaging
estimator achieve the same minimum loss asymptotically. We
often obtain the weight vector w in practice by minimizing some
criterion C(w), that is

ŵMA = arg minw∈H C(w). (12)

We consider two specific choices of C(w) to illustrate our
scalable estimator: the Mallows model averaging (MMA)
(Hansen 2007) and the Jackknife Model Averaging (JMA)
(Hansen and Racine 2012). We summarize the scalable model
averaging approach in Algorithm 1.

The MMA is based on the Mallows criterion. Since the
number of covariates used in univariate regression model is 1,
the Mallows criterion of our scalable model averaging is

M(w) = ‖μ̂(w) − y‖2 + 2σ̂ 2w�1, (13)

where ‖ · ‖2 stands for the Euclidean norm and σ̂ 2 = (n −
p)−1‖y − UU�y‖2. From (13), the weight vector is obtained as
ŵMMA = arg minw∈HM(w).

The JMA is based on the leave-one-out cross validation
criterion. Let Hj = u(j)u�

(j), and hj,ii be the ith diagonal element
of Hj, that is, hj,ii = u2

ij. Define Dj to be the diagonal matrix
with (1 − hj,ii)−1 being its ith diagonal element, and let HJMA

j =
Dj(Hj−In)+In and HJMA(w) = ∑p

j=1 wjHJMA
j . Following Hansen

and Racine (2012), the Jackknife criterion is

J (w) = ‖HJMA(w)y − y‖2. (14)

From (14), the weight vector is obtained as ŵMMA = arg minw∈H
M(w).

Algorithm 1 Scalable model averaging
1. Obtain U, the matrix of left-singular vectors of X, by SVD

decomposition: X = UDV�.
2. For each column of U, u(j), calculate the least square predic-

tion μ̂j = u(j)β̂j
3. Calculate the scalable model averaging estimator

μ̂(ŵ) =
p∑

j=1
ŵjμ̂(j)

by averaging the predictions μ̂j, j = 1, . . . , p, where ŵ =
(ŵ1, . . . , ŵp)� is the weight vector obtained from data. Two
specific choices are ŵMMA or ŵJMA obtained from Mallows’
model averaging or Jackknife model averaging.

Our scalable Mallows/Jackknife model averaging estimators
are optimal in the sense that they asymptotically achieve the
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minimum loss of the infeasible best possible model averaging
estimator using the original model (1). This can be seen by com-
bining Theorem 1 (establishing the equivalence of the minimum
losses from the original and scalable model averaging) and exist-
ing results that MMA and JMA achieve the minimum loss for a
given set of candidate models (Hansen 2007; Hansen and Racine
2012; Ando and Li 2014). Nevertheless, the orthonormality of
the left singular vectors can be used to simplify the proof and
weaken the required assumptions specified below.

Condition C.3. maxi,j u2
ij ≤ c2n−1 for some constant c2.

Condition C.4. ‖μ‖2/n ≤ c3 < ∞ for some constant c3.

Remark. C.3 means that no individual element of uij’s domi-
nates all the others. Since

∑n
i=1 u2

ij = 1 for all j, this assumption
is also reasonable. C.4 is quite mild since the equation of ‖μ‖2 =
O(n) often holds.

Theorem 2. Under Conditions C.1–C.4,

L(ŵMMA)

inf w̃∈H̃2p L̃(w̃)
→ 1 and

L(ŵJMA)

inf w̃∈H̃2p L̃(w̃)
→ 1,

in probability, as n → ∞.

4. Extension to High-Dimensional Data

In this section, we extend the application of the scalable model
averaging method to the high-dimensional setting with p ≥
n. In order to extend the scalable model averaging method to
high-dimensional data, we propose three practical procedures
to address the curse of dimensionality. The first procedure is to
reduce the dimension by screening the original predictors using
the sure independent ranking and screening (SIRS) method
(Zhu et al. 2011). The second procedure is to reduce the number
of left singular vectors by removing the ones corresponding to
small singular values. The third procedure is to perform the
SIRS on left singular vectors. For our first procedure with high-
dimensional data, we prefer the SIRS over the sure indepen-
dence screening (SIS) proposed by Fan and Lv (2008) because
we assume that all candidate models are wrong, which is the
case for most practical problems. The SIRS allows us to assume
that no linear candidate model is correct, and we just need to
assume that the distribution of the response depends only on
some of the covariates (active covariate) and does not depend
on other covariates (inactive covariates). Following Zhu et al.
(2011), the SIRS screens the covariates based on the magnitude
of the following statistics instead of the marginal correlation,
ω̃j = 1

n
∑n

i=1
{ 1

n
∑n

l=1 xijI(−∞, yi)(yl)
}2. Derivation and inter-

pretation of this statistics can be found in Zhu et al. (2011). This
procedure is similar to the SIS used in the first step of Ando
and Li (2014). Theorems 2 and 3 in Zhu et al. (2011) indicate
that with probability approaching one, the SIRS can reduce the
dimensionality without losing any active covariate. Thus, using
SIRS preprocessing allows us to keep all candidate models that
involve any activate covariates in a reduced dimension. Once
the dimension is reduced, the asymptotic results for the low-
dimensional case in Section 2 hold.

The second procedure for high-dimensional data is to drop
some left singular vectors with small singular values such that we
keep k left singular vectors with largest singular values. We do
so by following the factor model setting where the columns of U
with small singular values are assumed to be independent on the
response (Bai 2003). For real high-dimensional data, it is almost
always that rank(X) = n, but it is also often true that many
nonzero singular values are small or even close to 0. Hence, it
is possible, though probably hard, to establish the asymptotic
equivalence of the minimum loss for model averaging with the
original covariates under the factor model setting, but it is out
of the scope of this article and is a future investigation topic.
Empirically, we show that this procedure works well for finite
sample sizes in Sections 5 and 6.

In the last procedure for high-dimensional data, we screen
left singular vectors by the SIRS and drop some left singular
vectors that are least relevant to y. Again, it is difficult to establish
asymptotic equivalence of the minimum loss, because we would
have to guarantee that the loss due to SIRS on U is asymptotically
zero. Empirically, we will show that this procedure works well in
Sections 5 and 6.

We extend Algorithm 1 to account for high-dimensional
data, and summarize it as Algorithm 2.

Algorithm 2 A scalable model averaging for high-dimensional
data
Step 1 (a) Choose k covariates by SIRS to get the subset Xk from

X, and then obtain the left singular vectors from the SVD
of Xk;
or (b) obtain U from a SVD and keep the its k columns
with the largest k singular values;
or (c) obtain U from a SVD and choose k columns of it
using the SIRS method.

Step 2 For each left singular vector from Step 1, say u(j), calcu-
late the least square prediction μ̂j = u(j)β̂j. Calculate the
scalable model averaging estimator

μ̂(ŵ) =
k∑

j=1
ŵjμ̂(j)

by averaging the predictions μ̂j, j = 1, . . . , k, where
ŵ = (ŵ1, . . . , ŵp)� is the weight vector obtained from
data. Two specific choices are ŵMMA and ŵJMA obtained
from MMA and JMA, respectively.

5. Simulation Studies

In this section, we assess the numerical performance of our
scalable model averaging using three simulation experiments.
First, we consider a case when the full model is correct. Note
that this case violates Condition C.2. We aim to investigate the
performance of our scalable model averaging when some theo-
retical conditions do not hold. Second, we consider a case that
all candidate models are misspecified. Third, we evaluate the
performance of the proposed method with high-dimensional
data. We compare five model averaging methods: (a) smooth
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Figure 1. The risk performances in Example 1 with dimension p = 5. We normalize the risk by dividing it by the risk of the full model.

AIC (S-AIC) in Buckland et al. (1997), (b) Mallows’ model aver-
aging (MMA) in Hansen (2007), (c) Jackknife model averaging
(JMA) in Hansen and Racine (2012), (d) our scalable Mallows’
model averaging (SMMA), and (e) our scalable Jackknife model
averaging (SJMA). In the high-dimensional setting, we compare
our scalable model averaging estimators with the approach pro-
posed by Ando and Li (2014) as well as the high-dimensional
model selection method. Their performance is evaluated in
terms of the risk under the squared loss function L = ‖μ̂−μ‖2.

Example 1 (Full model is correct). Data are generated from the
model yi = ∑p

j θjxji + εi. Rows of the n by p predictor matrix X
is generated from a multivariate normal distribution with mean
0 and covariance matrix � with the (i, j)th element σij = ρ|i−j|.
The value of ρ is set to 0.6. The sample size n is set to 50 (small
sample size), 100 (moderate sample size), and 500 (large sample
size), and the dimension is set to p = 5. The true coefficients
θ = (θ1, . . . , θp)� are generated from a uniform distribution
of (0, 2) and then fixed. For the errors εi, two settings are
considered: one is homoscedastic, with εi ∼ N(0, σ 2); the other
is heteroscedastic, with εi ∼ 0.5N(0, σ 2)+ 0.5N(0, 3σ 2), which
means that for half data εi’s are from N(0, σ 2) and for the other
half εi’s are from N(0, 3σ 2). The value of σ 2 is selected to control
the R2 to vary on a grind between 0.1 and 0.9, in which the R2 is
defined as R2 = n−1 ∑

(μi−μ̄)2

σ 2+n−1 ∑n
i=1(μi−μ̄)2 with μ̄ = n−1 ∑n

i=1 μi.

To evaluate each estimator, we compute the empirical risk
(expected squared error) by calculating the average loss across
B = 1000 simulations. Each risk is rescaled by the risk of the full

model. We present the results in Figure 1. From these figures, it is
seen that, for both homoscedastic and heteroscedastic settings,
SMMA and SJMA are much better than MMA and JMA for most
R2 values. Meanwhile, the performances of SMMA and SJMA
get closer as n increases. The difference between the scalable and
original model averaging estimators gets smaller as R2 increases,
and the scalable estimators sometimes are slightly worse than
the original ones when R2 is very high, because when R2 is
very high (especially when n is large as well), the original JMA
and MMA methods can reach the corresponding optimal risk
easily. In this situation, our method can also easily reach its
optimal risk, and both risks are close to each other, as shown
in Theorem 1.

We also consider the case that covariates contain both dis-
crete and continuous variables to check the impact of different
types predictor distributions. We put the results in Figure A.1 of
the supplementary materials for similarity and saving space.

Computational cost. The computational times (in seconds) form
different model averaging estimators with various values of p
are reported in Table 1. From the table, the computational costs
of JMA and MMA are growing exponentially as the predictor
dimension p increases, and when p > 13, the computer could
not handle the optimization due to the size of the weighting
vectors. Even for S-AIC, the computer cannot handle the cal-
culation with dimension p > 20 due to estimating so many
candidate models. However, for our scalable methods, SJMA
and SMMA, the required computational times are very short
(close to 0 sec). Even when n = 500 and p = 50, the required
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Table 1. Computation costs (seconds) of different frequentist model averaging estimators with different feature dimension p.

p 5 7 9 10 11 12 13 15 20 25 50

n = 50

S-AIC 0.000 0.022 0.054 0.070 0.163 0.366 0.821 5.95 2345 – –
JMA 0.000 0.040 1.72 17.44 114.5 856 6696 – – – –
MMA 0.000 0.043 1.393 13.32 87.5 712 6030 – – – –
SJMA 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SMMA 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 –

n = 500

S-AIC 0.007 0.026 0.108 0.226 0.690 1.336 2.022 9.15 3078 – –
JMA 0.174 0.734 5.088 24.94 145.8 1113 7880 – – – –
MMA 0.108 0.551 4.059 17.92 107.0 802 6864 – – – –
SJMA 0.044 0.046 0.057 0.062 0.074 0.085 0.100 0.133 0.140 0.176 0.346
SMMA 0.028 0.030 0.030 0.032 0.035 0.038 0.041 0.046 0.072 0.104 0.172

NOTE: The computation is not affordable for JMA and MMA when p > 13 and for S-AIC when p > 20. The optimization is performed by “solve.QP”function from “quadprog”
package in R language on a Macbook Pro with 3 GHz intel i7 processor and 8 GB memory running OS X operation system. “–”means that the calculation is computationally
infeasible.

Figure 2. The risk performance of Example 2. The homoscedastic setting is considered here. We normalize the risk by dividing it by the risk of the maximal model. Note
the R2 here is also normalized because of the existing modeling bias.

times of SJMA and SMMA are less than 0.35 sec and 0.18 sec,
respectively.

Example 2 (Model misspecification). In this example, we con-
sider the case of model misspecification, that is, all candidate
models are wrong models. The model setup in this example is
similar to that in Example 1, except that the true model used to
generate data contains an additional variable. To be specific, data
are generated from a linear model with p = 9 using the same
setup as in Example 1. However, only the first eight predictors
are used in candidate model construction and the ninth variable
is not used in any working model. The coefficient a of the
ninth variable is set to be 1 and 3 to represent different degrees

of misspecification. Results for the homoscedastic setting are
presented in Figure 2. The results for the heteroscedastic setting
are similar and thus are omitted to save space. We normalize the
risk by dividing it by the risk of the maximal model. From the
figure, SMMA and SJMA are much better than MMA and JMA.
As a increases, the advantages of SMMA and SJMA become less
significant, but they are still uniformly better than MMA and
JMA, respectively. These observations show that our scalable
methods have good performance for misspecified models.

Example 3 (High-dimensional data). In this example, we con-
sider the case of high-dimensional data, and compare our scal-
able model averaging method with the approach proposed by
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Figure 3. Example 3: The risk performances. We normalize the risk by dividing it by the risk of the full model. We split the results into two figures for better presentation.

Ando and Li (2014) (AL). We implement the three approaches
discussed in Section 4. For the SJMA and SMMA after screening
X by the SIRS, we refer them as SIRS-SJMA and SIRS-SMMA,
respectively; for the SJMA and SMMA after screening U by
the SIRS, we refer them as SIRSu-SJMA and SIRSu-SMMA,
respectively; for the SJMA and SMMA by removing left singular
vectors with small singular values, we refer them as α-SJMA and
α-SMMA, respectively. Here α stands for the fact that we keep
the singular vectors such that the summation of their singular
values is 100α% of the summation of all singular values. We
also consider the performance of the high-dimensional model
selection methods, LASSO, MCP (Zhang 2010), and SCAD (Fan
and Li 2001). The results for these three methods are similar
so we report the results for the LASSO and omit results for
the other two. We use R package program “ncvreg" (Breheny
and Huang 2011) to implement the LASSO, and perform 5-fold
cross-validation to select the penalty parameter.

We adopt the same linear model setting used in Ando and
Li (2014). To be specific, p = 2000 predictors are generated
from the multivariate normal distribution with mean 0 and
covariance matrix � with the (i, j)th element σij = ρ|i−j| and
ρ = 0.6. Among the p = 2000 predictors, 50 of them are active
predictors (with nonzero regression coefficients), and they are
spaced evenly. That is, the true predictors are Xj for j = 40(s −
1) + 1 with s = 1, 2, . . . , 50. The coefficients θj’s for the true
predictors are generated from a normal distribution with mean
0 and standard deviation 0.5. The sample size n is set to 50.
Ando and Li (2014) fixed the variance of the error term to be
σ 2 = 0.22. Different from theirs, we choose multiple values of
σ 2 to let R2 vary on a grind between 0.1 and 0.9.

In this example, for α-SMMA and α-SJMA, α = 0.99 is used
so that the sum of singular values for singular vectors to use
is about 99% of the sum of all singular values. The number of
predictors by SIRS is set to k = 48. We show the performance of
α-SMMA, α-SJMA, SIRS-SMMA, SIRS-SJMA, SIRSu-SMMA,
SIRSu-SJMA, and AL in term of risk for different values of
R2 in Figure 3. It is seen that the risks of all scalable model
averaging estimators are much smaller than those of AL for all
cases. Meanwhile, our scalable model averaging also outper-
forms the LASSO as R2 > 0.5. It indicates that our scalable
model averaging outperforms the AL approach in the high-
dimensional setting, and screening X or U, and dropping left
singular vectors with small singular values are effective strate-

gies to apply scalable model averaging in high-dimensional
data. In addition, from the perspective of the computational
costs, the AL approach, on average, takes 0.5 sec in this high-
dimensional setting, while our scalable approach, on average,
just takes 0.024 sec. Therefore, we observe from this simulated
high-dimensional experiment that our scalable model averaging
methods has desirable performance for high-dimensional data.
In addition, for JMA, the strategy by screening U performs
very similar to that by screening X. For MMA, this strategy
outperforms that by screening X when R2 is large, and vice versa.

6. Real Data Examples

In this section, we analyze two real datasets to further evaluate
the performances of our scalable model averaging method for
both the p < n and p > n settings. The two datasets con-
sidered here are the engineer wage dataset (ENGIN) and the
firm-level data dataset (CEOSAL2) in Wooldridge (2003). The
performances of the proposed methods are evaluated on the
testing set in terms of the average prediction error under the
squared loss function L = n−1

t ‖μ̂ − y‖2, where nt is the size of
the testing set, and μ̂ and y are predicted values and observed
values in the testing set, respectively.

Example 4 (ENGIN). The response variable is the log of
monthly salary (“lwage”), and the features include dummy
variables male, highgrad, college, grad, polytech, highdrop,
and non-dummy variables educ, swage, exper, pexper, expersq,
lswage, pexpersq, mleeduc, and mleeduc0. The intercept term
is added in the model, so the dimension of the predictor vector
is p = 16. Totally, there 403 observations in the dataset.

We consider five model averaging methods, S-AIC, MMA,
JMA, SMMA, and SJMA. To evaluate the prediction perfor-
mance of these estimators, we randomly select a training set
of sample size n = 350 for model fitting and use the rest of
nt = 403−n observations as testing data. We repeat this process
100 times to obtain the average performances. Although the
dimension of the predictor vector is only moderate (p = 16),
it is still computationally infeasible to obtain the weights for
MMA and JMA without the nested-model assumption. Thus,
to implement the MMA and JMA methods, candidate models
are constructed with the nested structure by correlation ranking
suggested in Ando and Li (2014).
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Table 2. Performances of model averaging estimators for the CEOSAL2 data.

n α=95% α=99% SIRS SIRSu AL LASSO

α-SJMA α-SMMA α-SJMA α-SMMA SJMA SMMA SJMA SMMA

100 310.9 311.4 319.7 313.5 314.8 312.2 319.7 313.8 330.7 329.1
120 366.1 366.2 374.2 370.0 373.3 369.9 374.2 370.2 389.5 393.5
150 274.9 274.7 281.0 275.0 278.9 274.9 281.0 275.1 289.2 297.2

NOTE: We randomly split the dataset as a training set of size n and a testing set of nt = 177 − n observations. The prediction errors are the arithmetic means from 100
replications.

Figure 4. Performances of model averaging estimators for the ENGIN dataset. We
randomly split the dataset as a training set of size n = 350 and a testing set of
nt = 403 − n observations. The losses are summarized from 100 replications.

Figure 4 reports the results of these model averaging estima-
tors by plotting the prediction errors under the squared loss in
boxplots. It shows that our scalable model averaging estimators,
SMMA and SJMA, are much better than the existing model
averaging estimators. This example suggests that the scalable
model averaging estimators are more efficient in prediction for
moderate dimension.

Example 5 (CEOSAL2). We use the CEOSAL2 dataset to evalu-
ate the performance of our scalable model averaging estimators
in high-dimensional setting. The CEOSAL2 dataset is a dataset
about firm’s profits. The dependent variable is the profits as %
of sales, and the predictors include dummy variables collage
grad, and non-dummy variables salary, age, comten, centen,
sales, mktval, lsalary, lsales, lmktval, comtensq, and cetensq. The
original dataset contains 177 observations and 13 raw features.
We add lsalary2, lsales2 and lmktval2 to extend the number of
predictors. We use the 16 raw features to create p = 121 features
by adding interaction terms and an intercept and removing the
almost dependent terms (the correlation more than 0.995).

We compare our scalable model averaging estimators with
AL (Ando and Li 2014), and the high-dimensional model selec-
tion method, LASSO. Note we implement MCP, SCAD as well
and omit the results here because of their similarity to that of the
LASSO. For this dataset, we consider the training data of sample
size n = 100, 120, 150 and use the rest nt = 177−n observations
as the testing data. We repeat this process 100 times to obtain the
average performance. We adopt the three strategies discussed in
Section 4. For α-SJMA and α-SMMA, we set α to be 0.95 and
0.99. For the SIR screening, we set the number of variables to
keep by the SIRS to be k that corresponds to α = 0.99. The
performances of the scalable model averaging estimators are
reported in Table 2.

From the table, the scalable model averaging estimators pro-
duce smaller prediction errors than AL and LASSO in all cases.
It suggests that the scalable model averaging estimators are
more efficient in estimation for high-dimensional data. It seems
sufficient to set α ≥ 0.95. We also observe that both strategies of
screening X and screening U are efficient. Therefore, similar to
the simulated experiment, this real data example also shows the
applicability of the scalable model averaging method to high-
dimensional data.

7. Conclusion and Discussion

In this article, we have proposed a scalable frequentist model
averaging method. This method is computationally efficient,
as it only needs to average p candidate models instead of 2p

candidate models. Moreover, the computational efficiency is
achieved without sacrificing the prediction efficiency. Actually,
the empirical prediction efficiency is even improved due to
the decreased size of weights. We have rigorously proved that
the minimum loss of the scalable model averaging estimator is
asymptotically equal to that for the traditional model averaging
estimator, which may involve averaging up to 2p candidate mod-
els. We further have established the asymptotic optimality of
the scalable Mallows/Jackknife model averaging estimators. It is
worthy to mention that our scalable model averaging estimators
can easily be applied into high-dimensional data. Compared
with existing methods, the advantages of our method in terms
of computation and estimation efficiency are also demonstrated
via extensive simulations and real data examples. Specifically
speaking, the empirical results indicate that our method not only
saves much computational time, but also produces more accu-
rate predictions. For the high-dimensional case, a comparison
with Ando and Li’s (2014) approach indicates that our method
achieves a higher estimation efficiency with remarkably lower
computational cost.

There are important questions about the scalable model
averaging method that remain for future research. In high-
dimensional setting, we propose three procedures to apply our
scalable model averaging: screening the covariates, discarding
singular vectors with small singular values, and screening the
singular vectors. Empirically, these procedures have desirable
performance. However, theoretically, whether the minimum
loss from these approaches are equal to the minimum loss
from the traditional model averaging with all candidate models
is unclear. Ando and Li’s investigation has this theoretical
limitation as well, because the asymptotic optimality of their
approach was established based on grouped variables rather
than on considering all possible candidate models. This is
a research topic for future investigation. Another interesting
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topic is how to extend the idea to more general settings such as
generalized linear models and other nonlinear models.

Supplementary Materials

The supplementary materials contains the proofs of Theorems 1 and 2 and
additional simulation studies in Section 5.
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