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Abstract

Longitudinal data occur in many fields such as the medical follow-up studies that involve
repeated measurements. For their analysis, most existing approaches assume that the obser-
vation or follow-up times are independent of the response process either completely or given
some covariates. In practice, it is apparent that this may not be true. In this paper, we
present a joint analysis approach that allows the possible mutual correlations that can be
characterized by time-dependent random effects. Estimating equations are developed for the
parameter estimation and the resulted estimators are shown to be consistent and asymptoti-
cally normal. The finite sample performance of the proposed estimators is assessed through
a simulation study and an illustrative example from a skin cancer study is provided.

Keywords: Estimating equation; Informative censoring; Informative observation process; Longi-
tudinal data.

1 Introduction

Longitudinal data occur in many fields such as the medical follow-up studies that involve repeated
measurements. In these situations, study subjects are generally observed only at discrete times.
Therefore, for the analysis of longitudinal data, two processes need to be considered: one is the
response process, which is usually of the primary interest but not continuously observable; the
other one is the observation process, which is nuisance but gives rise to the discrete times when
the responses are observed.

An extensive literature exists for the analysis of longitudinal data. Sun and Kalbfleisch (1995)
and Wellner and Zhang (2000) investigated nonparametric estimation of the mean function when
the response process is a counting process. Cheng and Wei (2000), Sun and Wei (2000), Zhang
(2002) and Wellner and Zhang (2007) developed some semiparametric approaches for regression
analysis under the proportional means models. However, with respect to the observation process,
most existing approaches assume that the observation times are independent of the underlying
response process either completely or given some covariates. For the analysis with a correlated ob-
servation process, there is limited work and most of them assume independent censoring or require
some restrictive conditions such as the Poisson assumption or other distribution assumptions on
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the correlation structure (Huang et al. 2006; Sun et al. 2007; He et al. 2009; Zhao and Tong 2011;
Li et al. 2013; Zhao et al. 2013b).

In many situations, however, the response process, the observation and censoring times may
be mutually correlated. In addition, such correlations may be time-dependent. For instance, both
the observation times and longitudinal responses may depend on the stage of disease progression.
Their correlation may change over time and so are their correlations with the follow-up times. He
et al. (2009) considered such correlations in shared frailty models. However, their method requires
the assumptions that the underlying random effect is normally distributed and the observation
process is a nonhomogeneous Poisson process. Also all correlations between the three processes
are assumed to be fixed over time. Zhao et al. (2013b) proposed a robust estimation procedure
and relaxed the Poisson assumption required in He et al. (2009). However, the follow-up times
are assumed to be independent from covariates, responses and observation times; and the possible
correlations between responses and observation times are time-independent. More recently, Sun et
al. (2012) presented a joint model with time-dependent correlations between the response process,
the observation times and a terminal event, where the random effect associated with the terminal
event is fixed over time and follow a specified distribution. In practice, however, such conditions
may not hold or be difficult to check when informative censoring involves.

In this paper, we consider regression analysis of longitudinal data when the underlying response
process, the observation and censoring times are mutually correlated and none of the correlations
is restricted by specified forms or distributions. A general estimation approach is proposed. The
remainder of this paper is organized as follows: In Section 2, we introduce the notation and present
the model. Sections 3 presents the estimation procedure and establishes the asymptotic properties
of the resulted estimators, and Section 4 discusses a simplified estimation procedure for a special
case. In Section 5, a simulation study is performed to evaluate the finite sample properties of
the proposed estimators and an illustrative example is provided in Section 6. Some concluding
remarks are given in Section 7.

2 Notation and Models

Consider a longitudinal study in which the response process of interest is observed only at some
discrete sampling time points. For each subject i, i = 1, · · · , n, let Ni(t) be the observation process,
which gives the cumulative number of observation times up to time t. In practice, one observes
Ñi(t) = Ni(t ∧ Ci) where a ∧ b = min(a, b) and Ci denotes the censoring or follow-up time. Let
Yi(t) denote the response process, which is observed only at discrete times {Ti,1, · · · , Ti,mi

} when
Ni(t) has jumps. Suppose that there exists a p-dimensional vector of covariates denoted by Zi,
which will be assumed to be time-independent.

In the following, we model the correlation between Yi(t), Ni(t) and Ci through an unob-
served random vector bi(t) = (b1i(t), b2i(t), b3i(t))

′, which could be time-dependent. Define Bit =
{bi(s), s ≤ t}. It will be assumed that the bi(t)’s are independent and identically distributed, Bit
is independent of Zi, and given Zi and Bit, Ci, Ni(t) and Yi(t) are mutually independent. To be
specific, the mean function of Yi(t) has the form

E{Yi(t)|Zi,bi(t)} = Λ0(t) exp{β′Zi + b1i(t)}, (1)

where Λ0(t) is an unknown baseline mean function and β denotes a vector of p-dimensional regres-
sion coefficients. Also the observation process Ni(t) follows the proportional rates model
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E{dNi(t)|Zi,bi(t)} = exp{γ′Zi + b2i(t)}dµ0(t) , (2)

where γ is a vector of unknown parameters and dµ0(t) is an unknown baseline rate function. For
the C ′is, motivated by the additive hazards models that have been commonly used in survival
analysis (Lin and Ying, 2001; Kalbfleisch and Prentice, 2002; Zhang et al. 2005), we consider the
following model

λi(t|Zi,bi(t)) = λ0(t) + ξ′Zi + b3i(t) . (3)

Here λ0(t) is an unknown baseline hazard function and ξ denotes the effect of covariates on the
hazard function of C ′is. Note that instead of model (3), one may consider the proportional hazards
model. As pointed out by Lin et al. (1998) and others, the additive model (3) can be more
plausible than the proportional hazards model in many applications. More comments on this are
given in Section 7.

In the above, models (1) - (3) can be viewed as natural generalizations of some existing and
commonly used models. For example, when b1i(t) = 0, model (1) is equivalent to the proportional
means models considered by Cheng and Wei (2000), Sun and Wei (2000), Zhang (2002) and Hu
et al. (2003) among others. When b1i(t) is time-independent, model (1) is equivalent to model
(3) considered in Zhao et al. (2013b). In fact, when any of the bki(t)’s (k = 1, 2, 3) is zero or
independent from other bji(t)’s (j = 1, 2, 3 and j 6= k), the corresponding process is independent
from the others. Therefore, the proposed joint model also applies to special cases when either
the observation or censoring times are noninformative. In general, since the form or distribution
of bi(t) is arbitrary and completely unspecified, the joint model described above is quite flexible
compared to many existing procedures.

Note that in models (1) - (3), for simplicity, we have assumed that the set of covariates that
may affect Yi(t), Ni(t) and Ci is the same. In practice, it is apparent that this may not be the
case and actually the estimation procedure proposed below still applies as long as one replaces
Zi by appropriate covariates. As an alternative, one can define a single and big covariate vector
by combining all different covariates together. In the following, we will focus on estimation of
regression parameters β along with γ and ξ. For this, it is easy to see that the use of the existing
procedures that assume independence could give biased or even misleading results.

3 General Estimation Procedure (GEP)

In this section, we will present an inference procedure for estimation of β which is usually of the
primary interest. For this, first note that the counting process Ñi(t) = Ni(t∧Ci) jumps by one at
time t if and only if Ci ≥ t and dNi(t) = 1. Also we have
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E{dÑi(t)|Zi} = E{I(t ≤ Ci)dNi(t)|Zi}

= E

[
E{I(t ≤ Ci)dNi(t)|Zi,Bit}

∣∣∣∣Zi

]
= E

[
E{I(t ≤ Ci)|Zi,Bit}E{dNi(t)|Zi,Bit}

∣∣∣∣Zi

]
= E

[
exp{−Λ∗0(t)−Bi(t)− ξ′Zit} exp{γ′Zi + b2i(t)}dµ0(t)

∣∣∣∣Zi

]
= exp{γ′Zi − ξ′Zit}dΛ∗1(t), (4)

where

Λ∗0(t) =

∫ t

0

λ0(s)ds, Bi(t) =

∫ t

0

b3i(s)ds

and
dΛ∗1(t) = exp{−Λ∗0(t)}E[exp{b2i(t)−Bi(t)}]dµ0(t).

Define

dM∗
i (t; η) = dÑi(t)− eη

′Xi(t)dΛ∗1(t)

and dM∗
i (t) = dM∗

i (t; η0), where η = (γ, ξ)′, Xi(t) = (Zi, −Zit)
′ and η0 denotes the true value

of η. It can be shown that M∗
i (t) is a mean-zero stochastic process. It follows that the estimators

of η and dΛ∗1(t) can be obtained by solving the following two estimating equations

Uη(η) =
n∑
i=1

∫ τ

0

{
Xi(t)− X̄(t; η)

}
dÑi(t) = 0 (5)

and

n∑
i=1

[
dÑi(t)− eη

′Xi(t)dΛ∗1(t)

]
= 0. (6)

In the above, τ is the longest follow-up time, X̄(t; η) = S(1)(t; η)/S(0)(t; η) and S(k)(t; η) =
n−1

∑n
i=1 e

η′Xi(t)Xi(t)
⊗k with a⊗0 = 1, a⊗1 = a, x̄(t) = limn→∞X̄(t; η0) and s(k)(t) = limn→∞S

(k)(t; η0), k =
0, 1.

To estimate β, consider

E{Yi(t)dÑi(t)|Zi,Bit}
= E{I(t ≤ Ci)Yi(t)dNi(t)|Zi,Bit}
= E{I(t ≤ Ci)|Zi,Bit}E{Yi(t)|Zi,Bit}E{dNi(t)|Zi,Bit}
= exp{−Λ∗0(t)−Bi(t)− ξ′Zit}

Λ0(t) exp{β′Zi + b1i(t)} exp{γ′Zi + b2i(t)}dµ0(t)

= exp{(β + γ)′Zi − ξ′Zit}
exp{−Λ∗0(t) + b1i(t) + b2i(t)−Bi(t)}Λ0(t)dµ0(t),
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and therefore
E{Yi(t)dÑi(t)|Zi} = exp{β′Zi + η′Xi(t)}dΛ∗2(t), (7)

where
dΛ∗2(t) = exp{−Λ∗0(t)}Λ0(t)E[exp{b1i(t) + b2i(t)−Bi(t)}]dµ0(t).

Define
dMi(t; β, η) = Yi(t)dÑi(t)− exp{β′Zi + η′Xi(t)}dΛ∗2(t)

and dMi(t) = dMi(t; β0, η0), where β0 denotes the true value of β. Then Mi(t) is a mean-zero
stochastic process. This naturally suggests the following estimating equations to estimate β and
dΛ∗2(t):

Uβ(β; η̂) =
n∑
i=1

∫ τ

0

W (t)Zi

[
Yi(t)dÑi(t)− eβ

′Zi+η̂
′Xi(t)dΛ∗2(t)

]
= 0, (8)

and
n∑
i=1

[
Yi(t)dÑi(t)− eβ

′Zi+η̂
′Xi(t)dΛ∗2(t)

]
= 0, 0 ≤ t ≤ τ, (9)

where η̂ = (γ̂, ξ̂)′ and dΛ̂∗1(t) are the estimators of η and dΛ∗1(t), respectively, solved from (5) and
(6), and W (t) is a possibly data-dependent weight function. We denote the estimates of β and

dΛ∗2(t) by β̂ and dΛ̂∗2(t), respectively, solved from (8) and (9).
To establish the asymptotic properties of β̂ and η̂, define

M̂∗
i (t) = Ñi(t)−

∫ t

0

eη̂
′Xi(s)dΛ̂∗1(s; η̂),

M̂i(t) =

∫ t

0

Yi(s)dÑi(s)−
∫ t

0

eβ̂
′Zi+η̂

′Xi(s)dΛ̂∗2(s; β̂, η̂),

ÊZ(t; β, η) =

∑n
i=1 Zie

β′Zi+η
′Xi(t)∑n

i=1 e
β′Zi+η′Xi(t)

and ez(t) = limn→∞ÊZ(t; β0, η0).

The following theorem gives the consistency and asymptotic normality of β̂ and η̂.
Theorem 1. Assume that the conditions (C1)-(C5) given in the Appendix hold. Then η̂ and β̂ are
consistent estimators of η0 and β0, respectively. The distributions of n1/2(η̂− η0) and n1/2(β̂ − β0)
can be asymptotically approximated by the normal distributions with mean zero and covariance
matrices Σ̂η = Ω̂−1

η Ψ̂Ω̂−1
η and Σ̂β = Â−1

β Σ̂Â−1
β , respectively, where a⊗2 = aa′, Ψ̂ = n−1

∑n
i=1 û

⊗2
i ,

Σ̂ = n−1
∑n

i=1(v̂1i − v̂2i)
⊗2,

ûi =

∫ τ

0

(
Xi(t)− X̄(t; η̂)

)
dM̂∗

i (t) ,

v̂1i =

∫ τ

0

W (t)
(
Zi − ÊZ(t; β̂, η̂)

)
dM̂i(t) ,

v̂2i =

∫ τ

0

ÂηΩ̂
−1
η

(
Xi(t)− X̄(t; η̂)

)
dM̂∗

i (t) ,

Âβ = n−1

n∑
i=1

∫ τ

0

W (t)eβ̂
′Zi+η̂

′Xi(t)
(
Zi − ÊZ(t; β̂, η̂)

)⊗2

dΛ̂∗2(t; β̂, η̂),
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Âη = n−1

n∑
i=1

∫ τ

0

W (t)eβ̂
′Zi+η̂

′Xi(t)
(
Zi − ÊZ(t; β̂, η̂)

)
X ′i(t)dΛ̂∗2(t; β̂, η̂)

and

Ω̂η = n−1

n∑
i=1

∫ τ

0

{Xi(t)− X̄(t; η̂)}⊗2eη̂
′Xi(t)dΛ̂∗1(t; η̂).

For the implementation of the estimation procedure described above, one question of interest
is the model-checking on models (1) - (3). Note that for both models (2) and (3), one observes
complete data and there exist several procedures to check their goodness-of-fit (Schoenfeld, 1982;
Lin et al. 1993; Lin et al. 2000; Ghosh and Lin, 2002). Thus here we will focus on model (1). For
this, by following Lin et al. (1993, 2000), a general approach is to employ the following supremum
statistic

F(t, z) = n−1/2

n∑
i=1

∫ t

0

I(Zi ≤ z)dM̂i(s) ,

where the event {Zi ≤ z} means that each component of Zi is not larger than the corresponding
component of z. In Appendix 2, we will show that the null distribution of F(t, z) converges weakly
to a mean-zero Gaussian process that can be approximated by

F̂(t, z) = n−1/2

n∑
i=1

{
û1i(t, z)− Φ̂η(t, z)Ω̂

−1
η û2i − Φ̂β(t, z)Â−1

β (v̂1i − v̂2i)

}
ei . (10)

Here e1, . . . , en are independent standard normal variables independent of the observed data,

û1i(t, z) =

∫ t

0

{I(Zi ≤ z)− ÊI(s, z; β̂, η̂)}dM̂i(s),

Φ̂η(t, z) = n−1

n∑
i=1

∫ t

0

{I(Zi ≤ z)− ÊI(s, z; β̂, η̂)}eβ̂′Zi+η̂
′Xi(s)X′i(s)dΛ̂∗2(s; β̂, η̂),

Φ̂β(t, z) = n−1

n∑
i=1

∫ t

0

{I(Zi ≤ z)− ÊI(s, z; β̂, η̂)}eβ̂′Zi+η̂
′Xi(s)Z′i dΛ̂∗2(s; β̂, η̂),

ÊI(t, z; β, η) =

∑n
i=1 I(Zi ≤ z)eβ

′Zi+η
′Xi(t)∑n

i=1 e
β′Zi+η′Xi(t)

, eI(t, z) = limn→∞ÊI(t, z; β0, η0)

and û2i = ûi, where ûi, v̂1i and v̂2i are as defined earlier in this section. Therefore, one could
obtain a large number of realizations from F̂(t, z) by repeatedly generating the standard normal
random sample {e1, . . . , eN} while fixing the observation data. Because F(t, z) is expected to
fluctuate randomly around 0 under model (1), a formal lack-of-fit test can be constructed based
on the statistic sup0≤t≤τ,z|F(t, z)|. The corresponding p-value can be obtained by comparing the

observed value of sup0≤t≤τ,z|F(t, z)| to a large number of realizations from sup0≤t≤τ,z|F̂(t, z)|.

4 Simplified Estimation Procedure (SEP)

In this section, we consider a simplification of the GEP presented in Section 3 for a special case,
when Ci is independent of the covariate Zi. In such situation, for the same models considered in
Section 2, ξ = 0. Following (4) and (7), we have
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E{dÑi(t)|Zi} = exp{γ′Zi}dΛ∗1(t), (11)

and
E{Yi(t)dÑi(t)|Zi} = exp{(β + γ)′Zi}dΛ∗2(t), (12)

where Λ∗0(t), Bi(t), dΛ∗1(t) and dΛ∗2(t) are defined the same as in the previous section. Let

mi =

∫ τ

0

dÑi(t)

be the total number of observation times associated with subject i and

Ȳi =

∫ τ

0

Yi(t)dÑi(t),

where τ represents the largest follow-up time in the study. Then we have

E{mi|Zi} = exp{γ′Zi}Λ∗1(τ)

and
E{Ȳi|Zi} = exp{(β + γ)′Zi}Λ∗2(τ) = E(mi|Zi) exp{β′Zi + α},

where α = log{Λ∗2(τ)/Λ∗1(τ)} is an unknown parameter.
Define Z1i = (Z′i, 1)′ and φ = (β′, α′)′. Motivated by Zhao et al. (2013b), the following class

of estimating equations can be used for the estimation of φ

U(φ) =
n∑
i=1

WiZ1i{Ȳi −mi exp(φ′Z1i)} = 0,

where Wi’s are some possibly covariate-dependent weights. Under conditions (C1)-(C4) given in
Appendix 1, it can be shown that the resulted estimator φ̂ is consistent and

√
n(φ̂ − φ0) can

be asymptotically approximated by a normal distribution with mean zero and covariance matrix
Σ̂φ = Γ̂−1V̂ Γ̂−1, where φ0 denotes the true value of φ,

Γ̂ =
1

n

n∑
i=1

{WimiZ
⊗2
1i exp(φ̂′Z1i)}

and

V̂ =
1

n

n∑
i=1

v̂⊗2
i with v̂i = WiZ1i{Ȳi −mi exp(φ̂′Z1i)}.

In practice, one question of interest is when one may want to apply the SEP. For this, it is
apparent that a simple way is first to directly check on the observed data to see if the censoring
times are covariate-dependent. Otherwise, one only needs to fit the data to model (3) without
b3i(t) or employ some nonparametric test procedures such as the log-rank test.
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5 A Simulation Study

In this section, we report some results obtained from a simulation study conducted to assess the
finite sample behavior of the estimation procedure proposed in the previous sections. For each
subject i, the covariate Zi was assumed to be a Bernoulli random variable with the probability of
success being 0.5. Given Zi and some unobserved random effects bi(t) = (b1i(t), b2i(t), b3i(t))

′, the
hazard function of the censoring time Ci was assumed to have the form

λi(t|Zi,Bit) = λ0 + ξZi + b3i(t), (13)

with the largest follow-up time τ = 1. The number of observations Ñi(t) was assumed to follow a
Poisson process on (0, Ci) with the mean function

E{Ni(t)|Zi,Bit} =

∫ t

0

exp{γZi + b2i(s)}dµ0(s) . (14)

In practice, the exact time of Ci may not be observable and dÑi(t) is observed instead of dNi(t),

thus we considered E{Ñi(t)|Bit} for the observation process. From (13) and (14),

E{dÑi(t)|Zi,Bit} = exp{γZi − ξZit}dΛ∗1(t),

where dΛ∗1(t) = exp{−λ0t+b2i(t)−Bi(t)}dµ0(t) andBi(t) =
∫ t

0
b3i(s)ds. Given Zi and Bit, Ñi(t) was

assumed to follow a nonhomogeneous Poisson process and the total number of observation times mi

was generated with mean E{mi} = E{Ñi(τ)|Zi,Biτ}. Then the observation times {Ti,1, . . . , Ti,mi
}

were taken as mi order statistics from the density function

fÑ(t) =
exp{γZi − ξZit}dΛ∗1(t)∫ τ
0

exp{γZi − ξZit}dΛ∗1(t)
.

The longitudinal response Yi(t) was generated from a mixed Poisson process with the mean function

E{Yi(t)|Zi,Bit} = QiΛ0(t) exp{−βZi + b1i(t)}, (15)

where Qi was generated independently from a gamma distribution with mean 1 and variance 0.5.
The results given below are based on the sample size of 100 or 200 with 1000 replications and
W (t) = Wi = 1.

Tables 1 and 2 show the estimation results on β for the situation when b1i, b2i and b3i are
time-independent. Note that here ξ0 = 0 or γ0 = 0 represents the cases when either censoring or
the observation times is independent of covariates, respectively. For the random effects, we took
b1i = b2i = b3i = bi, where the b′is were generated from the uniform distribution over (−0.5, 0.5). It
can be seen that the proposed estimates seem unbiased and the estimated standard errors (SEE)
are close to the sample standard errors (SSE). Also the empirical 95% coverage probabilities (CP)
are quite accurate. In addition, it seems that both estimation procedures perform comparably
well, but SEE agrees slightly better with the corresponding SSE under SEP as compared to GEP
when ξ0 = 0. The same conclusions are also obtained for the situation when b1i, b2i and b3i are
time-dependent, for which the results are presented in Tables 3 and 4. Here we took b1i(t) = bi t

1/3,
b2i(t) = bi t

1/2 and b3i = bi with the same bi generated as for Tables 1 and 2.
Note that all results above were obtained with a binary covariate and are on estimation of

β. We also considered other set-ups and estimation of other regression parameters and obtained
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similar results. For example, Table 5 presents the estimation results on η = (γ, ξ)′ given by GEP
with the same set-ups as in Tables 2 and 4 and Table 6 gives results with Zi generated from the
normal distribution with mean 0 and standard deviation 0.5. One can see that all results are
similar to those described above.

To further investigate the performance of the proposed estimators of β in comparison with
those proposed by He et al. (2009) and Sun et al. (2012), we carried out a simulation study and
estimated β using all four methods. Note that unlike the proposed estimation procedures, the
latter two methods require observing the exact time of a censoring or terminal event Ci. For this,
we used the subjects’ last observation times as commonly done in practice. With respect to the
method given by Sun et al. (2012), we applied it by using Ci as its original terminal event time
Di and τ as its Ci. Note that as mentioned earlier, both He et al. (2009) and Sun et al. (2012)
considered the distribution-based random effects for possible correlations. For the comparison, we
focus on the performances of their procedures when the random effects follow various distributions
besides those assumed. However, since both of them involve covariate effects in forms different
from those considered by our proposed models, we fix β0 = 0 and ξ0 = 0 in order to avoid unfair
comparisons caused by the misspecification of covariate effects. The estimation results are given
in Table 7 with three set-ups. In the first set-up, referred to as M1, we considered the situation
as used for Table 1 except µ0(t) = 10t and b1i = −b2i = b3i. In the second and third set-ups
called M2 and M3, we generated b1i(t), b2i(t) and b3i(t) from various distributions such that the
assumptions required by either Sun et al. (2012) or He et al. (2009) are satisfied. For example,
we took λ0(t) = 0 and generated b3i(t) from an extreme-value distribution as assumed by Sun et
al. (2012). We also generated b1i(t), b2i(t) and b3i(t) from the assumed distributions required by
He et al. (2009).

Note that in all set-ups considered above, our proposed models are correctly specified because
there are no assumed distributions on b1i(t), b2i(t) or b3i(t). In contrast, the models from either
of He et al. (2009) or Sun et al. (2012) are only correctly specified in one of the set-ups. On
the other hand, since there are no covariate effects in all set-ups, we do not expect that the point
estimates of β given by He et al. (2009) or Sun et al. (2012) are much biased even if the imposed
distributions are misspecifyed in the estimation. For their variance estimates, we expect that SEE
and SSE agree for both, because the former applied bootstrap resampling and the latter did not
involve any assumed distribution of random effects in their variance estimation. Therefore, we
only compare bias and SSE. It can be seen that all estimation procedures gave comparably small
bias as expected. However, it appears that the proposed estimators are more efficient for all cases
in general. In comparison, the method given by He et al. (2009) is comparably efficient to the
proposed estimators only under M3 when all its distribution assumptions are satisfied. For the
method given by Sun et al. (2012), it is worth noting that when Di is substituted by the last
observation time Ci from subject i, it gives relatively large SSE, especially when Ci’s vary much,
regardless of whether the assumption about b3i(t) is satisfied (for M2) or not (for M3).

6 An Application

In this section, we applied the proposed methodology described in the previous sections to the data
from a skin cancer study conducted by the University of Wisconsin Comprehensive Cancer Center
in Madison, Wisconsin (Li et al. 2013; Sun and Zhao 2013). It is a double-blinded and placebo-
controlled randomized Phase III clinical trial on the patients with a history of nonmelanoma skin
cancers. The study consists of 291 patients randomly assigned to the placebo or 0.5g/m2/day PO
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diuoromethylornithine (DFMO) and all subjects were scheduled to be assessed every six months,
but the actual observation times differ from patient to patient. Thus only longitudinal data are
available on the recurrences of skin cancers, and one objective is to evaluate the overall effectiveness
of DFMO in reducing the recurrences of basal cell carcinoma (BCC). Following Li et al. (2013),
we will focus on the 290 patients with at least one observation. Among these patients, 143 of
them were assigned to the DFMO group and the rest were assigned to the placebo group. For
each patient, the number of prior skin cancer occurrences was also reported at the beginning of
the study, ranging from 1 to 35 and the median was 2. With respect to the new occurrences of
BCC, the numbers ranged from 0 to 16. It was found by Zhang et al. (2013) that the cumulative
numbers of BCC and observation numbers were positively correlated with varying magnitude over
time. However, none of the existing literature has incorporated such information to analyze the
effectiveness of DFMO.

For the analysis, we define Zi = (Zi1, Zi2)′, where Zi1 = 1 if the patient was given the DFMO
treatment and Zi1 = 0 otherwise, and Zi2 = 1 if the patient had more than two skin tumors and
Zi2 = 0 if not. The longest follow-up time was scaled to be τ = 1, which corresponds to 1879 days
in the original data set. For patient i, let Yi(t) be the total number of BCC tumors observed up
to time t. The follow-up times Ci’s were taken as the subjects’ last observation times and vary
from 180 to 1879 days. Assume that the recurrence process of skin tumors Yi(t), the observation
process Ni(t) and the follow-up time Ci can be described by models (1)-(3), respectively. A direct
check of the observed data indicates that most early drop-outs (Ci ≤ 700) occur in the placebo
group and thus it seems that the censoring is covariate-dependent. This suggest that we should
use the GEP described in Section 3.

Table 8 presents the analysis results given by the GEP with W (t) = 1 and for comparison,
we also obtained and included in the table the analysis results by applying the methods given by
He et al. (2009) and Sun et al. (2012). First one can see from the table that both ξ1 and ξ2

seem to be significant based on the GEP, indicating that the censoring times are indeed dependent
of covariates. All three methods imply that the number of prior skin tumors could increase the
recurrence rate of new BCC tumors since β2 appears to be significantly positive. With respect to the
effectiveness of DFMO treatment, however, the GEP suggests that DFMO may have significantly
reduced the recurrence rate of new BCC tumors which is similar to the result given by Li et al.
(2014), but neither of the competing procedures agree. One possible reason for this is that as
mentioned before, both He et al. (2009) and Sun et al. (2012) considered different models for
the association of covariate effects and the treatment effect can be insignificant from a different
aspect of view. Another possible reason is that the assumed distributions of random effects were
misspecified in both He et al. (2009) and Sun et al. (2012), and as shown in the simulation study,
such misspecification effects may affect the variance estimates and mask the true significance. For
the analysis, we also applied the model-checking procedure described in Section 3 and obtained
the p-value of 0.632, which suggests that model (1) seems to be appropriate for the skin cancer
data.

7 Concluding Remarks

In this paper, we proposed a joint model for analyzing longitudinal data with informative cen-
soring and observation times. The mutual correlations are characterized via a shared vector of
time-dependent random effects. As mentioned earlier, several procedures have been developed in
the literature for longitudinal data when either censoring or observation process is informative.
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However when both of them are informative, there is limited work that can apply except those
given in He et al. (2009) and Sun et al. (2012). In addition, all the existing procedures assumed
time-independent or specifically distributed correlation structures. The proposed joint model is
flexible in that the shared vector of random effects can be time-dependent and neither of its struc-
ture nor distribution are specified. For the parameter estimation, the proposed procedure is simple
and easy to implement. It can be further simplified under special situations when the censoring
does not depend on covariates.

Note that as mentioned above, instead of the additive model (3), one may consider the frailty
proportional hazards model for the censoring times. It is well-known that both models are com-
monly used in survival analysis and they describe different types of covariate effects. In other
words, one may want to decide which model to be used based on the question of interest. Another
factor for this is that one may also need to see if there exist some established inference procedures
available. As one can see, under model (3), we have developed a simple procedure for the estima-
tion of regression parameters. Although one can apply the same idea for the proportional hazards
model situation, the specific development and implementation of similar procedures would be quite
different and difficult. The same can be said on the modeling of Yi(t) (Zhao et al. 2011; Zhao et
al. 2013a). Another assumption used in the proposed method is the existence of time-dependent
random effects bi(t), a commonly used technique in the analysis of longitudinal data to charac-
terize the correlation between some related variables or processes. In most methods involving
random effects, they are usually supposed to be time-independent, meaning that the correlation
is constant. On the other hand, it is apparent that the correlation may change with time and
time-dependent random effects include time-independent random effects as a special case.

There exist several directions for future research. One is that as mentioned above, one may want
to consider other models rather than models (1) - (3) and develop similar estimation procedures.
Of course, a related problem is model selection and one may want to develop some model selection
techniques to choose the optimal model among several candidate models (Tong et al. 2009; Wang
et al. 2014). Note that in the proposed method, we have employed a weight function W (t) and
it would be desirable to develop some procedures for the selection of an optimal W (t). As in
most similar situations, this is clearly a difficult problem as it requires the specification of the
covariance function of Yi(t) and Ñi(t) (Sun et al. 2012). Finally in the above, we have focused
on regression analysis of Yi(t) with time-independent covariates. Sometimes one may face time-
dependent covariates and thus it would be helpful to generalize the proposed method to this
latter situation. Also sometimes nonparametric estimation of Yi(t) may be of interest. For this
purpose, some constraints should be imposed on bi(t) for identifiability, for example, E{bi(t)} = 0.
When panel count data arise (Sun and Zhao 2013), the generalization of existing nonparametric
estimation procedures to cases with informative observation or censoring times is a challenging
direction for future work too.

Appendices

Appendix 1: Proof of Theorem 1

To derive the asymptotic properties of the proposed estimators β̂ and η̂, we need the following
regularity conditions analogous to those given by Lin et al. (2000) (Section 2):

(C1). {Ñi(·), Yi(·), Ci,Zi}ni=1 are independent and identically distributed.
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(C2). There exists a τ > 0 such that P (Ci ≥ τ) > 0.

(C3). Both Ñi(t) and Yi(t) (0 ≤ t ≤ τ , i = 1, . . . , n) are bounded.

(C4). W (t) and Zi, i = 1, . . . , n, have bounded variations and W (t) converges almost surely to a
deterministic function w(t) uniformly in t ∈ [0, τ ].

(C5). Aβ = E{
∫ τ

0
w(t)eβ

′
0Zi+η

′
0Xi(t)[Zi−ez(t)]⊗2dΛ∗2(t)} and Ωη = E

[ ∫ τ
0

{
Xi(t)−x̄(t)

}⊗2
eη
′
0Xi(t)dΛ∗1(t)

]
are both positive definite.

Under condition (C2), we define

U1(β; η̂) =
n∑
i=1

∫ τ

0

W (t)Zi

[
Yi(t)dÑi(t)− eβ

′Zi+η̂
′Xi(t)dΛ̂∗2(t)

]
,

which is integrable under conditions (C3) and (C4). Also note that dΛ̂∗2(t) satisfies

n∑
i=1

[
Yi(t)dÑi(t)− eβ

′Zi+η̂
′Xi(t)dΛ̂∗2(t)

]
= 0, 0 ≤ t ≤ τ. (A.1)

Let
Âβ(β) = −n−1∂U1(β, η̂)/∂β′, Âη(η) = −n−1∂U1(β0, η)/∂η′,

and under (C1), let

Aβ = lim
n→∞

Âβ(β0), Aη = lim
n→∞

Âη(η0).

The consistency of β̂ and η̂ follows from the facts that U1(β0; η̂) and Uη(η0) both tend to 0 in

probability as n→∞, and that under condition (C5), Âβ(β) and −n−1∂Uη(η)/∂η′ both converge
uniformly to the positive definite matrices Aβ and Ωη over β and η, respectively, in neighborhoods

around the true values β0 and η0. Then the Taylor series expansions of U1(β̂; η̂) at (β0; η̂) and

(β0, η0) yield n1/2(β̂−β0) = A−1
β n−1/2U1(β0; η̂) + op(1) = A−1

β

{
n−1/2U1(β0; η0)−Aηn1/2(η̂− η0)

}
+

op(1). The proof of Theorem 1 is sketched as follows:
(1) First, using some derivation operation to U1(β; η̂) and (A.1), we can get

Âβ(β) = n−1

n∑
i=1

∫ τ

0

W (t)
{
Zi − ÊZ(t; β, η̂)

}⊗2
eβ
′Zi+η̂

′Xi(t)dΛ̂∗2(t; β, η̂).

(2) Solving dΛ̂∗2(t; β0, η0) from (A.1) and applying to U1(β0; η0) yields

U1(β0; η0) =
n∑
i=1

∫ τ

0

w(t)
(
Zi − ez(t)

)
dMi(t) + op(n

1/2),

where ez(t) = limn→∞ÊZ(t; β0, η0) as defined earlier in Section 3 and w(t) is a deterministic
function defined under (C5).

(3) Differentiation of U1(β0, η) and (A.1) with respect to η yields

Âη(η) = n−1

n∑
i=1

∫ τ

0

W (t)
[
Zi − ÊZ(t; β0, η)

]
eβ
′
0Zi+η

′Xi(t)X ′i(t)dΛ̂∗2(t; β0, η) .
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(4) According to equation (5) and by using the asymptotic results in Lin et al. (2000) (A.5),
one can show that

n1/2{η̂ − η0} = Ω−1
η n−1/2

n∑
i=1

[ ∫ τ

0

(
Xi(t)−

s(1)(t)

s(0)(t)

)
dM∗

i (t)

]
+ op(1), (A.2)

where Ωη = E
[ ∫ τ

0

{
Xi(t)− x̄(t)

}⊗2
eη
′
0Xi(t)dΛ∗1(t)

]
, which is invertible under (C5).

Combining the results in steps (1)-(4), we have

U1(β0; η̂) =
n∑
i=1

[ ∫ τ

0

w(t)
{
Zi − ez(t)

}
dMi(t)

]
−AηΩ−1

η

n∑
i=1

[ ∫ τ

0

{
Xi(t)− x̄(t)

}
dM∗

i (t)

]
+ op(n

1/2).

Since Aβ is also invertible under (C5), it then follows from the multivariate central limit theorem
that the conclusions hold.

Appendix 2: Proof of the null distribution of F(t, z) in Section 3

Let V (β̂, η̂) =
∑n

i=1

∫ t
0
I(Zi ≤ z)dM̂i(s; β̂, η̂), then by the Taylor expansion,

F(t, z; β̂, η̂) = n−1/2V (β0, η0) +
∂V (β0, η0)

n∂η′
√
n(η̂ − η0) +

∂V (β0, η̂)

n∂β′
√
n(β̂ − β0) + op(1).

Using the arguments and algebra manipulation similar to those in Appendix 1, we have
V (β0, η0) =

∑n
i=1 u1i(t, z) + op(n

1/2), where u1i(t, z) =
∫ t

0
{I(Zi ≤ z) − eI(s, z)}dMi(s). Also,

∂V (β0,η0)
n∂η′

and ∂V (β0,η̂)
n∂β′

can be estimated by −Φ̂η(t, z) and −Φ̂β(t, z), respectively.

In addition, it follows from (A.2) and Theorem 1 that

√
n{η̂ − η0} = Ω−1

η n−1/2

n∑
i=1

[ ∫ τ

0

(
Xi(t)−

s(1)(t)

s(0)(t)

)
dM∗

i (t)

]
+ op(1),

and
√
n{β̂ − β0} = A−1

β n−1/2

n∑
i=1

(v1i − v2i) + op(1),

where v1i =
∫ τ

0
w(t)

(
Zi − ez(t)

)
dMi(t) , and v2i =

∫ τ
0
AηΩ

−1
η

(
Xi(t) − x̄(t)

)
dM∗

i (t) . Therefore,

F(t, z; β̂, η̂) can be expressed as a sum of i.i.d. mean-zero terms for fixed t. By the multivariate
central limit theorem, F(t, z) converges in finite-dimensional distribution to a mean-zero Gaussian
process. Since F(t, z) is tight based on the empirical process theory, F(t, z) converges weakly to

a mean-zero Gaussian process that can be approximated by F̂(t, z) given by equation (10).
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Table 1: Estimation results based on SEP with λ0 = 2, µ0(t) = 20t, Λ0(t) = 5t, ξ0 = 0, b1i = b2i =
b3i.

n = 100 n = 200
β0 0 0.2 0.5 0 0.2 0.5

γ0 = 0
Bias -0.003 0.005 0.005 0.002 -0.005 0.001
SEE 0.179 0.182 0.183 0.130 0.130 0.132
SSE 0.179 0.197 0.189 0.135 0.132 0.136
CP 0.946 0.921 0.934 0.942 0.953 0.952

γ0 = 0.5
Bias 0.004 -0.001 -0.004 -0.002 -0.003 0.003
SEE 0.176 0.175 0.177 0.126 0.126 0.127
SSE 0.191 0.178 0.183 0.132 0.128 0.130
CP 0.929 0.945 0.939 0.938 0.947 0.931

Table 2: Estimation results based on GEP with λ0 = 2, µ0(t) = 20t, Λ0(t) = 5t, b1i = b2i = b3i.

n = 100 n = 200
β0 0 0.2 0.5 0 0.2 0.5

(γ0, ξ0) = (0, 0)
Bias 0.007 0.012 0.000 -0.009 -0.005 -0.003
SEE 0.177 0.177 0.179 0.127 0.128 0.129
SSE 0.194 0.188 0.199 0.134 0.129 0.132
CP 0.924 0.934 0.905 0.934 0.946 0.934

(γ0, ξ0) = (0, 0.2)
Bias 0.036 0.035 0.042 0.036 0.036 0.042
SEE 0.178 0.180 0.182 0.127 0.128 0.130
SSE 0.192 0.186 0.197 0.133 0.134 0.138
CP 0.922 0.937 0.921 0.922 0.932 0.923

(γ0, ξ0) = (0.5, 0)
Bias 0.006 -0.005 0.004 0.004 -0.003 0.002
SEE 0.173 0.174 0.174 0.123 0.125 0.125
SSE 0.177 0.179 0.183 0.126 0.130 0.130
CP 0.938 0.939 0.937 0.934 0.943 0.927

(γ0, ξ0) = (0.5, 0.2)
Bias 0.047 0.043 0.035 0.042 0.037 0.041
SEE 0.174 0.173 0.176 0.125 0.125 0.126
SSE 0.181 0.184 0.182 0.128 0.131 0.134
CP 0.918 0.922 0.936 0.929 0.931 0.923
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Table 3: Estimation results based on SEP with λ0 = 2, µ0(t) = 20t, Λ0(t) = 5t, ξ0 = 0, b1i(t) =
bi t

1/3, b2i(t) = bi
√
t and b3i(t) = bi.

n = 100 n = 200
β0 0 0.2 0.5 0 0.2 0.5

γ0 = 0
Bias -0.006 -0.008 -0.008 0.000 -0.001 -0.003
SEE 0.176 0.178 0.179 0.127 0.128 0.129
SSE 0.187 0.185 0.186 0.133 0.132 0.134
CP 0.932 0.946 0.933 0.931 0.939 0.929

γ0 = 0.5
Bias -0.005 -0.001 -0.007 0.000 -0.002 0.005
SEE 0.172 0.172 0.173 0.123 0.124 0.124
SSE 0.173 0.179 0.177 0.124 0.126 0.122
CP 0.940 0.927 0.945 0.941 0.944 0.958

Table 4: Estimation results based on GEP with λ0 = 2, µ0(t) = 20t, Λ0(t) = 5t, b1i(t) = bit
1/3,

b2i(t) = bi
√
t and b3i(t) = bi.

n = 100 n = 200
β0 0 0.2 0.5 0 0.2 0.5

(γ0, ξ0) = (0, 0)
Bias 0.003 -0.005 -0.006 -0.003 -0.001 -0.004
SEE 0.172 0.171 0.173 0.123 0.123 0.125
SSE 0.182 0.181 0.181 0.127 0.128 0.130
CP 0.940 0.928 0.933 0.940 0.944 0.942

(γ0, ξ0) = (0, 0.2)
Bias 0.045 0.038 0.040 0.036 0.044 0.042
SEE 0.173 0.173 0.175 0.123 0.125 0.127
SSE 0.183 0.186 0.185 0.129 0.132 0.133
CP 0.921 0.923 0.927 0.927 0.918 0.926

(γ0, ξ0) = (0.5, 0)
Bias 0.006 -0.004 -0.002 -0.006 0.006 0.002
SEE 0.168 0.168 0.169 0.120 0.120 0.121
SSE 0.178 0.181 0.173 0.129 0.127 0.122
CP 0.939 0.933 0.944 0.939 0.928 0.944

(γ0, ξ0) = (0.5, 0.2)
Bias 0.051 0.043 0.035 0.037 0.044 0.036
SEE 0.166 0.169 0.171 0.120 0.120 0.122
SSE 0.182 0.179 0.169 0.126 0.123 0.128
CP 0.911 0.921 0.939 0.922 0.914 0.925
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Table 5: Estimation results on η = (γ, ξ)′ given by GEP. Set-ups 1 and 2 represent the same
set-ups as for Tables 2 and 4, respectively.

n Set-up 1 Set-up 2 n Set-up 1 Set-up 2

100 γ̂ ξ̂ γ̂ ξ̂ 200 γ̂ ξ̂ γ̂ ξ̂
(γ0, ξ0) = (0, 0) (γ0, ξ0) = (0, 0)

Bias -0.001 -0.006 0.007 0.005 -0.001 -0.006 -0.001 -0.006
SEE 0.124 0.264 0.112 0.258 0.088 0.186 0.080 0.183
SSE 0.134 0.297 0.121 0.294 0.089 0.198 0.082 0.198
CP 0.934 0.917 0.942 0.924 0.953 0.932 0.941 0.936

(γ0, ξ0) = (0, 0.2) (γ0, ξ0) = (0, 0.2)
Bias 0.004 0.009 0.007 0.013 -0.002 -0.006 0.002 -0.006
SEE 0.125 0.270 0.114 0.266 0.088 0.190 0.080 0.188
SSE 0.128 0.294 0.120 0.290 0.091 0.209 0.085 0.207
CP 0.940 0.927 0.930 0.928 0.946 0.928 0.937 0.925

(γ0, ξ0) = (0.5, 0) (γ0, ξ0) = (0.5, 0)
Bias -0.001 -0.008 0.001 -0.003 -0.001 -0.006 -0.001 -0.006
SEE 0.114 0.237 0.100 0.232 0.081 0.168 0.071 0.164
SSE 0.121 0.262 0.114 0.278 0.087 0.190 0.076 0.186
CP 0.930 0.922 0.916 0.906 0.927 0.927 0.934 0.926

(γ0, ξ0) = (0.5, 0.2) (γ0, ξ0) = (0.5, 0.2)
Bias 0.004 0.007 -0.003 -0.005 -0.001 -0.006 -0.001 -0.006
SEE 0.114 0.242 0.102 0.236 0.081 0.171 0.072 0.167
SSE 0.126 0.276 0.111 0.267 0.084 0.195 0.080 0.189
CP 0.926 0.918 0.920 0.911 0.945 0.917 0.926 0.915

References
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Table 6: Estimation results based on GEP with Zi ∼ N(0, 0.5), λ0 = 2, µ0(t) = 20t, Λ0(t) = 5t,
b1i(t) = b2i(t) = b3i(t) = bi.

n = 100 n = 200
β0 0 0.2 0.5 0 0.2 0.5

(γ0, ξ0) = (0, 0)
Bias 0.000 -0.003 -0.004 0.000 0.003 0.002
SEE 0.170 0.171 0.177 0.125 0.126 0.132
SSE 0.189 0.189 0.205 0.131 0.134 0.140
CP 0.920 0.924 0.900 0.942 0.931 0.927

(γ0, ξ0) = (0, 0.2)
Bias 0.030 0.024 0.039 0.040 0.041 0.040
SEE 0.170 0.172 0.180 0.125 0.127 0.132
SSE 0.184 0.185 0.193 0.135 0.135 0.144
CP 0.920 0.929 0.921 0.916 0.922 0.918

(γ0, ξ0) = (0.5, 0)
Bias 0.007 0.003 -0.013 0.005 -0.006 -0.004
SEE 0.174 0.173 0.174 0.128 0.126 0.127
SSE 0.189 0.188 0.187 0.136 0.133 0.136
CP 0.925 0.922 0.930 0.931 0.928 0.926

(γ0, ξ0) = (0.5, 0.2)
Bias 0.043 0.047 0.037 0.042 0.035 0.035
SEE 0.175 0.172 0.177 0.128 0.126 0.127
SSE 0.189 0.191 0.185 0.133 0.136 0.134
CP 0.906 0.921 0.937 0.925 0.919 0.924
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Table 7: Estimation results on β based on the proposed procedures and the procedures given in
Sun et al. (2012) and He et al. (2009) with β0 = ξ0 = γ0 = 0.

GEP SEP Sun et al. (2012) He et al. (2009)
M1, n = 100

Bias -0.003 -0.010 -0.004 0.009
SSE 0.162 0.167 0.261 0.206

M1, n = 200
Bias -0.003 0.003 -0.003 0.007
SSE 0.116 0.114 0.184 0.154

M2, n = 100
Bias 0.004 0.003 0.004 0.003
SSE 0.123 0.129 0.306 0.184

M2, n = 200
Bias -0.001 0.000 -0.003 0.011
SSE 0.089 0.087 0.227 0.145

M3, n = 100
Bias 0.001 0.003 -0.010 0.000
SSE 0.074 0.077 0.221 0.071

M3, n = 200
Bias 0.002 0.001 0.000 -0.003
SSE 0.055 0.055 0.150 0.051

Set-up M1: µ0(t) = 10t, λ0 = 2, Λ0(t) = 5t, b1i = −b2i = b3i = bi, where bi followed a uniform distribution on (-0.5, 0.5).

Set-up M2: µ0(t) = 10t, λ0 = 0, Λ0(t) = 5t, b1i = −b2i = bi, where bi followed a uniform distribution on (-0.5, 0.5) and b3i followed
an extreme value distribution with distribution function F (t) = 1− exp{− exp(t)}.

Set-up M3: µ0(t) = 4t, λ0 = 0, Λ0(t) = 5t, b1i = 0.2b2i + 0.2b2i, b2i = log(b∗2i) and b3i = exp(vi), where vi and b∗2i were generated,
respectively, from a normal distribution with mean 0 and standard deviation 0.5 and gamma distribution with mean 4 and
variance 8.
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Table 8: Analysis results for the skin cancer data.

Est. SEE 95% CI p-value

Proposed
γ1 0.529 0.072 (0.387, 0.671) < 0.001
γ2 0.566 0.072 (0.426, 0.706) < 0.001
ξ1 1.203 0.171 (0.868, 1.538) < 0.001
ξ2 1.038 0.171 (0.703, 1.373) < 0.001

β1 -0.448 0.187 (-0.814, -0.082) 0.017
β2 1.164 0.225 (0.723, 1.604) < 0.001

Sun et al. (2012)
β1 -0.404 0.253 (-0.899, 0.091) 0.110
β2 1.340 0.287 (0.776, 1.902) < 0.001

He et al. (2009)
β1 -0.220 0.196 (-0.605, 0.164) 0.261
β2 1.265 0.220 (0.834, 1.695) < 0.001
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