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Abstract In this paper we introduce a new regression model in which the response
variable is bounded by two unknown parameters. A special case is a bounded al-
ternative to the four parameter logistic model. The four parameter model which
has unbounded responses is widely used, for instance, in bioassays, nutrition, ge-
netics, calibration and agriculture. In reality, the responses are often bounded
although the bounds may be unknown, and in that situation, our model reflects
the data-generating mechanism better.

Complications arise for the new model, however, because the likelihood func-
tion is unbounded, and the global maximizers are not consistent estimators of
unknown parameters. Although the two sample extremes, the smallest and the
largest observations, are consistent estimators for the two unknown boundaries,
they have slow convergence rate and are asymptotically biased. Improved esti-
mators are developed by correcting for the asymptotic biases of the two sample
extremes in the one sample case; but even these consistent estimators do not ob-
tain the optimal convergence rate. To obtain efficient estimation, we suggest using
the local maximizers of the likelihood function, i.e., the solution to the likelihood
equations. We prove that, with probability approaching one as the sample size
goes to infinity, there exists a solution to the likelihood equation that is consistent
at the rate of the square root of the sample size and it is asymptotically normally
distributed.
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1 Introduction

Consider the following regression model

log

(
B − Y
Y −A

)
= xTβ + ε, (1)

where Y is the response variable and A and B are the two unknown boundaries
of the responses; x denotes a p dimensional covariate vector; β is an unknown
p dimensional regression coefficient vector; ε is the error term having a normal
distribution with mean 0 and variance σ2. This model does not belong to the class
of generalized linear models because the transformation of Y contains unknown
parameters. It also does not belong to the class of non-regular regression model
studied by Smith (1994) who focused on linear regression models with error terms
having parameter dependent support. We call this model the bounded log-linear
regression model.

Let θ = (βT, σ, A,B)T and θ0 be the true value of θ. The likelihood function of
θ based on an independent random sample {(xi, Yi), i = 1, ..., n} from model (1) is

Ln(θ) =
(B −A)nI(A < Y(1) < Y(n) < B)

(2π)
n
2 σn

∏n
i=1(B − Yi)(Yi −A)

×

exp

−
∑n
i=1

{
log
(
B−Yi
Yi−A

)
− xT

i β
}2

2σ2

 , (2)

where I(·) is the indicator function. This likelihood function is unbounded and may

become infinite along some paths; for example, let σ2 =
∑n
i=1

{
log
(
B−Yi
Yi−A

)}2

and

β = 0, a p-dimensional vector of zeros; then σn
∏n
i=1(B−Yi)(Yi−A) goes to 0 if A

approaches Y(1) from the left or B approaches Y(n) from the right. So the likelihood

function in (2) goes to infinity as θ goes to
(
0T,+∞, Y(1), Y(n)

)T
along some paths.

Thus the global maximizer of the likelihood function is not a consistent estimator.
If β and σ are known, the likelihood function is bounded because it is continuous
and goes to 0 as A approaches Y(1) or −∞, or as B approaches Y(n) or ∞.

We are motivated by a special case of model (1) in which β = (a, b)T:

log

(
B − Y
Y −A

)
= a+ bx+ ε. (3)

Model (3) can be presented as

Y = B − B −A
1 + e−(a+bx+ε)

,

by which one can see its connection to the four parameter logistic model,

Y = B − B −A
1 + e−(a+bx)

+ ε. (4)

The four parameter logistic model for continuous responses is also called the Emax

model, and it is widely used for curve-fitting, for instance, in bioassays, nutri-
tion, genetics, calibration and agriculture. See, for example, DeLean et al. (1978),
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V∅lund (1978), Holford and Sheiner (1981), Ratkowsky and Reedy (1986), Finke
et al. (1987), Finke et al. (1989), Ernst et al. (1997), Triantafilis et al. (2000), Nix
and Wild (2001), Menon and Bhandarkar (2004), MacDougall (2006), Dragalin
et al. (2007), Vedenov and Pesti (2008), Sebaugh (2011), Feng et al. (2011) and
the references therein. The E(Y |x) of model (4) is often used in phase I clinical
trials to model the mean response for Bernoulli random variables. The applica-
tions considered here, and in the aforementioned references, focus on continuous
random variables. We take ε to have a normal distribution N(0, σ2) for models (3)
and (4).

A drawback of the four parameter logistic model is that parameters A and
B are often interpreted as the minimum and maximum of possible responses,
although model (4) allows the responses to be unbounded. Another inadequacy of
model (4) is that the responses Y have the same variance for all possible values
of the covariate x, which is often violated in practice. Leonov and Miller (2009)
tackled this problem by letting the variance of the model error depend on the
covariate, but the range of possible responses remained to be unbounded. Our
model (3) has bounded responses and the distribution of the response for a given
dose is skewed analogous to a beta distribution. Figure 1 displays simulated data
from models (3) and (4). Note that observations from model (4) may fall far outside
the two hypothetical bounds, while data from model (3) always stays between the
two boundaries. Additionally, data from model (4) still has large variation in the
two tails, whereas variation in the tails is skewed and very small for model (3),
and this scenario is observed frequently in real data.
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(a). The bounded log-linear model
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(b). The four parameter logistic model
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Fig. 1 Simulated data from models (3) and (4) with a = 5, b = −1, σ = 0.5, A = 0 and
B = 5. The sigmoid curve is the median response for model (3) while it is the mean response
for model (4).
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A special case of model (3) is, by setting b = 0 and replacing a by µ,

log

(
B − Y
Y −A

)
= Z, (5)

where Z ∼ N(µ, σ2), and µ, σ, A and B are unknown parameters. Model (5) has
some similarities to the three parameter log-normal distribution, in which

log (Y −A) = Z ∼ N(µ, σ2),

and which also has an unbounded likelihood function (see Hill, 1963). Although
the three parameter log-normal distribution has been studied by many, including
Cohen (1951), Hill (1963), Harter and Moore (1966), Giesbrecht and Kempthorne
(1976) and Cohen and Whitten (1980), the theoretical properties of the proposed
methods were not addressed rigorously in these papers. Cheng and Amin (1983)
proposed an estimation method called maximum product spacings and proved the
asymptotic normality of the proposed estimator and the local maximum likeli-
hood estimator for the log-normal distribution. However, a rigorous proof for the
consistency of the local maximum likelihood estimator was not provided.

There is a large body of literature rigorously developing methods of statisti-
cal inference for models with parameter-dependent support, including Woodroofe
(1972), Weiss and Wolfowitz (1973), Woodroofe (1974), Hall (1982), Smith (1985),
Cheng and Iles (1987), Smith (1994) and Hall and Wang (2005). More references
on non-regular models and estimation approaches for them can be found in Cheng
and Traylor (1995) and the references and discussions therein.

This paper is closely related to the work of Smith (1985), in which instead of
using the global maximizer of the likelihood function, the solution to the likeli-
hood equation is used to estimate unknown parameters. This idea was originally
proposed by Harter and Moore (1966). The theory of local maximum likelihood
estimation was established for a broad class of non-regular models without covari-
ates in Smith (1985) by an elegant mathematical derivation. A key requirement
in their proof is that the difference between the sample minimum and the lower
bound of the support of a distribution has a non-degenerate distribution asymp-
totically. However, as is shown in Section 2, this quantity for a sample from model
(5) always converges to a constant. Smith (1994) extended the results in Smith
(1985) to a class of non-regular regression models, but model (3) does not meet the
assumptions required in their analysis. In this paper, we provide another technique
for proving the existence of a consistent maximum likelihood estimator. With small
modifications, this technique applies to the consistency of local maximum likeli-
hood estimator for the well known three parameter log-normal distribution, for
which a rigorous proof has been missing for a long time. Uniqueness of the local
maximizer of the likelihood function is also investigated and a theorem similar to
Theorem 2 in Smith (1985) is formulated for a general regression model.

The rest of this paper is organized as follows. In Section 2, the one sample
case is addressed and properties of estimators based on the sample extremes are
derived. In Section 3, we present the results for the local maximum likelihood
estimator for the regression problem. Results of simulation experiments that are
designed to investigate the finite sample properties are contained in Section 4.
Technical details are given in the appendix.



A new bounded log-linear regression model 5

2 Estimation based on the extreme order statistics for the one sample case

2.1 Naive estimators

Suppose an independent sample {Y1, ..., Yn} is taken from model (5). If parameters
A and B are estimated in advance, µ and σ can be estimated simply by ordinary
least-squares. An naive approach is then to use the two sample extremes, Y(1) and
Y(n), to estimate A and B, respectively, and then remove them from the sample
and use the rest of the sample to estimate µ and σ. We call such estimators naive.
Why do the two sample extremes not perform well? It is not difficult to show that
the two sample extremes are consistent, but their convergence rate is very slow.
The proposition below gives asymptotic properties for these two statistics.

Proposition 1 Let

rn = {2 log n}1/2 − log logn+ log(4π)

{8 log n}1/2
sn =

1

{2 log n}1/2
.

The following convergence results hold in distribution as n→∞:

eµ0+σ0rn

σ0sn

(
1

eµ0+σ0rn
−
Y(1) −A0

B0 −A0

)
→ G1,

e−µ0+σ0rn

σ0sn

(
1

e−µ0+σ0rn
−
B0 − Y(n)
B0 −A0

)
→ G2,

(6)

where µ0, σ0, A0 and B0 are the true values of the parameters, and G1 and G2 are two

independent random variables having the same distribution function F (t) = e−e
−t

.

Proof In Appendix A.1.

From this convergence result, it follows that, as n→∞,

eµ0+σ0rn
(
Y(1) −A0

)
→ B0 −A0,

e−µ0+σ0rn
(
B0 − Y(n)

)
→ B0 −A0,

(7)

in distribution, which gives the rate of convergence as e−σ0rn . Since, for any α > 0,
e−σ0rnnα → ∞, the rate of convergence is slower than n−α for any α > 0. But it
is still faster than 1/ log n because e−σ0rn log n→ 0. This proposition also tells us
that there does not exist a constant sequence r∗n → ∞ such that r∗n(Y(1) − A0) or
r∗n(B0 − Y(n)) converges to a non-degenerate distribution.

2.2 Bias adjusted estimators

Estimation based on the two sample extreme values can be improved by adjusting
for their asymptotic biases. From (6) and (7), better estimators of A and B are
obtained:

Âadj = Y(1) −
(1− γσ̂∗sn)(Y(n) − Y(1))

exp(µ̂∗ + σ̂∗rn)
,

B̂adj = Y(n) +
(1− γσ̂∗sn)(Y(n) − Y(1))

exp(−µ̂∗ + σ̂∗rn)
,

(8)
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where µ̂∗ and σ̂∗ are two consistent estimates of µ and σ, respectively, and γ ≈ 0.577
is the Euler-Mascheroni constant. Their asymptotic sampling properties are given
by the following convergence results:

eµ0+σ0rn

σ0(B0 −A0)sn
(Âadj −A0)→ γ −G1,

eµ0+σ0rn

σ0(B0 −A0)sn
(B̂adj −B0)→ γ −G2,

in distribution. By adjusting for the asymptotic biases of the two sample extremes,
the estimators in (8) improve the rate of convergence from e−σ0rn to sne

−σ0rn .
Although this rate is also between 1/ log n and n−α for any α > 0, simulation
results show that these estimators are much more efficient than the two sample
extremes.

3 Maximum likelihood estimators

The estimators given in Section 2 do not posses the optimal convergence rate and
their properties are difficult to derive when the model involves covariates. Thus
we evaluate the method of maximum likelihood estimation in this section focusing
on model (1).

Denote the log-likelihood function by `n(θ). The likelihood equations are

∂`n(θ)

∂β
=

n∑
i=1

{
log
(
B−Yi
Yi−A

)
− xT

i β
}

σ2
xi = 0,

∂`n(θ)

∂σ
= −n

σ
+

n∑
i=1

{
log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ3
= 0,

∂`n(θ)

∂A
=

1

B −A

n∑
i=1

B − Yi
Yi −A

−
n∑
i=1

log
(
B−Yi
Yi−A

)
− xT

i β

σ2(Yi −A)
= 0,

∂`n(θ)

∂B
= − 1

B −A

n∑
i=1

Yi −A
B − Yi

−
n∑
i=1

log
(
B−Yi
Yi−A

)
− xT

i β

σ2(B − Yi)
= 0.

(9)

In this section, following the idea of Smith (1985), we study the properties of local
maximizer of the likelihood function, i.e., the solution to the likelihood equations.
We prove the existence and consistency of the resultant estimator.
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From calculations in Appendix A.2, the Fisher information matrix based on
the sample is

In(θ) =

n∑
i=1



xix
T
i

σ2 0 −1−cid
σ2(B−A)

xT

i

−1− d
ci

σ2(B−A)
xT

i

0 2
σ2

−2cid
σ(B−A)

2 dci
σ(B−A)

−1−cid
σ2(B−A)

xi
−2cid
σ(B−A)

c2id
4

(B−A)2
+

1+2cid+c
2
id

4

σ2(B−A)2
−1

(B−A)2
+

2+cid+
d
ci

σ2(B−A)2

−1− d
ci

σ2(B−A)
xi

2 dci
σ(B−A)

−1
(B−A)2

+
2+cid+

d
ci

σ2(B−A)2

d4

c2
i

(B−A)2
+

1+2 dci
+ d4

c2
i

σ2(B−A)2


,

where ci = ex
T
i β and d = eσ

2/2.

The following assumptions are required for the asymptotic results in this sec-
tion.

Assumption 1 supi ‖xi‖ <∞, where ‖ · ‖ denotes the Euclidean norm.

Assumption 2 The following quantities converge as n→∞:

n−1∑n
i=1 xi, n

−1∑n
i=1 xix

T

i , n−1∑n
i=1 e

xT
i β, n−1∑n

i=1 e
−xT

i β, n−1∑n
i=1 xie

xT
i β,

n−1∑n
i=1 xie

−xT
i β, n−1∑n

i=1 e
2xT
i β and n−1∑n

i=1 e
−2xT

i β.

Assumption 3 (xT
1 , ...,x

T
n)T is full rank.

If the Assumptions 1-3 below hold, then In(θ)/n converges to a positive-definite
matrix, say I(θ).

The following theorems present the properties of the local maximum likelihood
estimator, the solution to (9). Proofs of these theorems are given in Appendix A.3.

Theorem 1 (Existence) If assumptions 1-3 hold, then with probability approaching

1, there exists a sequence of solutions θ̂n to the likelihood equations in (9) that is a

local maximizer of the likelihood function and is n1/2-consistent for θ.

Theorem 2 (Uniqueness) Assume assumptions 1-3 hold. Let δ be some fixed value

and δn = n−α for some α > 0. Denote by Sδ = {θ : A ≤ A0−δ and B ≥ B0 +δ} and

Tδ,n = {θ : A0−δ ≤ A ≤ A0+δn, B0−δn ≤ B ≤ B0+δ and ‖β−β0‖+ |σ−σ0| > δ}.
Then, for any compact set K ⊂ Rp+3,

lim
n→∞

Pr

{
sup
Sδ∩K

`n(θ) < `n(θ0)

}
= 1, lim

n→∞
Pr

{
sup

Tδ,n∩K
`n(θ) < `n(θ0)

}
= 1.

Theorem 3 (Asymptotic normality) If assumptions 1-3 hold, the n1/2-consistent

estimator θ̂n in Theorem 1 satisfies

n1/2(θ̂n − θ0)→ N
{

0, I−1(θ0)
}

in distribution.
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4 Numerical examples

4.1 Simulation

In this subsection, simulation results are reported that examine the finite sample
performance of the biased adjusted and local maximum likelihood estimators given
in Sections 2 and 3. The computation was carried out using R and a package called
BB was used to find the solutions to the likelihood equations. Although multiple
solutions to the likelihood equations may exist, according to our Theorem 2, the
solution that yields the largest value of the likelihood function should be chosen as
the estimate. From equation (9), all other parameters can be written as functions
of the two boundary parameters A and B explicitly. So there are only two non-
linear equations to solve to obtain estimates of A and B, and these estimates can
be inserted into the first two equations in (9) to solve for β (or µ for the one sample
model) and σ. All the simulations results are based on 1000 iterations.

Tables 1 and 2 give the relative mean square errors for model (5),

log

(
B − Y
Y −A

)
∼ N(µ, σ2),

the one sample case without covariates. The relative mean square errors are the
ratios of the mean square errors of a given estimator calculated from simulated
sample to that of the local maximum likelihood estimator defined in Section 3. So
a value of relative mean square error greater than unity indicates that the given
estimator is less efficient than the local maximum likelihood estimator, and vise-
versa. Table 1 reports results when µ and σ are assumed to be known while they
are unknown in Table 2. A consistent solution to the likelihood equations always
exists in our simulation studies if µ and σ are known. When µ and σ are unknown,
a consistent solution to the likelihood equations occasionally did not exist for small
sample sizes. From Table 2, one can see that this occurs rarely; in the worst case,
consistent solutions were not found in 6 iterations out of 1000. When a solution
to the likelihood equations was not found, the bias adjusted estimator was used
instead.

It is seen in Tables 1 and 2 that all the relative mean square errors are greater
than unity, which means both the naive and the bias adjusted estimators are
dominated by the local maximum likelihood estimator. Furthermore, the relative
performance of these two estimators deteriorates as the sample size grows. The
bias adjusted estimator outperforms the naive estimator uniformly, and its perfor-
mance relative to that of the naive estimator improves as the sample size increases.
It is also observed that improvement of the local maximum likelihood estimator
compared to the other estimators in Table 1 with known µ and σ is more significant
than in Table 2, in which µ and σ are unknown.

For the regression model (3),

log

(
B − Y
Y −A

)
= a+ bx+ ε.

the covariate values, x, were generated from a discrete uniform distribution on
(1, 2, ..., 10). There was only one case in 1000 iterations where the consistent solu-
tion was not found when n = 50. When n is larger than 50, consistent solutions are
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always found in our studies. Table 3 gives the biases, standard errors, estimates
of standard errors and the coverage probabilities of confidence intervals with a
nominal level of 95%. The biases and the standard errors are calculated from the
estimates based on the 1000 simulated samples, while the estimates of standard
errors, ŜE, are calculated from the Hessian matrix of the likelihood function. The
confidence intervals are constructed by θ̂±Z0.975ŜE, where θ̂ is the local maximum
likelihood estimator and Z0.975 is the 97.5% normal quantile. Figure 2 presents
the box plots of the estimates obtained from the 1000 simulated samples.

It is seen that both the biases and standard errors are small, and they decrease
as the sample size increases, reflecting the consistency of the local likelihood es-
timator. Although it is evident that the standard errors are underestimated for
small sample sizes and the coverage probabilities are lower than the nominal level,
this situation ameliorates as the sample size increases.

4.2 An application

The data presented in Table 4, which was generated by Kpamegan and Jani (2013)
during the qualification of an Anti-F IgG ELISA based assay (FDA, 2010). The
study was about the F protein nanoparticle vaccine. A total of 736 absorbances
measured at OD450-630 nanometers (nm) were taken at 8 different concentrations
in ELISA units (EU) from 46 plates. There were two replicates at each concentra-
tion for each plate, so we used the average as the responses in our analysis. There
are three plates for which data were recorded incorrectly, so we removed obser-
vations from these plates and only used the remaining 688 observations. In the
qualification study, the four parameter logistic model (4) was used to fit data from
each plate to determine the reference standard. Data from plates that produced
estimates of B that were more than 2 standard deviations less than the average of
all its estimates and data from plates that gave estimates of A that were more than
2 standard deviations greater than the average of all its estimates were excluded
from the reference data set. Here we use all the data from that study except the
data recorded incorrectly.

Figure 3 presents the data as a plot of the response against log concentration.
The data points marked with a “−” sign are observations that were removed from
the reference set. Clearly the variances of the responses at middle concentrations
are larger than that of the responses at either low or high concentrations, and the
distribution of absorbance readings for a given concentration skew away from the
boundaries as the responses asymptote. The pattern observed in Figure 3 is very
similar to the pattern for data generated from our model (3) as depicted in (a) of
Figure 1. The parameter estimates for Model (3) based on this data are Â = 0.050,

B̂ = 3.963, â = 0.126, b̂ = −1.320 and σ̂ = 0.659 with standard errors ŜEA = 0.022,
ŜEB = 0.044, ŜEa = 0.808, ŜEb = 0.424 and ŜEσ = 0.647, respectively.

Figure 4 shows the linearized data using the parameter estimates in Model (3):
log{(B̂ − Yi)/(Yi − Â)}, i = 1, 2, . . . , n, where Â and B̂ are maximum likelihood
estimates of A and B, respectively, as proposed in Section 3. The dotted lines are
obtained by replacing ε with ±Z0.975σ̂ in the MLE of equation (3).
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5 Summary

In this paper, a new model was proposed which is an alternative to the com-
monly used four parameter logistic model. Although this is a non-regular model,
we have proved that a local maximizer of the likelihood function is consistent,
asymptotically normal and asymptotically efficient. Additionally, our result about
the uniqueness of the MLE can help to choose the local maximizer in practice.

When the responses of a model have unknown boundaries, one may intuitively
want to use the smallest and the largest observation to estimate them. Both our
theoretical and numerical results showed that these two statistics were not efficient
for the model proposed. Actually, since the extreme order statistics are always
biased in general, one should always correct the bias to gain efficiency. This is also
true for more general models.
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Appendix A. Technical details

Appendix A.1. Proof of Proposition 1

Proof First, following the idea in Section 2.3 of Galambos (1978), for any t,

lim
n→∞

Pr

[{
log(B0 − Y )− log(Y −A0)− µ0

σ0

}
(n)

< rn + snt

]
= e−e

−t

= lim
n→∞

Pr

{(
B0 − Y
Y −A0

)
(n)

< eµ0+σ0rn+σ0snt

}

= lim
n→∞

Pr

{
B0 − Y(1)
Y(1) −A0

< eµ0+σ0rn + σ0sne
µ0+σ0rn (1 + vσ0snt)t

}
,

where |v| ≤ 1. Since vσ0snt→ 0 as n→∞, it follows that

lim
n→∞

Pr

(
B0 − Y(1)
Y(1) −A0

< cn + dnt

)
= e−e

−t
,

where cn = eµ0+σ0rn and dn = σ0sneµ0+σ0rn .
Then, for any t 6= 0,

Pr

(
B0 − Y(1)
Y(1) −A0

< cn + dnt

)
= Pr

(
Y(1) −A0

B0 −A0
>

1

1 + cn + dnt

)
= Pr

[
Y(1) −A0

B0 −A0
>
cn − 1

c2n
−
{
dn

c2n
−

(1 + dnt)

c2n(1 + cn + dnt)t

}
t

]
.

It can be shown that [(1 + dnt)/{c2n(1 + cn + dnt)t}]/(dn/c2n) → 0 and (1/c2n)/(dn/c2n) → 0
as n→∞. So from Lemma 2.2.2 in Galambos (1978),

lim
n→∞

Pr

{
B0 − Y(1)
Y(1) −A0

< cn + dnt

}
= lim
n→∞

Pr

{
Y(1) −A0

B0 −A0
>

1

cn
−
dn

c2n
t

}
.

When t = 0, the result can be verified by using the properties of the extreme order statistics
of normal distribution directly. The second equation can be proved similarly.
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Appendix A.2. Derivation of the Fisher information

The lemma below is useful in deriving the Fisher information.

Lemma 1 From Lemma 2 of Stein (1981), we obtain that, if E|h′(Z)| < ∞ for a normal
random variable Z ∼ N(µ, σ2) and some differentiable function h. Then

E{(Z − µ)h(Z)} = σ2E{h′(Z)}.

The log-likelihood function of model (1) based on one observation (x, Y ) is

`(θ,x, Y ) = −
log (2π)

2
− log σ + log(B −A)− log(Y −A)

− log(B − Y )−
{log(B − Y )− log(Y −A)− xTβ}2

2σ2

for Y ∈ (A,B) and 0 otherwise. Let Z = log(B − Y )− log(Y −A). By direct calculation,

∂`(θ,x, Y )

∂A
=

1

Y −A+
(Y−A)2

B−Y

−
{log(B − Y )− log(Y −A)− xTβ}

σ2(Y −A)
;

∂2`(θ,x, Y )

∂A2
=

1 + 2 Y−A
B−Y{

Y −A+
(Y−A)2

B−Y

}2
−
{log(B − Y )− log(Y −A)− xTβ}

σ2(Y −A)2
−

1

σ2(Y −A)2

=
e2Z + 2eZ

(B −A)2
−

(Z − xTβ)(1 + eZ)2

σ2(B −A)2
−

(1 + eZ)2

σ2(B −A)2
.

Then from Lemma 1,

E

{
∂2`(θ,x, Y )

∂A2

}
= −E

{
e2Z

(B −A)2
+

1 + 2eZ + e2Z

σ2(B −A)2

}

= −
e2x

Tβ+2σ2

(B −A)2
−

1 + 2ex
Tβ+σ2

2 + e2x
Tβ+2σ2

σ2(B −A)2
.

Other elements of the Fisher information can be derived similarly.

Appendix A.3. Proof of Theorems for the Regression Model

The proof of Theorem 1 begins with some lemmas.

Lemma 2 For constant sequences vn ↓ v and wn ↑ w as n → ∞, let ξvn ∈ (vn+1, vn) and
ξwn ∈ (wn, wn+1). If a continuous function sequence fn(·) > 0, which is decreasing in n,
satisfies n1+αfn(ξvn )→ 0 and n1+αfn(ξwn )→ 0 for α > 0 as n→∞, then

lim sup
n

∫ wn

vn

fn(x)dx <∞.

Proof Let Sn =
∫ wn
vn

fn(x)dx. Then

Sn − Sn−1 =

∫ wn

vn

fn(x)dx−
∫ wn−1

vn−1

fn−1(x)dx

≤(vn−1 − vn)fn−1(ξvn−1 ) + (wn − wn−1)fn−1(ξwn−1 )

=
(vn−1 − vn)n1+αfn−1(ξvn−1 ) + (wn − wn−1)n1+αfn−1(ξwn−1 )

n1+α
= o

(
1

n1+α

)
.

So lim supn Sn = lim supn
∑n
i=1(Sn − Sn−1) is finite.
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Lemma 3 For any α > 0, let δn = n−α. Then for any k1 ≥ 0 and k2 ≥ 0, there exists a
constant M such that

lim
n→∞

Pr

{
1

n

n∑
i=1

| log(B − Yi)|k1
(Yi −A)k2

< M

}
= 1, lim

n→∞
Pr

{
1

n

n∑
i=1

| log(Yi −A)|k1
(B − Yi)k2

< M

}
= 1

(10)

uniformly in A and B so long as |A−A0| < δn and |B −B0| < δn.

Proof We gives the details of proof for the first quantity in (10). The proof for the other one
is similar.

|log(B − Yi)|k1

(Yi −A)k2
=
| log(B −B0 +B0 − Yi)|k1

(Yi −A0 +A0 −A)k2
I(Yi −A0 > 2δn, B0 − Yi > 2δn) + op(1)

=
| log(B −B0 +B0 − Yi)|k1

(Yi −A0 +A0 −A)k2
I(Yi −A0 > 2δn, 1− 2δn > B0 − Yi > 2δn)

+
| log(B −B0 +B0 − Yi)|k1

(Yi −A0 +A0 −A)k2
I(Yi −A0 > 2δn, B0 − Yi > 1) + op(1)

<
I(Yi −A0 > 2δn, 1− 2δn > B0 − Yi > 2δn)

(B0 − Yi − δn)k1 (Yi −A0 − δn)k2

+
(B0 − Yi + δn)k1

(Yi −A0 − δn)k2
I(Yi −A0 > 2δn, B0 − Yi > 1) + op(1)

<
I(B0 − 2δn > Yi > A0 + 2δn)

(B0 − Yi − δn)k1 (Yi −A0 − δn)k2

+
(B0 −A0 + 1)k1

(Yi −A0 − δn)k2
I(B0 − 1 > Yi > A0 + 2δn) + op(1)

=Cin1 + Cin2 + op(1).

Note that

(2π)
1
2E(Cin1)

=
1

σ0

∫ B0−2δn

A0+2δn

1

(B0 − y − δn)k1 (y −A0 − δn)k2
×

B0 −A0

(B0 − y)(y −A0)
exp

−
{

log
(
B0−y
y−A0

)
− xT

i β0

}2

2σ2
0

 dy

≤
1

σ0

∫ B0−2δn

A0+2δn

1

(B0 − y − δn)k1+1(y −A0 − δn)k2+1
×

exp

− 1
4

{
log
(
B0−y
y−A0

)}2
− (xT

i β0)2

2σ2
0

 dy

=

exp

{
(xT
i β0)

2

2σ2
0

}
σ0

∫ B0−2δn

A0+2δn

1

(B0 − y − δn)k1+1(y −A0 − δn)k2+1
×

exp

−
{

log
(
B0−y
y−A0

)}2

8σ2
0

 dy.

From Lemma 2, lim supn E(Cin1) is bounded by a finite constant, say C1. Similarly, it can also
be shown that lim supn E(Cin2) is bounded by a finite constant, say C2. So using the formula
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Xn = E(Xn) +OP {var(Xn)1/2}, we have

1

n

n∑
i=1

| log(B − Yi)|k1
(Yi −A)k2

=
1

n

n∑
i=1

E(Cin1) +
1

n

n∑
i=1

E(Cin2) +OP

(
n−

1
2

)
+ oP (1).

Thus any M that is greater than C1 + C2 satisfys the requirement.

Lemma 4 If assumptions 1- 3 hold, then −n−1∂2`n(θ)/(∂θ∂θT) → I(θ0) in probability
uniformly over ‖θ − θ0‖ < δn.

Proof The first element of ∂2`n(θ)/(∂θ∂θT) is

∂2`n(θ)

∂A2
=

n∑
i=1

 1− 1
σ2

(Yi −A)2
−

1

(B −A)2
−

{
log
(
B−Yi
Yi−A

)
− xT

i β
}

σ2(Yi −A)2

 .
So it is straightforward to get

1

n

∣∣∣∣∂2`n(θ)

∂A2
−
∂2`n(θ0)

∂A2

∣∣∣∣
≤

1

n

n∑
i=1

∣∣∣∣ 1

(B −A)2
−

1

(B0 −A0)2

∣∣∣∣+
1

n

n∑
i=1

∣∣∣∣∣∣ 1 + 1
σ2

(Yi −A)2
−

1 + 1
σ2
0

(Yi −A0)2

∣∣∣∣∣∣
+

1

n

n∑
i=1

∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}

σ2(Yi −A)2
−

{
log
(
B0−Yi
Yi−A0

)
− xT

i β0

}
σ2
0(Yi −A0)2

∣∣∣∣∣∣
=∆1 +∆2 +∆3.

∆1 goes to 0 as δn goes to 0. By straightforward but tedious calculation, we obtain

∆3 ≤
1

n

n∑
i=1

∣∣∣∣log

(
B − Yi
Yi −A

)
− xT

i β

∣∣∣∣ ∣∣∣∣ 1

σ2(Yi −A)2
−

1

σ2
0(Yi −A0)2

∣∣∣∣
+

1

n

n∑
i=1

∣∣∣∣∣∣
log
(
B−Yi
Yi−A

)
− xT

i β

σ2
0(Yi −A0)2

−
log
(
B0−Yi
Yi−A0

)
− xT

i β0

σ2
0(Yi −A0)2

∣∣∣∣∣∣
≤
∣∣∣∣ 1

σ2
−

1

σ2
0

∣∣∣∣× 1

n

n∑
i=1

∣∣∣log
(
B−Yi
Yi−A

)
− xT

i β
∣∣∣

(Yi −A)2

+
1

n

n∑
i=1

∣∣∣log
(
B−Yi
Yi−A

)
− xT

i β
∣∣∣

σ2
0

×
∣∣∣∣ 1

(Yi −A)2
−

1

(Yi −A0)2

∣∣∣∣
+

1

n

n∑
i=1

∣∣∣log
(
B−Yi
B0−Yi

)∣∣∣
σ2
0(Yi −A0)2

+
1

n

n∑
i=1

∣∣∣log
(
Yi−A
Yi−A0

)∣∣∣
σ2
0(Yi −A0)2

+
1

n

n∑
i=1

xT
i (β − β0)

σ2
0(Yi −A0)2

≤
1

n

n∑
i=1

∣∣∣log
(
B−Yi
Yi−A

)
− xT

i β
∣∣∣

(Yi −A)2
×
∣∣∣∣ 1

σ2
−

1

σ2
0

∣∣∣∣+
4B|A−A0|

σ2
0

×
1

n

n∑
i=1

∣∣∣log
(
B−Yi
Yi−A

)
− xT

i β
∣∣∣

(Yi −A)2(Yi −A0)2

+
1

n

n∑
i=1

|B −B0|
σ2
0(B∗ − Yi)(Yi −A0)2

+
1

n

n∑
i=1

|A−A0|
σ2
0(Yi −A∗)(Yi −A0)2

+
1

n

n∑
i=1

xT
i (β − β0)

σ2
0(Yi −A0)2

=∆3.1 +∆3.2 +∆3.3 +∆3.4 +∆3.5,

where A∗ is between A and A0 and B∗ is between B and B0. Now we look into each term in
the last equation above.

∆3.2 ≤
2B|A−A0|

σ2
0

×
1

n

n∑
i=1

∣∣∣∣log

(
B − Yi
Yi −A

)
− xT

i β

∣∣∣∣ { 1

(Yi −A)4
+

1

(Yi −A0)2

}
. (11)
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The right hand side term in (11) goes to 0 in probability uniformly since the second factor
is bound with probability tending to 1 by Lemma 3 and the boundedness of xi. Similarly,
∆3.1, ∆3.3, ∆3.4 and ∆3.5 can be shown to go to 0 in probability uniformly which implies ∆3

goes to 0 in probability uniformly. Similarly but more easily, ∆1 and ∆2 can be showen to
converge to 0 in probability uniformly, which implies n−1

∣∣∂2`n(θ)/∂A2 − ∂2`n(θ0)/∂A2
∣∣→ 0

in probability uniformly. By similiar arguments, other components of ∂2`n(θ)/(∂θ∂θT) can
be shown to have the same property. This implys that −n−1∂2`n(θ)/(∂θ∂θT) → I(θ0) in
probability uniformly over ‖θ − θ0‖ < δn.

The following lemma is the Lemma 5 of Smith (1985). We state it for integrity and skip
the proof.

Lemma 5 Let h be a continuously differentiable real-valued function of p + 1 real variables
and let H denote the gradient vector of h. Suppose that the scalar product of u and H(u) is
negative whenever ‖u‖ = 1. Then h has a local maximum, at which H = 0, for some u with
‖u‖ < 1.

Proof (of Theorem 1) It suffices to show for any ε, there exists a constant c such that

Pr

{
uT

∂`n
(
θ0 + n−1/2cu

)
∂θ

< 0

}
> 1− ε (12)

for any vector u such that ‖u‖ = 1. Using Taylor’s expansion,

∂`n
(
θ0 + n−1/2cu

)
∂θ

=
∂`n (θ0)

∂θ
+ cn−1/2 ∂

2`n
(
θ0 + n−1/2cu∗

)
∂θ∂θT

u

=
∂`n (θ0)

∂θ
− cn1/2I(θ0)u + n1/2εn,u,

where u∗ is a vector satisfying ‖u∗‖ ≤ 1 and, by Lemma 3, εn,u → 0 in probability uniformly
over ‖u‖ ≤ 1 as n→∞. It follows that

n−1/2uT
∂`n

(
θ0 + n−1/2u

)
∂θ

= n−1/2uT ∂`n (θ0)

∂θ
− cuTI(θ0)u + uTεn,u. (13)

Note that n−1/2uT∂`n (θ0)/∂θ is OP (1). So the second term dominates the first term in (13)
for large enough c. This proves equation (12) and the result follows from Lemma 5.

Proof (of Theorem 2, part 1) For any θ1 ∈ S, E`n(θ1) < ∞, so E[`n(θ1) − `n(θ0)] < 0 by
Jensen’s inequality. This implies the existence of ξθ1

such that

lim
n→∞

Pr
{
`n(θ1)− `n(θ0) < −ξθ1

}
= 1.

For θ and η such that |θ − θ1| < η < |θ1 − θ0| − δ,

|`n(θ)− `n(θ1)|

≤| log σ − log σ1|+
1

n

n∑
i=1

∣∣∣∣log

(
1

B − Yi
+

1

Yi −A

)
− log

(
1

B1 − Yi
+

1

Yi −A1

)∣∣∣∣
+

1

n

n∑
i=1

∣∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ2
−

{
log
(
B1−Yi
Yi−A1

)
− xT

i β1

}2

σ2
1

∣∣∣∣∣∣∣
=∆4 +∆5 +∆6.

∆4 can be made smaller than ξθ1
/4 by choosing η small enough. By the mean value theorem,

∆5 =
1

n

n∑
i=1

∣∣∣∣ 1

B∗ − Yi
Yi −A∗

B∗ −A∗
(B −B1) +

1

Yi −A∗
B∗ − Yi
B∗ −A∗

(A−A1)

∣∣∣∣
≤

1

n

n∑
i=1

{
B0 −A1 + η

B0 −A0

|B −B1|
B0 − Yi

+
B1 −A0 + η

B0 −A0

|A−A1|
Yi −A0

}
,
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for some A∗ between A0 and A1 and B∗ between B0 and B1. So E(∆5) can be make arbitrarily
small by choosing small enough η, which implies

lim
n→∞

Pr

(
∆5 <

ξθ1

4

)
= 1

for small enough η.

∆6 ≤
1

n

n∑
i=1

∣∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ2
−

{
log
(
B1−Yi
Yi−A1

)
− xT

i β1

}2

σ2

∣∣∣∣∣∣∣
+

1

n

n∑
i=1

{
log

(
B1 − Yi
Yi −A1

)
− xT

i β1

}2 ∣∣∣∣ 1

σ2
−

1

σ2
1

∣∣∣∣
≤

1

n

n∑
i=1

∣∣∣∣∣∣
log
(
B−Yi
Yi−A

)
− xT

i β + log(B1−Yi
Yi−A1

)− xT
i β1

σ2

∣∣∣∣∣∣
×
{
|A−A0|
A0 − Yi

+
|B −B0|
B0 − Yi

+ |xT
i β − xT

i β1|
}

+
1

n

n∑
i=1

{
log

(
B1 − Yi
Yi −A1

)
− xT

i β1

}2 ∣∣∣∣ 1

σ2
−

1

σ2
1

∣∣∣∣ .
So, for small enough η, we obtain

lim
n→∞

Pr

(
∆6 <

ξθ1

4

)
= 1.

Combining results for ∆4, ∆5 and ∆6,

lim
n→∞

Pr

{
sup

|θ−θ1|<η
`n(θ)− `n(θ0) < −

ξθ1

4

}
= 1.

For any compact set K, Sδ ∩K can be covered by a finite number of neighborhoods of points
in Sδ, so it follows that

lim
n→∞

Pr

{
sup
Sδ∩K

`n(θ)− `n(θ0) < −ξm

}
= 1.

Proof (of Theorem 2, part 2) First, if A0 and B0 are known, model (1) can be transformed
to a linear model with normal random error with unknown mean and variance. It follows that

lim
n→∞

Pr

{
sup

‖β−β0‖>δ |σ−σ0|>δ
`n(β, σ, A0, B0)− `n(θ0) < −ξ

}
= 1. (14)

For β1, σ1, η and (β, σ, A,B) ∈ T such that (β1, σ1, A,B) ∈ T , ‖β − β1‖ < η, |σ − σ1| < η
and δ < η,

|`n(β, σ, A,B)− `n(β1, σ1, A0, B0)|
≤| log σ − log σ1|+ | log(B −A)− log(B0 −A0)|

+
1

n

n∑
i=1

| log(B − Yi)− log(B0 − Yi)|+
1

n

n∑
i=1

|log(Yi −A)− log(Yi −A0)|

+
1

2n

n∑
i=1

∣∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ2
−

{
log
(
B0−Yi
Yi−A0

)
− xT

i β1

}2

σ2
1

∣∣∣∣∣∣∣
=∆7 +∆8 +∆9 +∆10 +∆11.

(15)
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The terms ∆7 and ∆8 can be made smaller than ξ/8 by choosing η small enough. By the mean
value theorem,

∆9 =
1

n

n∑
i=1

∣∣∣∣ B −B0

B∗ − Yi

∣∣∣∣ ≤ |B −B0|
n

n∑
i=1

1

min(B,B0)− Yi

with probability tending to 1. If B ≥ B0,

n−1
n∑
i=1

1

|min(B,B0)− Yi|
≤ n−1

n∑
i=1

1

(B0 − Yi)
,

and the right hand side of the upper inequality goes to the limit of

1 + n−1
∑n
i=1 e

−xT
i β+σ2/2

(B0 −A0)

in probability. If B0 − δn < B < B0, Lemma 3 provides that there exists some constant M∗

such that

lim
n→∞

Pr

(
1

n

n∑
i=1

1

|B − Yi|
< M∗

)
= 1

for small enough η. This implies that for small enough η,

lim
n→∞

Pr

(
∆9 <

ξ

8

)
= 1. (16)

The same result can be found for ∆10 using similar arguments.

∆11 ≤
1

2n

n∑
i=1

∣∣∣∣∣∣∣
{

log
(
B−Yi
Yi−A

)
− xT

i β
}2

σ2
−

{
log
(
B0−Yi
Yi−A0

)
− xT

i β1

}2

σ2

∣∣∣∣∣∣∣
+

1

2n

n∑
i=1

{
log

(
B0 − Yi
Yi −A0

)
− xT

i β1

}2 ∣∣∣∣ 1

σ2
−

1

σ2
1

∣∣∣∣
≤

1

2n

n∑
i=1

∣∣∣∣∣∣
log
(
B−Yi
Yi−A

)
− xT

i β + log
(
B0−Yi
Yi−A0

)
− xT

i β1

σ2

∣∣∣∣∣∣× |xT
i β − xT

i β1|

+
1

2n

n∑
i=1

{
log

(
B0 − Yi
Yi −A0

)
− xT

i β1

}2 ∣∣∣∣ 1

σ2
−

1

σ2
1

∣∣∣∣ .
So we obtain, for small enough η,

lim
n→∞

Pr

(
∆11 <

ξ

8

)
= 1. (17)

Combining (14), (15), (16) and (17), we have

lim
n→∞

Pr

{
sup `n(a, b, σ,A,B)− `n(θ0) < −

3ξ

8

}
= 1,

where the supermum is taken over all θ satisfying (β1, σ1, A,B) ∈ T , ‖β − β1‖ < η and
|σ−σ1| < η for fixed β1 and σ1. This result can be extended directly to any finite set of values
of β1 and σ1, and then to any compact sets of values of β1 and σ1.

Proof (of Theorem 3) By Taylor expansion,

0 =
∂`n(θ̂n)

∂θ
=
∂`n (θ0)

∂θ
+
∂2`n(θ̂

∗
)

∂θ∂θT
(θ̂n − θ0),
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where θ̂
∗

is between θ0 and θ̂n. From Lemma 4, n−1∂2`n(θ̂
∗
)/(∂θ∂θT)→ −I(θ0) in proba-

bility. So

n1/2(θ̂n − θ0) = {I(θ0)}−1 n−1/2 ∂`n (θ0)

∂θ
+ oP (1). (18)

Note n−1/2∂`n (θ0)/∂θ = n−1/2
∑n
i=1 ∂`(θ0,xi, Yi)/∂θ is summation of independent random

vectors and its variance converges to I(θ0). Also we have for t > 0,

1

n

n∑
i=1

E

[∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥2 I{∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥ > n1/2ε

}]

≤
1

n

1

(n1/2ε)t

n∑
i=1

E

[∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥2+t I{∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥ > n1/2ε

}]

≤
1

n

1

(n1/2ε)t

n∑
i=1

E

[∥∥∥∥∂`(θ0,xi, Yi)

∂θ

∥∥∥∥2+t
]
→ 0 as n→∞.

By the multivariate central limit theorem (cf. Rao, 1973; Serfling, 1980),

n−1/2 ∂`n (θ0)

∂θ
→ N{0, I(θ0)} (19)

in distribution. Combining (18), (19) and applying Slutsky’s theorem, the result follows.
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Table 1 Relative mean square errors for the one sample case when µ and σ are known.

Parameter θ0 = (1, 0.5, 0, 10) θ0 = (−1, 0.5, 0, 5)
Adjusted Naive Adjusted Naive

n = 50 A 7.12 20.65 3.82 36.41
B 3.62 35.03 6.64 19.29

n = 100 A 9.85 33.20 5.43 64.44
B 5.13 62.55 9.15 31.13

n = 400 A 19.44 88.55 11.06 199.12
B 10.69 191.09 17.94 81.85

In this table, Adjusted is the bias adjusted estimator relative to the local maximum likelihood
estimator; Naive is the naive estimator relative to the local maximum likelihood estimator.

Table 2 Relative mean square errors for the one sample case when µ and σ are unknown.

Parameter θ0 = (1, 0.5, 0, 10) θ0 = (−1, 0.5, 0, 5)
Adjusted Naive Adjusted Naive

n = 50 NS= 6 NS= 3
µ 1.22 1.38 1.30 1.45
σ 1.63 2.21 1.67 2.26
A 1.37 1.93 1.47 1.84
B 1.38 1.75 1.27 1.81

n = 100 NS= 2 NS= 0
µ 1.47 1.73 1.66 1.92
σ 2.68 4.30 2.91 4.67
A 1.81 2.63 1.90 2.43
B 1.66 2.15 1.77 2.60

n = 400 NS= 0 NS= 0
µ 2.01 2.62 2.66 3.46
σ 4.08 8.53 6.01 12.57
A 2.72 4.53 3.10 4.38
B 2.14 3.05 3.42 5.73

In this table, Adjusted is the bias adjusted estimator relative to the local maximum
likelihood estimator; Naive is the naive estimator relative to the local maximum likelihood
estimator; NS is the number of cases out of 1000 iterations that consistent solutions to the

likelihood equation are not found.
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Table 3 Biases (×103), standard errors (×103), estimates of standard errors (×103) and
coverage probabilities (×102) for the regression model.

θ0 = (5,−1, 0.5, 0, 10)
a b σ A B

n = 50 Bias 234 40 53 42 15
SE 270 46 65 53 19
SEE 248 42 61 42 16
CP 90.3 90.2 92.5 84.2 84.3

n = 100 Bias 142 24 35 25 9
SE 170 29 44 31 11
SEE 170 29 43 29 11
CP 93.8 93.6 93.3 89.2 89.6

n = 400 Bias 67 11 17 12 4
SE 83 14 22 14 5
SEE 82 14 21 14 5
CP 94.5 95 94.5 93.3 94.4

In this table, SE is standard errors; ŜE is estimates of standard errors; CP is coverage
probabilities.
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Fig. 2 Box plots of maximum likelihood estimates for model (3); the dashed reference line is
the true of the parameter.
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Fig. 3 Anti-F IgG ELISA based assay data
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Fig. 4 Linearized dose-response data from a bioassay qualification study (The data points
marked with the “−” sign are observations that were removed from the reference set)
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Table 4 Anti-F IgG ELISA based assay data: Absorbance readings at OD450-630 nm at
different concentrations.

Plate # Concentrations (EU)
86.6600 28.8870 9.6290 3.2100 1.0700 0.3570 0.1190 0.0400

1 { 3.9498 3.9178 3.7808 2.6208 1.4098 0.6134 0.2355 0.0868
3.9432 3.9089 3.7777 2.6401 1.2864 0.6428 0.2290 0.0890

2 { 3.9434 3.9446 3.7718 2.8291 1.5930 0.6122 0.2167 0.0693
3.9388 3.9449 3.6962 2.7780 1.5519 0.5964 0.2152 0.0642

3 { 3.9445 3.9479 3.8967 3.1427 1.6654 0.7894 0.2966 0.1152
3.9396 3.9506 3.8935 2.9896 1.7527 0.7792 0.2700 0.1120

4 { 3.9434 3.9354 3.8076 2.8573 1.6144 0.7380 0.2949 0.1116
3.9423 3.9472 3.7921 2.7797 1.3637 0.6991 0.2768 0.1113

5 { 3.9445 3.9533 3.8347 2.9934 1.2432 0.5697 0.2075 0.0928
3.9499 3.9533 3.7819 2.5160 1.3078 0.6097 0.2565 0.1192

6 { 3.9398 3.9383 3.9105 3.2344 1.7645 0.7713 0.2896 0.1185
3.9373 3.9452 3.8991 3.1122 1.7533 0.7623 0.2992 0.1277

7 { 3.9455 3.9470 3.9224 3.1622 1.7718 0.7677 0.2715 0.1159
3.9513 3.9510 3.8956 3.2977 1.7734 0.7479 0.2895 0.1048

8 { 3.9434 3.9521 3.9419 3.2581 2.0384 0.9671 0.3695 0.1374
3.9489 3.9514 3.9428 3.2305 1.7904 0.9055 0.3459 0.1449

9 { 3.9504 3.9230 3.7490 2.7035 1.6418 0.6990 0.2486 0.1033
3.9499 3.9191 3.6420 2.7721 1.4487 0.7338 0.2720 0.1125

10 { 3.9445 3.9467 3.6925 2.8302 1.4905 0.6952 0.2373 0.0993
3.9433 3.9262 3.7413 2.6530 1.2919 0.5754 0.2308 0.0860

11 { 3.9505 3.9485 3.8821 3.0268 1.6438 0.7672 0.3102 0.1187
3.9461 3.9470 3.8860 2.8729 1.7461 0.7641 0.3297 0.1287

12 { 3.9428 3.9479 3.7934 2.7472 1.5931 0.6437 0.2392 0.0973
3.9412 3.9478 3.7516 2.6484 1.4227 0.6250 0.2392 0.1011

13 { 3.9507 3.9529 3.8987 3.1587 1.6701 0.8375 0.3091 0.1331
3.9482 3.9529 3.8195 3.0025 1.5046 0.7113 0.3197 0.1163

14 { 3.9381 3.9474 3.8828 3.1992 1.9188 0.9271 0.3795 0.1473
3.9378 3.9453 3.8621 3.0693 1.8931 0.9122 0.3862 0.1533

15 { 3.9487 3.9475 3.9197 3.5049 1.9841 0.8774 0.3870 0.1480
3.9500 3.9504 3.9444 3.3941 1.8866 0.9199 0.3846 0.1348

16 { 3.9438 3.9458 3.8895 3.1650 1.8222 0.9471 0.3637 0.1473
3.9390 3.9461 3.9182 3.1691 1.8237 0.8997 0.3816 0.1498

17 { 3.9492 3.9002 3.7236 2.6768 1.5957 0.7657 0.2908 0.1062
3.9476 3.8967 3.7771 2.4807 1.3907 0.6842 0.2472 0.1073

18 { 3.9465 3.9477 3.7658 2.7472 1.6613 0.6813 0.2672 0.0947
3.9474 3.9486 3.7936 2.8124 1.4808 0.7995 0.2952 0.1107

19 { 3.9276 3.9192 3.5302 2.3820 1.2046 0.5128 0.1899 0.0783
3.9458 3.9272 3.6707 2.5309 1.3012 0.5897 0.2613 0.0995

20 { 3.9520 3.9518 3.8276 2.9789 1.7208 0.8234 0.3346 0.1293
3.9457 3.9500 3.8370 2.9050 1.7264 0.7922 0.3064 0.1152

21 { 3.9477 3.9437 3.7822 2.7311 1.4848 0.7137 0.2549 0.1098
3.9467 3.9440 3.7843 2.8297 1.4640 0.6983 0.2570 0.1090

22 { 3.9529 3.9528 3.7861 2.7965 1.5530 0.6820 0.2556 0.0954
3.9528 3.9526 3.8368 2.6643 1.3649 0.6840 0.2783 0.0990
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Table 4 (continued) Anti-F IgG ELISA based assay data: absorbances measured at OD450-
630 nm at different concentrations.

Plate # Concentrations (EU)
86.6600 28.8870 9.6290 3.2100 1.0700 0.3570 0.1190 0.0400

23 { 3.9461 3.9482 3.8405 3.1912 1.9987 0.8885 0.3562 0.1398
3.9464 3.9469 3.8826 3.1616 1.8199 0.8455 0.3449 0.1378

24 { 3.9475 3.9505 3.9535 3.1945 1.9474 0.8780 0.3552 0.1292
3.9491 3.9468 3.8679 3.1380 1.8158 0.8374 0.3624 0.1421

25 { 3.9413 3.9488 3.8746 3.0827 1.6729 0.7299 0.3223 0.1329
3.9447 3.9500 3.8498 2.9775 1.6568 0.7677 0.3476 0.1423

26 { 3.9345 3.9057 3.6507 2.6681 1.4546 0.6705 0.2498 0.0921
3.9475 3.8984 3.6092 2.6873 1.3826 0.6762 0.2395 0.1047

27 { 3.9427 3.9367 3.7872 2.6949 1.4249 0.5884 0.2237 0.0803
3.9459 3.9513 3.7349 2.7381 1.4122 0.7695 0.2756 0.1153

28 { 3.9433 3.9182 3.6337 2.4758 1.3178 0.6008 0.2368 0.1067
3.9455 3.9260 3.6322 2.4784 1.3250 0.6101 0.2560 0.1023

29 { 3.9499 3.9513 3.8665 2.9811 1.6988 0.7713 0.3286 0.1274
3.9490 3.9503 3.8928 2.9663 1.6165 0.8068 0.3339 0.1286

30 { 3.9443 3.9403 3.6609 2.9135 1.4633 0.6113 0.2615 0.1068
3.9472 3.9451 3.5953 2.6724 1.3873 0.5557 0.2433 0.1056

31 { 3.9530 3.9517 3.7453 2.9452 1.4906 0.7973 0.1998 0.1139
3.9527 3.9527 3.7931 3.0859 1.5577 0.6035 0.2407 0.0926

32 { 3.9482 3.9503 3.8863 3.1558 1.6623 0.7236 0.2731 0.0968
3.9489 3.9493 3.8743 3.0259 1.5583 0.7047 0.2817 0.0946

33 { 3.9437 3.9469 3.8255 2.9104 1.5772 0.6540 0.2618 0.1030
3.9420 3.9397 3.7621 2.8048 1.4306 0.6434 0.2569 0.1000

34 { 3.9267 3.9339 3.7424 2.7722 1.6535 0.6739 0.2664 0.1019
3.9321 3.9316 3.7097 2.8640 1.5051 0.7018 0.2844 0.1100

35 { 3.9469 3.9487 3.7412 2.6572 1.3382 0.5416 0.1890 0.0699
3.9451 3.9496 3.6200 2.5546 1.2652 0.5788 0.1951 0.0709

36 { 3.9458 3.8754 3.4593 2.2431 0.8734 0.3389 0.1211 0.0488
3.9490 3.8867 3.5123 2.1245 0.8547 0.3345 0.1451 0.0567

37 { 3.9501 3.9488 3.8125 2.9623 1.7317 0.7581 0.3166 0.1177
3.9471 3.9527 3.7610 2.9454 1.6028 0.7928 0.3081 0.1290

38 { 3.9346 3.9425 3.7578 2.7169 1.6213 0.6545 0.2392 0.0958
3.9499 3.9477 3.7383 2.6758 1.4361 0.6393 0.2544 0.0906

39 { 3.9525 3.9349 3.6950 2.7245 1.2856 0.5398 0.1769 0.0724
3.9524 3.9530 3.8259 2.6267 1.4229 0.6532 0.2311 0.0877

Observations below were removed from the reference set

40 { 3.8676 3.8508 3.7417 2.9959 1.7066 0.8438 0.3455 0.1348
3.8661 3.8228 3.7411 3.0831 1.7275 0.8090 0.3260 0.1276

41 { 3.8659 3.8531 3.7660 3.1472 1.9807 0.9972 0.4113 0.1572
3.8552 3.8715 3.7583 3.2118 1.9869 0.9752 0.4200 0.1553

42 { 3.8284 3.8661 3.7081 3.1984 1.8703 0.8813 0.3482 0.1376
3.8324 3.9077 3.7342 3.1170 1.8644 0.9029 0.3536 0.1412

43 { 3.8553 3.8124 3.7165 3.2861 1.8536 0.8579 0.3730 0.1271
3.8532 3.8323 3.6846 3.0458 1.7864 0.7754 0.3221 0.1105


