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Introduction

Softmax regression, which is also called multi-class logistic regression, measuring the associa-
tion between the multi-level categorical response and the covariates, plays an important role
in many fields. Optimal subsampling is an effective way to reduce the computational burden
for massive datasets. The goals of our work are to

• construct optimal subsampling probabilities under the summation constraint;

• compare optimal subsampling probabilities under the baseline constraint and the sum-
mation constraint;

• derive one kind of optimal subsampling probabilities that are invariant to model con-
straints.

Softmax Regression

Softmax regression is used as a classification model to measure the relationship between the
categorical response with multiple levels and the covariates.

• Consider dataset {xi,yi}Ni=1 where

– {xi}Ni=1 are d dimensional covariates;

– {yi}Ni=1 are K + 1 dimensional multivariate responses with yi,k = 1 if the k-th

category occurs for k ∈ {0, 1, ..., K} and
∑K

k=0 yi,k = 1.

• Given xi, suppose yi follows a softmax regression,

P(yi = ck|xi) = pk(xi,β) =
exp(xT

i βk)∑K
l=0 exp(xT

i βl)
, (1)

where β = (βT
0 ,β

T
1 , ...,β

T
K)T is a Kd dimensional unknown parameter. The mean

response vector is denoted as pi(β) = {p0(xi,β), p1(xi,β), ..., pK(xi,β)}T, that is
E(yi|xi) = pi(β).

• Model (1) is not identifiable and extra model constraint should be imposed. Two model
constraints are discussed,

– baseline constraint: assuming that parameter for the baseline category is 0, i.e.,
β0 = 0 and

– summation constraint: assuming that sum of all parameters is 0, i.e.,
∑K

k=0βk = 0.

• No matter which model constraint is used, the mean response vector keeps the same
value, and the coefficient estimators obtained under these two model constraints preserve
a linear relationship.

• However, these two model constraints lead to different optimal subsampling probabilities
and thus produce different results.

Optimal Subsampling under the Baseline
Constraint

Under the baseline constraint, the optimal subsampling probabilities for softmax regression
was studied in Yao and Wang [2019].

• The unknown parameter under this constraint is a Kd dimensional vector, denoted as

βb = (βb
1

T
, ...,βb

K
T

)T.

• The maximum likelihood estimator (MLE) β̂b
full can be obtained by maximizing the

log-likelihood function

`(β) =
1

N

N∑
i=1

[ K∑
k=0

yi,kx
T
i βk − log

{ K∑
l=0

exp(xT
i βl)

}]
subject to β0 = 0.

• There is no general closed form solution for the MLE of βb. Apply the Newton-Raphson
method.

• The subsample estimator is obtained by Algorithm 1.

Algorithm 1 General Subsampling Algorithm

Sampling: Assign subsampling probabilities {πi}Ni=1 to each data point. Draw n ob-

servations from full dataset with replacement. Denote subsample points as {x∗i , y∗i }ni=1

and the corresponding subsampling probabilities as {π∗i }ni=1.

Estimation: Obtain the subsample estimator β̂b
sub by maximizing

`∗s(β) =
1

n

n∑
i=1

1

Nπ∗i

[
K∑
k=1

y∗i,kβ
b
k

T
x∗i − log

{
1 +

K∑
l=1

exp(βb
l

T
x∗i )

}]
.

• Under mild assumptions, the approximation error β̂b
sub− β̂b

full is asymptotically normal
distributed conditionally on the full data and its asymptotic variance-covariance matrix
(scaled by n) has the form of

VN = M◦
N
−1D◦NM◦

N
−1,

where

M◦
N =

1

N

N∑
i=1

φ◦i (β̂full)⊗ (xix
T
i ),

D◦N =
1

N 2

N∑
i=1

ψ◦i (β̂full)⊗ (xix
T
i )

πi
,

φ◦i (β) = diag{p◦i (β)} − {p◦i (β)}{p◦i (β)}T,

ψ◦i (β) = s◦i (β)s◦i (β)T,

s◦i (β) = y◦i − p◦i (β),

p◦i (β) = {p1(xi,β), p2(xi,β), ..., pK(xi,β)}T and y◦i = {yi,1, yi,2, ..., yi,K}

• Under the A-optimality criterion, the optimal subsampling probabilities are to minimize
tr(VN) and have expression

πb,A
i =

‖M◦
N
−1{s◦i (β̂full)⊗ xi}‖∑N

j=1 ‖M◦
N
−1{s◦j(β̂full)⊗ xj}‖

, i = 1, 2, ..., N.

• We also consider the L-optimality criterion, which is to minimize the trace of the linear
transformation of VN . Here we choose to minimize tr(M◦

NVNM◦
N) = tr(D◦N) and the

expression for optimal subsampling probabilities is

πb,L
i =

‖s◦i (β̂full)‖‖xi‖∑N
j=1 ‖s◦i (β̂full)‖‖xi‖

, i = 1, 2, ..., N.

We can see that πb,L
i uses s◦i (β̂full) who relates to yi,k − pk(xi, β̂full) only for k ∈ {1, ..., K}.

The optimal subsampling probabilities treat the baseline category differently, making the
importance of the observations in the baseline category be either underestimated or overes-
timated. This can be revealed by the following example.

• Simulate a balanced dataset with N = 10000 where

– responses have 10 distinct outcomes,

– covariates are generated from N2(0, I2) and

– true coefficient is (0, 0, 0, ..., 0, 0, 0)T.

• Ideally, uniform subsampling is the best way to sample observations.

• 1000 samples are drawn, and the averaged numbers of sampled observations for all
categories for 1000 replications are recorded.

• Based on πb,L
i , less observations are drawn from 0-th category.
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Fig. 1: Compare the average number of sampled observations for 10 categories.

Optimal Subsampling under the Summation
Constraint

In this section, we derive the optimal subsampling probabilities under the summation con-
straint.

• Under this constraint, the unknown parameter is denoted as βs = (βs
0
T,βs

1
T, ...,βs

K
T)T.

• Models under two constraints are equivalent in that pi(β
b) = pi(β

s) if

βs
0 = − 1

K + 1

K∑
l=1

βb
l and βs

k = βb
k −

1

K + 1

K∑
l=1

βb
l

for k = 1, 2, ..., K. In matrix notation,

βs =

{(
−(K + 1)−11T

K

IK − (K + 1)−1JK

)
⊗ Id

}
βb ≡ Gβb.

• Obtain MLE β̂s
full by premultiplying G to β̂b

full. Similarly, obtain the subsample estima-

tor β̂s
sub by Gβ̂b

sub.

Theorem 1. Under the same assumptions as the Theorem 1 in Yao and Wang [2019],

given the full data DN , when N →∞ and n→∞, β̂s
sub − β̂s

full satisfies
√
n(β̂s

sub − β̂s
full)

a∼ N(0,VG),

where
a∼ means that two quantities have the same asymptotic distribution,

VG = (MN)+DN(MN)+

MN =
1

N

N∑
i=1

φi(β̂full)⊗ (xix
T
i ),

DN =
1

N 2

N∑
i=1

ψi(β̂full)⊗ (xix
T
i )

πi
,

(·)+ represents the Moore-Penrose inverse,

φi(β) = diag{pi(β)} − {pi(β)}{pi(β)}T,

ψi(β) = si(β)si(β)T, and

si(β) = yi − pi(β).

• Under A-optimality criterion, the optimal subsampling probabilities are to minimize
tr(VG) and have the form of

πs,A
i =

‖M−1
N {si(β̂full)⊗ xi}‖∑N

j=1 ‖M
−1
N {sj(β̂full)⊗ xj}‖

, i = 1, 2, ..., N.

• Under L-optimality criterion, the optimal subsampling probabilities are to minimize
tr(DN) and have the form of

πs,L
i =

‖si(β̂full)‖‖xi‖∑N
j=1 ‖si(β̂full)‖‖xi‖

, i = 1, 2, ..., N.

The optimal subsampling probabilities for summation constraint can treat every category
equally. Use the simulated dataset described in last section to illustrate this.

• Based on πs,L
i , the average number of sampled observations for all 10 categories are

roughly equal.
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Fig. 2: Compare the average number of sampled observations for 10 categories.

Model Constraints Independent Optimal
Subsampling Probabilities

Different model constraints lead to different forms of optimal subsampling probabilities when
they are formulated by minimizing asymptotic variance-covariance matrix of the subsample
estimators. In this section, we derive the optimal subsampling probabilities that are invariant
to the model constraints. Because

• mean response vectors stay invariant to the choice of model constraints, and

• prediction accuracy is an important criterion to assess the quality of the subsample,

we consider to obtain the optimal subsampling probabilities by minimizing the mean squared
prediction error

1

N

N∑
i=1

∥∥∥pi(β̂sub)− pi(β̂full)
∥∥∥2

.

Theorem 2. Under the same assumptions as the Theorem 1 of Yao and Wang [2019],
given the full data DN , when N →∞ and n→∞,

n

N

N∑
i=1

∥∥∥pi(β̂sub)− pi(β̂full)
∥∥∥2 a∼ zTV

1/2
N ΩNV

1/2
N z,

where
a∼ means that the two quantities have the same asymptotic distribution, z ∼

N(0, I),

ΩN =
1

N

N∑
i=1

{
BT
i (β̂full)Bi(β̂full)

}
,

Bi(β) =


−p0(xi,β)p1(xi,β) ... −p0(xi,β)pK(xi,β)
p1(xi,β)− p2

1(xi,β) ... −p1(xi,β)pK(xi,β)
... ... ...

−p1(xi,β)pK(xi,β) ... pK(xi,β)− p2
K(xi,β)

⊗ xT
i .

• The asymptotic mean of the mean squared prediction error is

E{zTV
1/2
N ΩNV

1/2
N z|DN} = tr (VNΩN) .

• The optimal subsampling probabilities minimizing the asymptotic mean of the mean
squared prediction error are

πP
i =

‖Ω1/2
N M◦

N
−1{s◦i (β̂full)⊗ xi}‖∑N

i=1 ‖Ω
1/2
N M◦

N
−1{s◦i (β̂full)⊗ xi}‖

.

Practical Implementation

The optimal subsampling probabilities depend on the full data MLE, which is an unknown
quantity. To solve this problem, an adaptive algorithm is used where we take a pilot sample
and use the pilot sample estimator to substitute the full data MLE to approximate the optimal
subsampling probabilities.

Algorithm 2 Two-Stage Adaptive Optimal Subsampling Algorithm

First Stage Sampling: Run Algorithm 1 with sample size n1 and subsampling probabil-

ities {n1π
prop
i }Ni=1 to obtain the pilot sample estimator β̃1. Substitute β̂full with β̃1 when

calculating the optimal subsampling probabilities.

Second stage sampling: Run Algorithm 1 with sample size n2 and approximate optimal

subsampling probabilities to obtain a second stage sample.

Combining: Implement Newton-Raphson method to the combined samples of two stages.

Obtain the final estimator β̃OS.

Real Data Example

• Forest cover type dataset [Dheeru and Karra Taniskidou, 2019]

• Total number of observations : 581012

• Response variable has 7 categories corresponding to 7 forest types:

Spruce/Fir (36.46%), Lodgepole Pine (48.76%),
Ponderosa Pine (6.15%), Cottonwood/Willow (0.427%),
Aspen (1.63%), Douglas-fir (2.99%),
Krummholz (3.53%).

• Use 10 quantitive covariates which are measuring geographical location and lighting
condtions.
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Fig. 3: Compare Empirical mean squared prediction errors among different n2 for cover type dataset when n1 = 5000 for

1000 replicates.

Fig. 3 shows that using πP
i gives us the best prediction accuracy among the three kinds of

optimal subsampling probabilities.
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