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Introduction
In longitudinal studies, we may have many subjects, each with the characteristics measured re-
peatedly over time. For discrete responses, generalized linear models (GLMs) can be applied.
Moreover, if the data is considered to be correlated, GLMMs could be applied. Especially, for
binary longitudinal data, we could use a logistic link in GLMM.

In searching for a optimal design under GLMM with logistic link, the information matrix does
not have a closed form and could be very slow to simulate. PQL method could be used to get
an approximation of the information matrix, thus we study the performance by comparing the
approximation with a numerical simulated exact information matrix and also MQL method.

Under different parameter settings, D- and A-optimal designs are found and the robustness of
those designs are discussed with respect to mis-specified mean or variance-covariance matrix.

Numerical Simulation of the Information Matrix
Consider a GLMM with logistic link:
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where yij is the jth observation of subject i with covariate value xij, i = 1, . . . , n, j = 1, . . . , ni.
Assuming bi i.i.d ∼ Np(β,Σ), the likelihood turns out to be
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where Φ denotes the density of normal distribution.
The information matrix of β, say I(β|X), is
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This summation is over all possible outcomes of yi, up to 2ni. It can take up to 800 seconds
using an i5-8400 CPU for one design, which is too slow, but can serve as a good ruler of our
approximation.

Approximation to the Information Matrix by PQL
Breslow and Clayton (1993) [1] discussed the penalized quasi-likelihood function to estimate β
undel GLMMs. Based on PQL, for sequential design ξi = {xi1, . . . , xiki}, we can approximate
the variance-covariance matrix of β̂ given the true random effects by

cov(β̂|bi) ≈
[

F′i((Vi)
−1 + FiΣF′i)

−1Fi
]−1

,

where Vi = diag(Vi1, . . . , Vi,ki) with Vil being the conditional variance function, which is
exp[f (xil)

′bi]

{1+exp[f (xil)′bi]}2
here for logistic link, and Fi = (f (xi1), . . . , f (xini))

′.

The information matrix for sequence i is then estimated by inverting cov(β̂|bi):
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Suppose we have multiple sequences as ξ = {(ξi, wi), i = 1, . . . , ns}, then the information matrix
of ξ can be expressed as

MPQL(ξ|β,Σ) =

ns∑
i=1

wiM
PQL
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The expectation in (1) can be obtained by a representative sample of bi from the normal distri-
bution N(β,Σ), like a large enough random sample or other representative sets. We suggest using
support points by Mak and Joseph (2018) [2] here.

Set bi = 0, PQL approximation degenerates to MQL approximation, which is also mentioned in
Breslow and Clayton (1993) [1], and can also be considered as an option.

Comparison

We then compare different approximations numerically under a 2-parameter logistic GLMM to
ensure that we use a good proxy for the exact information matrix. β’s are set to be (1,−1)′,
(3.5,−1)′, and (6,−1)′, and variance structures are selected as (σ1, σ2) = (1.7145, 1.05), (6, .3)
and (.3, 6), with ρ = .5. Only β = (1,−1)′ is shown here.

Figure 1: Comparing PQL, MQL and adjusted MQL approximations to the exact information matrix for
β = (1,−1)′, exact information is evaluated on both numerical integration and random sample, and both random
sample and support points are used in calculating (1)

• PQL indeed provides good enough approximation in keeping the order of the designs

• Support points can provide almost same results with a much smaller sample size than random
sample (1000 v.s. 50, not shown in figure)

Optimal designs

Particle Swarm Optimization (PSO) is then applied to find locally A- and D-optimal designs for
the mixed-effects logistic model, and we show one of the A-optimal results here. r, along the
vertical axis, is a value multiplied with the variance matrix Σ to control the variation.

Figure 2: A-optimal designs with n = 2 observations per subject. The covariance type is shown in the top bar and
the choice for β in the righthand bar. The value of r for the covariance matrix Σ is along the vertical axis, and the
design region [1, 6] is shown along the horizontal axis.

• Two-sequence designs could be optimal

Robustness Study

Mis-specified Covariance Matrix

Figure 3: Robustness study: Efficiencies of D-optimal Designs, n = 5. The covariance type is shown in the top
bar and the choice for β in the righthand bar. Value of rm is along the horizontal axis, which corresponds to the
true covariance matrix, and values of rl are represented by the five different lines, each corresponds to the optimal
design under such rl. The efficiencies of these designs are shown along the vertical axis.
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