# G-optimal retrospective grid designs

Subhadra Dasgupta<sup>1</sup>\*, Siuli Mukhopadhyay<sup>2</sup> and Jonathan Keith<sup>3</sup> <sup>1</sup>IITB-Monash Research Academy, India <sup>2</sup>Indian Institute of Technology Bombay, India <sup>3</sup>Monash University, Australia \*subhadra.dasgupta@monash.edu

## Objective

Find the best possible retrospective designs for kriging models over two-dimensional grids under both frequentist and Bayesian paradigms.

## Kriging model

| $Z(x,y) \text{ sampled at } \mathcal{S} = \{x_1,\ldots,x_n\} \times \{y_1,\ldots,y_m\} \subseteq [0,1] \times [0,1] = \mathcal{D}.$                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_i < x_{i'}$ and $y_j < y_{j'}$ whenever $i < i'$ and $j < j'$ .                                                                                       |
| $Z(x,y) = \mathbf{f}^T(x,y)\mathbf{\pi} + \epsilon(x,y) \text{ and}$ $Cov(\epsilon(x,y),\epsilon(x',y')) = \sigma^2 e^{-\alpha x-x' } e^{-\beta y-y' }.$ |
| $oldsymbol{\Theta} = (\sigma^2, lpha, eta)$                                                                                                              |

## **Retrospective designs - Simultaneous deletion of existing points**

- Algorithm 3 reduces the size of the choice set for finding the best possible design from '9009' to '3'
- Best possible retrospective design  $\xi_{a3}^-$  is the most evenly spaced design among the choice set



Figure 1: Comparison of design  $\boldsymbol{\xi}$  Vs  $\boldsymbol{\xi}_{a3}^{-}$  (left);  $\boldsymbol{\xi}_{eq_{7\times3}}^{-}$  Vs  $\boldsymbol{\xi}_{a3}^{-}$  (middle);  $\boldsymbol{\xi}_{eq_{7\times3}}^{-}$  Vs  $\boldsymbol{\xi}_{a3-worst}^{-}$  (right). 'o' -  $\boldsymbol{\xi}$ : Original design grid of size  $17 \times 5$ . '×' -  $\boldsymbol{\xi}_{a3}^-$ : Best possible retrospective design of size  $7 \times 3$ .  $(\Delta) - \boldsymbol{\xi}_{eq_7 \times 3}^-$ : An equispaced grid of size  $7 \times 3$ .  $(\Box) - \boldsymbol{\xi}_{a3-worst}^-$ : Worst possible retrospective design of size  $7 \times 3$ .

**Table 1:** Efficiencies of  $\xi_{a3}^-$  and  $\xi_{a3-worst}^-$  with respect to  $\xi$  and  $\xi_{eq_{7\times3}}^-$ .

|            |                                                              |                                                             |                                                                                  | -1 // 9                                                                                |
|------------|--------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| (lpha,eta) | $eff(\boldsymbol{\xi}_{a3-worst}^{-}:\boldsymbol{\xi})^{**}$ | $eff(\boldsymbol{\xi}_{a3}^{-}:\boldsymbol{\xi})^{\dagger}$ | $eff(\boldsymbol{\xi}_{a3-worst}^{-}:\boldsymbol{\xi}_{eq_{7\times3}}^{-})^{**}$ | $eff(\boldsymbol{\xi}_{a3}^{-}:\boldsymbol{\xi}_{eq_{7\times3}}^{-})^{\dagger\dagger}$ |
| (.5, .7)   | 0.4973                                                       | 0.9415                                                      | 0.5116                                                                           | 0.9687                                                                                 |
| $(1,\ 5)$  | 0.8133                                                       | 0.9884                                                      | 0.8168                                                                           | 0.9927                                                                                 |
| (10,  15)  | 0.9335                                                       | 0.9757                                                      | 0.9559                                                                           | 0.9991                                                                                 |

Efficiency of the new design is quite closer to the initial design. Best possible retrospective design is close to the G-optimal prospective design. \*\* Removing points without analyzing could lead to a considerable loss of efficiency. For the worst possible choice of removal of points, the efficiencies are reduced considerably.

### **Design Setup and criteria**

Design

Set S, equivalently  $\boldsymbol{\xi} = (\boldsymbol{d}, \boldsymbol{\delta})$ .  $\boldsymbol{d} = (d_1, \ldots, d_{n-1})$  and  $\boldsymbol{\delta} = (\delta_1, \ldots, \delta_{m-1})$  where,  $d_i = x_{i+1} - x_i$  and  $\delta_j = y_{j+1} - y_j$ .

Design Criteria

Minimize the objective functions based on the mean squared prediction  $\operatorname{error}(MSPE)$ :

 $SMSPE(\boldsymbol{\xi}, \boldsymbol{\Theta}) = \sup MSPE((x_0, y_0), \boldsymbol{\xi}, \boldsymbol{\Theta}).$  $(x_0,y_0){\in}\mathcal{D}$  $\mathcal{R}(\boldsymbol{\xi}) = E_{\boldsymbol{\Theta}}[SMSPE(\boldsymbol{\xi}, \boldsymbol{\Theta})].$ 

#### **Evenness of Designs**

 $\pmb{\xi}$  is more evenly spread than design  $\pmb{\xi}'\equiv(\pmb{d}',\pmb{\delta}')$  if  $d \prec d'$  and  $\delta \prec \delta'$ , where ' $\prec$ ' is majorization.













An Indian-Australian research partnership

#### **Important definitions**

- **Prospective design** The new design is developed before the experiment is conducted • **Retrospective design**- The new design is constructed by adding points to or deleting points from an already existing design
- Efficiency of design  $\xi_1$  with respect to  $\xi_2$   $eff(\xi_1 : \xi_2) = SMSPE(\xi_2)/SMSPE(\xi_1)$ . Higher the efficiency, better the design  $\boldsymbol{\xi}_1$ .

#### **Our contribution**

- A criterion to compare the evenness of two-dimensional grid designs • Algorithm 1 - Deterministic algorithm to find the best possible retrospective design (with respect to SMSPE criterion) by sequentially adding points to an existing design • Algorithm 2 - Deterministic algorithm to find the best possible retrospective design by simultaneously adding all points to an existing design
- Algorithm 3 Deterministic algorithm to find the best possible retrospective design by simultaneously deleting the required number of points from an existing design

## **Prospective design result**

**Theorem 1.** For ordinary kriging models with separable exponential structures, an equispaced grid in both coordinates is the prospective design G-optimal design under both frequentist and Bayesian paradigm.

## **Retrospective designs - Simultaneous addition of new points**

• Algorithm 2 reduces the size of choice set for selecting best possible design from 'infinity' to '100' • The best possible retrospective design  $\boldsymbol{\xi}_{a2}^+$  is the most evenly spaced



**Figure 2:** Comparison of design  $\boldsymbol{\xi}$  Vs  $\boldsymbol{\xi}_{a2}^+$  (left) 'o' -  $\boldsymbol{\xi}$ : Original design grid ofsize  $4 \times 5$ . ' $\times$ ' -  $\boldsymbol{\xi}_{a2}^+$ : Best possible retrospective design of size  $7 \times 7$ . ' $\triangle$ ' -  $\boldsymbol{\xi}_{eq_{7\times7}}^+$ : An equispaced grid of size 7 × 7.

#### References

[1] Peter Diggle and Søren Lophaven. Bayesian geostatistical design. Scandinavian Journal of Statistics, 33:53-64, 2006.

[2] Sándor Baran, Kinga Sikolya, and Milan Stehlík. Optimal designs for the methane flux in troposphere. Chemometrics and Intelligent Laboratory Systems, 146:407-417, 2015.





| ; $\boldsymbol{\xi}_{eq_{7\times7}}^+$ Vs $\boldsymbol{\xi}_{a2}^+$ (right). |     |           |                 |          |     |                   |     |                                                    |  |
|------------------------------------------------------------------------------|-----|-----------|-----------------|----------|-----|-------------------|-----|----------------------------------------------------|--|
| 0.2                                                                          | 0.3 | 0.4<br>x- | 0.5<br>covariat | 0.6<br>e | 0.7 | 0.8               | 0.9 | 1                                                  |  |
|                                                                              | _   |           |                 |          |     |                   |     |                                                    |  |
| ×                                                                            | Δ   | ×         | Δ               | ×        | Δ   | ×                 | ×   | ×                                                  |  |
| $\sim$                                                                       | Δ   | ×         | Δ               | ×        | Δ   | $\times^{\Delta}$ | ×   | $\stackrel{{\scriptstyle \bigtriangleup}}{\times}$ |  |
| ×                                                                            |     | ×         |                 | ×        |     | ×                 | ×   | ×                                                  |  |
| 2                                                                            | Δ   |           | Δ               |          | Δ   | Δ                 |     | $\bigtriangleup$                                   |  |
| ×                                                                            |     | ×         |                 | $\times$ |     | ×                 | ×   | ×                                                  |  |
| ~                                                                            | ^   |           | Λ               |          | ^   | ^                 |     | ^                                                  |  |
| ^×                                                                           | Δ   | ×         | Δ               | ×        | Δ   | ×                 | ×   | $\stackrel{\bigtriangleup}{\times}$                |  |
| 2 ×                                                                          | Δ   | ×         | Δ               | ×        | Δ   | $\times \Delta$   | ×   | ≍                                                  |  |