

ROBUST DESIGNS FOR TOXICOLOGICAL TEST Pozuelo Campos, S.; Casero-Alonso, V. and Amo-Salas, M. Department of Mathematics. University of Castilla-La Mancha. Ciudad Real. Spain

Abstract

Toxicological tests are widely used to study toxicity in aquatic environments. Reproduction is a possible endpoint of this type of experiment, whose response variable is given by counts. There is literature about the suitable probability distribution to be used for analyzing these data. In the theory of optimal experimental design, the assumption of this probability distribution is essential, and when this assumption is not adequate, there may be a loss of efficiency in the design obtained. The main objective of this study is to propose robust designs when there is uncertainty about the probability distribution of the response variable. We introduce and compare three different strategies for attaining this goal and they are applied to *Ceriodaphnia Dubia* and *Lemna Minor* tests. In addition, a simulation study is performed to test the estimation properties of the robust designs obtained.

1. Optimal experimental design

Model

$$y=\eta(x;\theta)+\epsilon,\ x\in\mathcal{X}$$

Approximate design of q points

$$\xi = \left\{ \begin{array}{cc} x_1 \ \dots \ x_q \\ \dots & \dots \end{array} \right\} \in \Xi, \quad \sum_{i=1}^q w_i = 1$$

3. Application to toxicological tests

$$\begin{bmatrix} w_1 \dots w_q \end{bmatrix}$$
 $\stackrel{=}{=}$

Likelihood function: exponential family distributions

$$l(y;\tau,\varphi) = \exp\left(\frac{y\tau - b(\tau)}{a(\varphi)} + c(y;\varphi)\right),$$

where τ and φ are the parameters of the probability distribution, and $a(\cdot)$, $b(\cdot)$ and $c(\cdot)$ are known functions.

Elemental information matrix

$$\nu(\eta) = -E\left[\frac{\partial^2 \log l(y;\eta)}{\partial \eta^2}\right]$$

Fisher information matrix (FIM)

$$M(\xi;\theta) = \sum_{i=1}^{q} I(x_i;\theta) w_i,$$

where

$$I(x;\theta) = -E\left[\frac{\partial^2 \log l(y;\eta(x;\theta))}{\partial \theta_j \partial \theta_k}\right] = \nu(\eta(x;\theta))f(x;\theta)f^T(x;\theta)$$
$$\theta = \partial \eta(x;\theta)/\partial \theta.$$

and $f(x; \theta) = \partial \eta(x;$ **D-optimality**

> $\Phi_D(M(\xi;\theta)) = |M^{-1}(\xi;\theta)|^{(1/m)} \quad \text{(criterion)}$ $\xi^* = \arg\min_{\xi\in\Xi} \Phi_D(\xi) \quad (D\text{-optimal design})$

D-efficiency

$$\operatorname{eff}(\xi|\xi^*) = \left(\frac{|M(\xi;\theta)|}{|M(\xi^*;\theta)|}\right)^{1/m}$$

Lemna Minor

Ceriodaphnia Dubia

$$\eta(x;\theta) = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$\eta(x;\theta) = \frac{\theta_0 + \theta_1 x}{1 + e^{-\theta_2} x^{\theta_3}}$$

Poisson vs homoscedastic normal

Poisson vs heteroscedastic normal

	Model	Test	True dist.	$\operatorname{eff}(\xi_{\mathcal{N}})$	$\operatorname{eff}(\xi_{\mathcal{P}})$	$\operatorname{eff}(\xi_C)$	I. CC	II. MSD	III.MOAA
	Quad	Lem.	N. Homo.	1	0.580	0.763	0.885	-	0.882
			Poisson	0.316	1	0.276		-	0.878
_	Log	Cer.	N. Hetero.	1	0.536	0.644	0.874	0.971	0.861
			Poisson	0.035	1	0.023		0.957	0.862

Table 1. Efficiencies of the designs assuming normal distribution (homoscedastic or heteroscedastic) ξ_N , Poisson ξ_P , and the conventional designs ξ_C (described in the protocols), with respect to the optimal for each scenario. The last three columns show the efficiencies, for each scenario, of the strategies described in the work. Best values are in **bold**.

4. Simulation study

 θ_0

Linear quadratic model $\theta_0 \qquad \theta_1 \qquad \theta_2$

Linear logistic model $\theta_1 \qquad \theta_2$

 θ_3

2. Strategies to obtain robust designs

I. Compound criterion

 $\Phi_C(\xi;\lambda) = \lambda \log \Phi_D(M_A(\xi;\theta)) + (1-\lambda) \log \Phi_D(M_B(\xi;\theta)), \quad \lambda \in [0,1],$ where M_A and M_B are respectively the FIM's of each probability distribution considered.

 $\xi_{\lambda}^* = \arg \max_{\xi \in \Xi} \Phi_C(\xi; \lambda).$

The aim is to determine the value of λ whose ξ_{λ}^* satisfies $\operatorname{eff}_A(\xi_{\lambda}^*|\xi_A^*) = \operatorname{eff}_B(\xi_{\lambda}^*|\xi_B^*)$.

II. Multistage designs

Bias	I. CC	0.0564	-0.1105	0.1100	0.0017	0.1420	-0.1675	0.2357
	II. MSD	_	-	-	0.0349	0.0710	-0.6754	0.9468
	III. MOAA	0.0220	-0.0229	0.0531	0.0201	0.0433	-0.1250	0.1772
	$\xi_{\mathcal{N}}$	0.0514	0.0830	0.0139	0.0931	-0.2159	-0.0642	0.1371
	ξ_C	0.0999	0.0585	0.0622	0.0040	0.2668	-0.1122	0.1593
	$\xi_{\mathcal{P}}$	0.0343	-0.0449	0.0528	0.0346	0.0376	-0.1169	0.1610
MSE	I. CC	2.5994	16.8003	8.5340	1.5806	26.7912	3.2674	6.6377
	II. MSD	_	-	-	1.4445	24.1075	74.9387	149.4130
	III. MOAA	2.7391	17.4507	8.7216	1.6828	27.9434	3.1227	6.3107
	$\xi_{\mathcal{N}}$	3.5566	42.5683	25.1961	17.3698	97.7235	5.3251	1.2492
	ξ_C	2.8420	34.1900	20.6127	1.3048	66.8872	7.3087	15.1987
	$\xi_{\mathcal{P}}$	2.6753	14.4189	6.7637	1.5424	25.2558	2.0853	4.3009
CV	I. CC	0.0102	0.0119	0.0150	0.0512	0.1340	0.0857	0.0899
	II. MSD	-	-	-	0.0489	0.1274	0.4011	0.4167
	III. MOAA	0.0110	0.0122	0.0151	0.0553	0.1373	0.0841	0.0880
	$\xi_{\mathcal{N}}$	0.0125	0.0190	0.0257	0.1691	0.2585	0.1103	0.0390
	ξ_C	0.0111	0.0170	0.0233	0.0465	0.2112	0.1290	0.1370
	$\xi_{\mathcal{P}}$	0.0108	0.0111	0.0133	0.0505	0.1305	0.0687	0.0726

Table 2. Bias, mean square error and coefficient of variation of the estimators of the parameters of the models considered. The simulation study was done by performing 10 000 repetitions of simulated experiments with 60 observations each using the designs calculated in this work and the conventional designs, *assuming that the Poisson distribution is the true one*. Best values are in **bold**.

III. Multiple Objective Annealing Algorithm

Conclusions

The strategies proposed are robust in terms of efficiency when misspecification in the probability distribution of the response occurs. In general the three strategies present similar values of bias, MSE and CV in almost all cases, comparing to the obtained with the reference design $\xi_{\mathcal{P}}$.

1. Atkinson, A. C., Fedorov, V. V., Herzberg, A. M., and Zang, R. (2014). Elemental information matrices and optimal experimental design for generalized regression models. *Journal of Statistical Planning and Inference*, 144:81–91.

2. Lehmann, R., Bachmann, J., Maletzki, D., Polleichtner, C., Ratte, H. T., and Ratte, M. (2016). A new approach to overcome shortcomings with multiple testing of reproduction data in ecotoxicology. *Stochastic Environmental Research and Risk Assessment*, 30:871–882.

3. Lewis, P., Klemm, D., Lazorchak, J., Norberg-King, T., and Peltier, W. (2002). Short-term methods for estimating the chronic toxicity of effluents and receiving water to freshwater organisms. Fourth edition.

Support: This work was supported by Ministerio de Economía y Competitividad and fondos FEDER [grant number MTM2016-80539-C2-1-R] and by Junta de Comunidades de Castilla-La Mancha [grant number SBPLY/17/180501/000380]