Summary

- D-optimum design for mixed ordinal regression
- Fisher information
- No closed form integral of the marginal likelihood
- Quasi Fisher information related to quasi-likelihood
- Two approximations for the quasi Fisher information
- D-optimum design for the new approximations

Model Specification

- M ordered categories
- $\boldsymbol{Y}_{i j k}=\left(Y_{i j k}^{(1)}, Y_{i j k}^{(2)}, \ldots, Y_{i j k}^{(M)}\right)^{\top}$
- N units; $i=1, \ldots, N$
- t experimental settings per unit; $j=1, \ldots, t$
- $n_{i j}$ replication within each experimental setting; $k=$ $1, \ldots, n_{i j}$
- Latent utility $U_{i j k}: U_{i j k}=f\left(\boldsymbol{x}_{i j}\right)^{\top} \boldsymbol{\beta}+h\left(\boldsymbol{x}_{i j}\right)^{\top} \boldsymbol{\zeta}_{i}+\epsilon_{i j k}$
- $\boldsymbol{\beta}$ fixed effect, $\boldsymbol{\zeta}_{i}$ individual random effect
- $Y_{i j k}^{(m)}=1$ if $\gamma_{m-1} \leq U_{i j k}<\gamma_{m}$, otherwise $Y_{i j k}^{(m)}=0$
-Thresholds γ_{m} : $-\infty=\gamma_{0}<\ldots<\gamma_{m-1}<\gamma_{m}<\ldots<$ $\gamma_{M}=\infty$
- $x_{i j}$ is the explanatory variable
- $\delta_{j}^{(m)}\left(\boldsymbol{\zeta}_{i}\right)=\gamma_{m}-\left(f\left(\boldsymbol{x}_{i j}\right)^{\top} \boldsymbol{\beta}+h\left(\boldsymbol{x}_{i j}\right)^{\top} \boldsymbol{\zeta}_{i}\right)$
- $P\left(Y_{i j k}^{(m)}=1 \mid \boldsymbol{\zeta}_{i}\right):=p_{i j}^{(m)}\left(\boldsymbol{\zeta}_{i}\right)$
- $p_{i j}^{(m)}\left(\boldsymbol{\zeta}_{i}\right)=\Phi\left(\delta_{j}^{(m)}\left(\boldsymbol{\zeta}_{i}\right)\right)-\Phi\left(\delta_{j}^{(m-1)}\left(\boldsymbol{\zeta}_{i}\right)\right)$
- $\boldsymbol{\zeta}_{i} \sim N_{q}\left(\mathbf{0}_{q}, \boldsymbol{\Sigma}\right)$

Yatskiv and Kolmakova (2011) investigated the effects of the seven groups of quality particular attributes on the estimates of the overall quality of service of buses and coaches, ranging from 1-5.
Quasi information for approximate design
$1 . \xi=\binom{\boldsymbol{x}_{1} \ldots \boldsymbol{x}_{t}}{w_{1} \ldots w_{t}} ; \sum_{j=1}^{t} w_{j}=1 ; w_{j}=\frac{n_{j}}{n} ; w_{j} \in[0,1]$.
2. The general formula for the quasi Fisher information matrix is denoted as:

$$
\begin{equation*}
M^{Q}(\xi, \boldsymbol{\beta})=\mathbf{D}^{T} \mathbf{V}^{-1} \mathbf{D} \tag{1}
\end{equation*}
$$

.D denotes the derivative of the marginal expectation of the response with respect to β
.V describes the marginal response variance and it depends on $\left\{w_{1}, \ldots, w_{t}\right\}$.
For the computation of matrix \mathbf{V} we need to achieve $\mathrm{E}\left(p_{j}^{(m)}(\boldsymbol{\zeta})\right)$ and $\mathrm{E}\left(p_{j}^{(m)}(\boldsymbol{\zeta}) p_{j^{\prime}}^{\left(m^{\prime}\right)}(\boldsymbol{\zeta})\right)$.
. The first element can be obtained directly by integral solution (Zeger et al. 1988) and the second element is obtained based on the two approximations:
5.1. The numerical computation which is based on the Simpson's rule.
5.2. Solving the second order moment of the integral
which is finally obtained as follows:

$$
\begin{aligned}
& \mathrm{E}\left(p_{j}^{(m)}\left(\zeta_{i}\right) p_{j^{\prime}}^{\left(m^{\prime}\right)}\left(\zeta_{i}\right)\right)=\int_{-\infty}^{\alpha_{j}^{(m)}} \phi(z) \Phi\left(q_{j^{\prime}}^{\left(m^{\prime}\right)}(z)\right) d z ; \\
& \alpha_{j}^{(m)}=\sigma^{2} h\left(x_{i j}\right) h^{\top}\left(x_{i j}\right)+\left.I_{q}\right|^{-5}\left(\gamma_{m}-f^{\top}\left(x_{i j}\right) \beta\right)
\end{aligned}
$$

6. In order to make the matrix V invertible, we need to reduce one level of the response variable Y.

Example: Binary predictor

Random intercept binary model $f\left(\boldsymbol{x}_{i j}\right)=\left(1, \boldsymbol{x}_{i j}\right)^{T}, \boldsymbol{\zeta}=$ $\zeta_{0}, \boldsymbol{\zeta} \sim N\left(0, \sigma^{2}\right), h=1, M=2, x_{1}=0, x_{2}=1$:

Determinant of the QFIM considering $\beta_{1} \in(-3,3), \beta_{0}=$ $1, \sigma^{2}=1, n=20$ because $n_{1}=n w^{\star}, n_{2}=n\left(1-w_{1}^{\star}\right)$ with $w^{\star}=.5$

D-optimum Design
Locally D-optimum design with specified experimental settings $x_{1}=0, x_{2}=1$:

$$
\xi^{*}=\left(\begin{array}{cc}
0 & 1 \\
w^{*} & 1-w^{*}
\end{array}\right)
$$

D-optimum weight against $\beta_{1} \in(-3,3)$, as $\beta_{0}=1$, $\sigma^{2}=1, n=20$ because $n_{1}=n w^{\star}, n_{2}=n\left(1-w_{1}^{\star}\right)$ with $w^{\star}=.5$

For $n=50$,

$$
\xi^{*(1)}=\left(\begin{array}{cc}
0 & 1 \tag{2}\\
0.52 & 0.48
\end{array}\right), \xi^{*(2)}=\left(\begin{array}{cc}
0 & 1 \\
0.53 & 0.47
\end{array}\right)
$$

With respect to two approximations.
Acknowledgement:
I am grateful to my supervisor, professor Rainer Schwabe for his advice and helps in this work.
The work is supported by a grant of the Landesgraduiertenförderung of the state Saxony-Anhalt

