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Abstract

We investigate the optimal design of experimen-
tal studies that have pre-treatment outcome data
available. The average treatment effect is esti-
mated as the difference between the weighted av-
erage outcomes of the treated and control units.
A number of commonly used approaches fit this
formulation, including the difference-in-means es-
timator and a variety of synthetic-control tech-
niques. We propose several different novel esti-
mators and motivate the choice between them
depending on the underlying assumptions the re-
searcher is willing to make. Observing the NP-
hardness of the problem, we introduce a mixed-
integer programming formulation which selects
both the treatment and control sets and unit
weightings. We prove that these proposed esti-
mators lead to qualitatively different experimen-
tal units being selected for treatment. We use
simulations based on publicly available data from
the US Bureau of Labor Statistics that show im-
provements in terms of the mean squared error
of the estimates when compared to simple and
commonly used alternatives such as randomized
trials.

Motivation

Randomized Controlled Trials (RCT’s) or A/B
tests—as they are commonly called in applied com-
mercial settings—while being the gold standard of
causal inference, are not always feasible or desir-
able for the reasons such as:
• Interference: Treatment status of one unit
may affect the outcome of another and the units
need to be combined into larger clusters.
• Institutional constraints: Treatment can
only be assigned to large geographic areas.
•Costs: Only one or just a few units may be
treated.
•Privacy and/or fairness: Treatment
assignment at the individual level may be
problematic.

Framework

•For N units in T time periods there are two
potential outcomes, (Yit(0), Yit(1)), associated
with an outcome metric of interest, Y :

Yit(0) = µit + εit
Yit(1) = Yit(0) + τi,

where the error terms, εit, are homoskedastic with
mean zero and variance σ2.
•The observed outcome that depends on the
treatment status, Di ∈ {0, 1}, is:

Yit = Yit(1)Di + Yit(0)(1−Di).
•At time T the researcher decides which units
should be treated (Di = 1) in period T + 1.
•Our goal is to estimate the treatment effects
(either individually or on average):

τi = Yi,T+1(1)− Yi,T+1(0).
•Family of estimators of the (weighted) Average
Treatment Effect on the Treated (ATET):

τ̂ =
N∑
i=1
wiYi,T+1Di −

N∑
i=1
wiYi,T+1(1−Di).

Results

•Unemployment rate data from the Bureau of
Labor Statistics: 50 states in 40 months.
•Select 10-by-10 blocks and apply treatment in the
last 3 periods to the units selected either:
•Optimally, using one of our problems, or
•Randomly.
•Heterogeneous treatment effects, τi, with values
from 0 to 0.1 spread linearly across treated units.

Table: Root-mean-square errors of the average and
unit-level effect estimates (lowest values in bold)

Heterogeneous effects
K = 3 K = 7

Average Indiv. Average Indiv.
(i) Two-way 7.1 41.6 7.7 34.4
(ii) One-way 6.6 41.5 7.3 34.3
(iii) Per-unit 8.2 13.1 7.1 14.1
(iv) Synth. control 8.1 13.2 9.8 16.3

(random Di’s)
(v) Diff-in-means 9.3 42.2 10.1 35.3

(random Di’s)

Design & Estimation Approach

Simultaneously choose the units intended for treatment (D) and the weights used for estimation (w).

Optimization Problems

1 Per-unit problem:

min
{Di,{wij}Nj=1}Ni=1
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2 Two-way global problem:

min
{Di,wi}Ni=1
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s.t.
N∑
i=1
Di = K, wi ≥ 0,

N∑
i=1
Diwi = 1,

N∑
i=1

(1−Di)wi = 1

3 One-way global problem: Same as above, but set the weights of the treated units to 1/K.

Inference

Inference is hard to do in synthetic-control-type set-
tings. We use the permutation-based approach from
Chernozhukov, Wüthrich and Zhu (2021) for testing
a sharp H0 : ∀i : τi = 0:
1 Permute the time periods.
2 Re-estimate the treatment effects.
3 Obtain the distribution of the treatment effects
under the null.

4 Compare the original estimate to the quantiles of
the constructed distribution.
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Limitations & Future Work

•Generalization:
•We focus on the ATET and do not say anything about the
ATE on the control units, or the population in general.

•Theory is lacking:
•No theoretical guarantees for the estimators.
•The inference results are only proven to be valid under
fairly trivial conditions (data i.i.d. across time periods).

•Scalability:
•Currently can handle up to about 100 units.
•Approximate algorithms are likely required.
•Applications:
•Please, reach out to us if you think your experiment could
benefit from similar ideas and you would like to
collaborate!
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