NC STATE UNIVERSITY

Nicholas Larsen* Srijan Sengupta Jonathan Stallrich Department of Statistics, North Carolina State University

- Accounts for unobservable features.

HODOR A two-stage Hold-out Design for Online Randomized experiments.

Unbiased, with Minimal Variance

Theorem 1. Under the given framework & using the HODOR design, our estimator has the expected value

and its variance is approximately minimized for $p_0 = 0.19$, $p_{11} = 0.06, p_{21} = 0.75.$

HODOR achieves smallest error, regardless of whether all network information is known.

Conclusions

HODOR yields desirable results when:

- the response.

Unobserved features that are correlated with the response introduce bias to the NetCluster and EgoCluster designs.

Future work will replace the approximate variance expression from **Theorem 1** with an exact expression and derive tools for statistical inference using HODOR.

 $E[\widehat{ATE}] = \gamma + \delta,$

Simulations

The network structure is entirely known. The network structure is at least partially unobserved. There may or may not be hidden features correlated with

References

Saint-Jacques, Guillaume, et al. "Using ego-clusters to measure network effects at 2. Gui, Huan, et al. "Network a/b testing: From sampling to estimation." Proceedings of the 24th

LinkedIn." *arXiv preprint arXiv:1903.08755* (2019).

International Conference on World Wide Web. 2015.