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INTRODUCTION
• This paper proposes a nonuniform subsampling
method for finite mixtures of regression models to
reduce large data computational tasks.
A general estimator based on a subsample is in-
vestigated, and its asymptotic normality is estab-
lished. We assign optimal subsampling probabil-
ities to data points that minimize the asymptotic
mean squared errors of the general estimator and
linearly transformed estimators.
Since the proposed probabilities depend on un-
known parameters, an implementable algorithm
is developed.
We first approximate the optimal subsampling
probabilities using a pilot sample. After that, we
select a subsample using the approximated sub-
sampling probabilities and compute estimates us-
ing the subsample. We present a real data exam-
ple using appliance energy data.

MIXTURE OF GAUSSIAN REGRESSIONS

We review a finite mixture of Gaussian linear re-
gressions. Suppose that y is a response and x is a
d dimensional covariate with the first entry being
one. The conditional density function of y given
x is

f(y|x;θ) =
J∑
j=1

pjfj(y|x;βj , σj), (1)

where J is a given number of components, pj ’s
are the component weights satisfying pj > 0 for

each j and
J∑
j=1

pj = 1, fj(y|x;βj , σj) is the den-

sity of a normal distribution with mean xT
i βj and

variance σ2
j , βj is a d × 1 vector of unknown re-

gression coefficients including an intercept, and
θ = (β1, ...,βJ , σ1, ..., σJ , p1, ..., pJ−1). The max-
imum likelihood estimator (MLE), θ̂, for the un-
known parameter θ is the maximizer of the fol-
lowing log-likelihood,

`(θ) =
n∑
i=1

log

 J∑
j=1

pjfj(yi|xi;βj , σj)

 . (2)

ESTIMATION AND OPTIMAL SUBSAMPLING STRATEGY

Denote the full data as Dn = {(xi, yi) : i =
1, ..., n}. Let {πi}ni=1 be the subsampling prob-
abilities assigned to all observations satisfying∑n
i=1 πi = 1.

Consider a random subsample of size r selected
from the full data Dn based on the subsampling
probabilities.
Then, the subsampling estimator θ̃ can be
obtained by maximizing the target function

`∗(θ) =
∑r
i=1

1

π∗i
log
(∑J

j=1 pjfj(y
∗
i |x∗i ;βj , σj)

)
,

where x∗i ’s, y∗i ’s and π∗i ’s, are covariates, re-
sponses, and subsampling probabilities in the sub-
sample, respectively. The EM algorithm can be ap-
plied to optimize the target function. The details
of the algorithm are presented in Algorithm 1.

Algorithm 1 EM Algorithm for the target function
Estimates can be obtained by maximizing the sampled complete-data

target function, `∗c(θ) =

r∑
i=1

1

π∗
i

J∑
j=1

z
∗
ij log

{
pjfj(y

∗
i |x

∗
i )
}
,

where z∗ij is equal to one if y∗i belongs to the jth component and zero
otherwise.
E-step : Given the current estimate θ(s),

Q(θ|θ(s)) =
r∑
i=1

1

π∗
i

J∑
j=1

τ
∗(s)
ij log pjfj(y

∗
i |x

∗
i ;βj , σj),where

τ
∗(s)
ij = p

(s)
j fj(y

∗
i |x

∗
i ;β

(s)
j , σ

(s)
j )/

J∑
k=1

p
(s)
k fk(y

∗
i |x

∗
i ;β

(s)
k , σ

(s)
k ).

M-step : Updates the estimate θ(s+1). For j = 1, ..., J ,

p̂
(s+1)
j =

(
r∑
i=1

1

π∗
i

)−1 n∑
i=1

τ
∗(s)
ij

π∗
i

,

β̂
(s+1)
j =

 r∑
i=1

τ
∗(s)
ij x∗

i x
∗
i
T

π∗
i

−1
n∑
i=1

τ
∗(s)
ij y∗i x

∗
i

π∗
i

,

σ̂
2(s+1)
j =

 r∑
i=1

τ
∗(s)
ij

π∗
i

−1∑n
i=1

τ
∗(s)
ij (y∗i − x∗

i
Tβ̂

(s)
j )2

π∗
i

.

Repeat until convergence.

ASYMPTOTIC RESULT
Theorem 1 Under some assumptions, as r, n → ∞,
if r/n = o(1),
√
rV−1/2(θ̃ − θt) −→ N(0, I) in distribution,

where V = M−1t VπM
−1
t , Mt =

1

n

∂2`(θt)

∂θ∂θT
, and

Vπ =
n∑
i=1

˙̀
i(θt) ˙̀i(θt)

T

n2πi
.

A-OPTIMAL SUBSAMPLING PROBABILITY

We specify the optimal subsampling probabilities
based on the result in Theorem 1.

Theorem 2 The optimal subsampling probabilities
that minimize tr(V) are

πV
i =

∥∥∥M−1t ˙̀
i(θt)

∥∥∥
n∑
k=1

∥∥∥M−1t ˙̀
i(θt)

∥∥∥ , i = 1, ..., n. (3)

L-OPTIMAL SUBSAMPLING PROBABILITY

We assign the optimal subsampling probabili-
ties by minimizing the trace of Vπ which is
equivalent to minimizing the asymptotic MSE of
Mθ̃. In addition to that, we also focus on the
asymptotic MSE of the coefficient estimator β̃ =

(β̃1, ..., β̃J). Denote β = (β1, ...,βJ), θ−β =

(σ1, ..., σJ , p1, ..., pJ−1), Mt,11 =
1

n

∂2`(θt)

∂β∂βT
,

Mt,12 =
1

n

∂2`(θt)

∂β∂θT
−β

, and Mt,22 =
1

n

∂2`(θt)

∂θ−β∂θ
T
−β

.

Theorem 3 The optimal subsampling probabilities
that minimize tr(Vπ) are
πVπ
i =

∥∥∥ ˙̀i(θt)∥∥∥/∑n
k=1

∥∥∥ ˙̀k(θt)∥∥∥, i = 1, ..., n, and
the optimal subsampling probabilities that minimize
the asymptotic MSE of β̃ are

π
Vβ
i =

∥∥∥(Minv
β ,Minv

θ−β
) ˙̀i(θt)

∥∥∥∑n
k=1

∥∥∥(Minv
β ,Minv

θ−β
) ˙̀k(θt)

∥∥∥ , i = 1, ..., n,

where Minv
β = (Mt,11 −Mt,12M

−1
t,22M

T
t,12)

−1 and
Minv

θ−β
= −Minv

β Mt,12M
−1
t,22,

REAL DATA ANALYSIS
• Appliance energy dataa

• Appliances energy consumption (response),
and three humidities in different areas (covari-
ates: kitchen area (H-Kit), living room area (H-
Liv), and laundry area (H-Lau)).
• Full data size is n = 19, 735
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Figure 1: Histogram of log-transformed appliances en-
ergy consumption (top-left) and scatter plots between
appliances energy consumption and humidity at dif-
ferent areas (top-right, bottom-left, bottom-right).
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Figure 2: MSEs obtained from 1000 subsamples. OPT-
V, OPT-Vπ , and OPT-Vβ use πV

i , πVπ
i , and π

Vβ
i , re-

spectively. UNI uses uniform subsampling probabili-
ties.

aThe data is available at the UCI Machine Learning reposi-
tory https://archive.ics.uci.edu/ml/datasets/Appliances

+energy+prediction
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