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Introduction

Big data bring new challenges to data storage and processing, espe-
cially when computational resources are limited. Researchers have
developed many subsampling methods for various models, such as lin-
ear, logistic and generalized linear models(GLMs) (see Ma et al. (2015),
Wang et al. (2018), Ai et al. (2021)). Most algorithms developed for
GLMs rely on all responses of the full data, which limits the application
scope of subsampling when responeses are difficult to acuqire. To
handle this problem, Zhang et al. (2021) proposed a response-free
optimal sampling shceme. However, they use a reweighted estimator
which assigns smaller weights for more informative data points. Thus,
their approach is not efficient. We introduce an unweighted estimator
to improve the estimating efficiency and investigate the theoretical prop-
ertities of both estimators. Asymptotic nomality is established using
martingale techniques without conditioning on pilot estimation, which
has been less investigated in existing subsampling literature. Both
theoretical analysis and numerical experiments show that our estimator
is more efficient and has a better performance without increasing com-
putational complexity.

Background and model setup

We consider GLMs:f (y|x, β0, σ) ∝ exp
{
yxTβ0 − b(xTβ0)/c(σ)

}
, where β0

is the unknown parameter, b(·) and c(·) are known functions, and σ is
the dispersion parameter. The maximum likelihood estimator (MLE) of
β0 is as following:

β̂MLE := argmax
β

1

n

n∑
i=1

{YiX
T
i β − b(XT

i β)},

The computational burden of computing MLE is usually intensive facing
massive data. In some situation, it is costy to measure responses,
which makes existing subsampling methods, such as OSMAC (Ai et al.
(2021)), hard to implement. To handle these difficulties, Zhang et al.
(2021) proposed optimal subsampling under measurement constraints.
Considering {πi}ni=1 as sampling probabilities, we use a reweighted
estimator to obtain subsampling estimator:

β̂w := argmax
β

1

r

r∑
i=1

Y ∗
i X

∗T
i β − b(X∗T

i β)

nπ∗
i

, (1)

where ∗ denote values obtained from sampling. Using this model setup,
Zhang et al. (2021) developed optimal sampling probability under mea-
surement constraints (OSUMC) through A-optimality criterion:

πOS
i (β0,Φ) =

√
b′′(XT

i β0)∥Φ−1Xi∥
n∑

j=1

√
b′′(XT

j β0)∥Φ−1Xj∥
(2)

Unweighted Algorithm

▶ Problem of OSUMC We can notice that in (1), an inverse
probability weight is used to estimate β0. As pointed in Wang
(2019), the weighting scheme does not bring us the most efficient
estimator because intuitively, if a data point (Xi, Yi) has a larger
sampling probability, it contains more information about β0.
However, in (1), data points with higher sampling proabilities have
smaller weights, which reduce the estimation efficiency. Thus, we
propose a more efficient estimator based on the unweighted
target function. We define our estimator as following:

β̂uw := argmax
β

1

r

r∑
i=1

{
Y ∗
i X

∗T
i β − b(X∗T

i β)
}
, (3)

▶ Unweighted algorithm We propose the following two-step
unweighted estimating procedure

Algorithm Unweighted estimation for GLM under measurement con-
straints

1: Take a pilot subsample of size rp: {(X
∗p
i , Y

∗p
i )}rpi=1 with simple ran-

dom sampling from the full data set {(Xi, Yi)}ni=1. Calculate the pi-
lot estimate of β0, βp, and the pilot estimate of Φ, Φp

2: Use β̂p and Φ̂p to replace β0 and Φ in (2) and caculate the sam-
pling probabilities {πOS

i (β̂p, Φ̂p)}ni=1.
3: Obtain a subsample {(X∗

i , Y
∗
i )}ri=1 of size r according to the sam-

pling probabilities {πOS
i (β̂p, Φ̂p)}ni=1 using sampling with replace-

ment, and solve the estimation equation:

Ψ∗
uw(β) :=

1

r

r∑
i=1

{b′(X∗T
i β)− Y ∗

i }X∗
i = 0,

to obtain the unweighted estimator defined in (3).

Theoretical analysis of unweighted algorithm

▶ Asymptotic normality Under some regularity conditions
√
r(β̂uw − β0)

d−→ N(0,Σρ
uw), Σρ

uw := mΓ−1 + ρΓ−1ΩΓ−1

▶ Efficiency comparison We can restate the results in Zhang et al.
(2021) as:

√
r(β̂w − β0)

N−→ (0,Σρ
w), Σρ

w := mΦ−1ΓΦ−1 + ρΦ−1

We can prove that
Γ−1 ≤ Φ−1ΓΦ−1, and Γ−1ΩΓ−1 ≥ Φ−1.

Therefore, under subsampling scenario, usually r/n → 0, we know
that unweighted algorithm is more efficient for parameter estimation

Numerical experiments

▶ Logistic model
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(c) unNormal
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(d) mixNormal
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(f) nzNormal
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(g) unNormal
1000 1200 1400 1600 1800 2000

r

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

mixNormal
Empirical MSE-unweighted
Estimated MSE-unweighted

(h) mixNormal
▶ Poisson model
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(b) Case2
1000 1200 1400 1600 1800 2000

r

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

M
SE

Case1
Empirical MSE-unweighted
Estimated MSE-unweighted

(c) Case1
1000 1200 1400 1600 1800 2000

r

0.006

0.008

0.010

0.012

0.014

0.016

M
SE

Case2
Empirical MSE-unweighted
Estimated MSE-unweighted

(d) Case2
▶ Linear model
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(b) T3
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(c) T1
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(d) EXP
▶ Real data
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Conclusion

Both theoretic and numerical results guaruntee the better performance
of unweighted esitmator.
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