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Introduction

Crossover designs, also known as repeated measurements designs or change-over designs, have been used extensively in

pharmaceutical research. With the help of Generalized Estimating Equations (GEEs), we identify locally D-optimal

crossover designs for generalized linear models (GLMs). In this case, the traditional general equivalence theorem could

not be used directly to check the optimality of obtained designs. In this manuscript, we fill this gap and derive a

corresponding general equivalence theorem for crossover designs under generalized linear models.

Preliminary Setup

•We use generalized linear model (GLM) to describe the marginal distribution of Yij as in Liang and Zeger (1986) and

let µij denote the mean of a response Yij.

• Consider the following model, which models the marginal mean µij for crossover trials through link function g as:

g(µij) = ηij = λ + βi + τd(i,j) + ρd(i−1,j),

where i = 1, . . . , p; j = 1, . . . , n; λ is the overall mean, βi represents the effect of the ith period, τs is the direct effect

due to treatment s and ρs is the carryover effect due to treatment s, where s = 1, . . . , t.

• Instead of incorporating a random effects term, here, the mean response is modeled through the link function with

an extra assumption that the responses from a particular subject are mutually correlated, while the responses from

different subjects are uncorrelated.

• If the number of subjects is fixed to n and the number of periods is p, then the identified locally D-optimal design

identifies the proportion of subjects assigned to a particular treatment sequence.

•A crossover design ξ can be denoted as follows:

ξ =

{
ω1 ω2 . . . ωk
pω1 pω2 . . . pωk

}
,

where k is the number of treatment sequences involved, such that
∑k
i=1 pωi = 1, for i = 1, . . . , k and ωj is the jth

treatment sequence.

•We focus on D-optimality and use the determinant of Var(τ̂ ) as our objective function i.e., Φ(ξ) = det(Var(τ̂ )). Then

an optimal design ξ∗ is the one which minimizes the objective function Φ(ξ) with respect to pω such that
∑
w∈Ω pw = 1.

Generalized Estimating Equations

• Instead of using maximum likelihood estimation (MLE) or ordinary least squares (OLS) to estimate the parameters

we use quasi-likelihood estimation (Generalized Estimating Equations).

• The generalized estimating equations (GEE) are defined to be
∑n
j=1

∂µ′j
∂θW

−1
j

(
Yj − µj

)
= 0 where Wj = Cov(Yj) =

D
1/2
j C(α)D

1/2
j , where Dj = diag

(
V ar(Y1j), . . . , V ar(Ypj)

)
and θ is a parameter vector.

•When true correlation of Yj equals working correlation we have, Var(θ̂) =
[∑

ωεΩ npω
∂µ′ω
∂θ W

−1
ω

∂µω
∂θ

]−1
= M−1

• The matrix M can be written as follows:

M(ξ) =

k∑
j=1

npωjX
T
j GjD

−1
2

j C(α)−1D
−1

2
j GjXj =

k∑
j=1

npωjX
T
j GjD

−1
2

j RTRD
−1

2
j GjXj

=

k∑
j=1

npωj(RD
−1

2
j GjXj)

T (RD
−1

2
j GjXj) =

k∑
j=1

npωj(X
∗
j )T (X∗j ),

where Gj = diag
{

(g−1)′(η1j), . . . , (g
−1)′(ηpj)

}
.

• The variance of the estimator of treatment effect is Var(τ̂ ) = HVar(θ̂)H ′ where H is a t×m matrix and m = p+2t−2

is the total number of parameters in θ.

The General Equivalence Theorem

The General Equivalence Theorem states the equivalence of the following three conditions on ξ∗:

1 The design ξ∗ minimizes Φ(ξ),

2 The design ξ∗ maximizes the minimum over Ω of φ(x, ξ),

3 The minimum over Ω of φ(x, ξ) is 0, which occurs at the support points of the design,

where φ(x, ξ) is the directional derivative of Φ(ξ) and Ω is a set of all possible treatment sequences.

The General Equivalence Theorem can be viewed as a consequence of the result that the derivative of a smooth function

over an unconstrained region is zero at its minimum.

In the case of crossover designs and estimates using generalized estimating equations, we need to take a different approach

compared to the traditional one as the design points are finite and pre-specified for crossover designs.

The outline of the General Equivalence Theorem in the case of crossover designs is as follows:

•Define pr = (p1, . . . , pk−1)
′
, and Φ(pr) = ln det(HM−1(p1, . . . , pk−1, 1 −

∑k−1
i=1 pi)H

′). Let δ
(r)
i =

(−p1, . . . ,−pi−1, 1− pi,−pi+1, . . . ,−pk−1)
′

for i = 1, . . . , k − 1.

• Instead of using traditional way of defining direction ξ
′

i = (1− h)ξ + hξ̄i = ξ + h(ξ̄i− ξ), we used pr + uδ
(r)
i where h

is replaced with u and (ξ̄i − ξ) is replaced with δ
(r)
i .

•Note that 0 ≤ pi < 1 for i = 1, . . . , k, and since
∑k
i=1 pi = 1 we may assume without any loss of generality that

pk > 0.

• δ(r)
i are defined in such a way that the determinant |(δ(r)

1 , . . . , δ
(r)
k−1)| = pk 6= 0. Hence, δ

(r)
1 , . . . , δ

(r)
k−1 are linearly

independent and thus can serve as the new basis of

Sr = {(p1, . . . , pk−1)
′
|
k−1∑
i=1

pi < 1, and pi ≥ 0, i = 1, . . . , k − 1}.

• Φ(pr) is minimized w.r.t pr if and only if along each direction δri ,

∂Φ(pr + uδ
(r)
i )

∂u

∣∣∣∣∣∣
u=0

 = 0 if pi > 0

≥ 0 if pi = 0.

Equivalence Theorems for Crossover Designs

Theorem 1. (General Equivalence Theorem when objective function is V ar(θ̂)):

Consider the design ξ with k treatment sequences as shown earlier. Then the design ξ is D-optimal if and only

if

trace
(
X∗iM(ξ)−1X∗Ti

) = m if pi > 0

≤ m if pi = 0

for each pi ∈ [0, 1], where pi is the allocation corresponding to point ωi of design ξ for all i = 1, 2, . . . , k, and m

is the number of parameters in θ.

Theorem 2. (General Equivalence Theorem when objective function is V ar(τ̂ )):

Consider the design ξ with k treatment sequences as shown earlier. Then the design ξ is D-optimal if and only

if

trace
{
A(X∗i )T (X∗i )

} = t− 1 if pi > 0

≤ t− 1 if pi = 0

for each pi ∈ [0, 1], where A = M−1H
′
(
HM−1H

′
)−1

HM−1, pi is the allocation corresponding to point ωi of

design ξ for all i = 1, 2, . . . , k, and t is number of treatments.

Illustration

• To illustrate the results of above general equivalence theorems, we consider a design space {AB,BA} which is a case

of k = 2, p = 2.

• For the assumed θ and Φ(p1) = ln det(HM−1(p1)H ′) as the objective function, the obtained optimal proportions are

p1 = 0.177 and p2 = 0.823.
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Objective Function: Φ(p1) = ln det(HM−1(p1)H ′). Derivative: trace
{
A(X∗1 )T (X∗1 )

}
− (t− 1)

•We can see from the left panel in figure that the minimum of the objective function is located at p1 = 0.177, which

suggests us that obtained proportions are indeed optimal and they produce the D-optimal design when the objective

function is V ar(τ̂ ).

Real Example: Work Environment Experiment

• In this example we consider the data obtained from the work environment experiment conducted at Booking.com.

• There were no previous studies to examine the effects of office designs in work spaces, Booking.com conducted an

experiment to assess different office spacing efficiency.

• This experiment is essentially a uniform crossover design with p = 4 periods and t = 4 treatments and the four

treatments involved in this experiment are office designs named as A (Activity-Based), B (Open Plan), C (Team

Offices), and D (Zoned Open Plan), as shown in the figure below:

A B

C D
•A Latin square design of order four has been used to determine the sequence of exposure so that no group was exposed

to the conditions in the same order as any other group.

•During the course of experiment many different responses were recorded. For the illustration purpose we consider the

response commit count to illustrate the optimal crossover design for the Poisson response.

•According to Theorem 2, when V ar(θ̂) is the objective function, the D-optimal design can be obtained by solving

the system of equations below instead of performing constrained optimization to attain the minimum of the objective

function. The system of equations is as follows:

trace
(
X∗iM(pr)

−1X∗Ti
)

= 10,

for i = 1, 2, 3, 4.

• The obtained design is the same as the one obtained by performing constrained optimization, which implies that the

design is indeed optimal.

Conclusions

• In this paper, we derive an expression for general equivalence theorem to check for the optimality of identified locally

D-optimal crossover designs for generalized linear models.

• The equivalence theorem provides us with a system of equations that can calculate optimal proportions with more

ease without performing constrained optimization of the objective function.
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