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Hyperparameter Optimization (HPO) Compound-RSO Simulation Study

“Identifying the optimal hyperparameter 
values that minimize the validation loss 

of a Deep Neural Network (DNN)”

Characteristics:
−Choice of hyperparameter is critical

−Function complexity is unknown

−Active hyperparameters are unknown

−Noisy response

Response Surface Optimization(RSO)

RSO methods, specifically, Bayesian 
Optimization (BO) is a popular HPO 

strategy

Assumptions:
BO, through the choice of kernels,  
assumes that the response surface is 
nonlinear and complex

Gaps:
− The assumptions on response surface 

complexity is not validated

• When second-order, classical 
response surface optimization (C-
RSO) is demonstrably more efficient

− BO based HPO strategies tend to  
overfit the validation data 
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𝑅𝑜𝑝𝑡 = 𝑤𝐷𝑒𝑓𝑓 + 1 − 𝑤 𝑈𝑒𝑓𝑓

𝐷𝑒𝑓𝑓: Bayesian D-efficiency

𝑈𝑒𝑓𝑓: Uniform efficiency

𝑤: weighting function

𝐴𝑜𝑝𝑡 = 𝑤𝐷𝑒𝑓𝑓 + 1 − 𝑤 𝐼(𝜆) 𝑒𝑓𝑓

𝐷𝑒𝑓𝑓: Bayesian D-efficiency

𝐼(𝜆) 𝑒𝑓𝑓: I (𝜆) efficiency

𝑤: weighting function

HPO of DNN Case Study

Conclusion

Compound-RSO outperforms Standard-BO 

+ Second Order: Compound-RSO is superior to BO

+ Complex: Compound-RSO is comparable to BO 

Contributions

+ Exact robust-supersaturated design for a full second-

order polynomial function

+ A principled RSO strategy which estimates the 

response surface complexity 


