Hyperparameter Optimization of Deep Neural Networks With Application in Medical Device Manufacturing Gautham Sunder¹, Thomas Albrecht², Christopher J. Nachtsheim¹

Hyperparameter Optimization (HPO)

"Identifying the optimal hyperparameter values that minimize the validation loss of a Deep Neural Network (DNN)"

Characteristics:

- -Choice of hyperparameter is critical
- -Function complexity is unknown
- -Active hyperparameters are unknown
- -Noisy response

Response Surface Optimization(RSO)

RSO methods, specifically, Bayesian **Optimization (BO) is a popular HPO** strategy

Assumptions:

BO, through the choice of kernels, assumes that the response surface is nonlinear and complex

Gaps:

- The assumptions on response surface complexity is not validated
- When second-order, classical response surface optimization (C-RSO) is demonstrably more efficient
- BO based HPO strategies tend to overfit the validation data

¹Carlson School of Management, University of Minnesota, Minneapolis, MN, United States ²Atlassian Corporation, United States

ton ntific cience for life™					
	Loss	Defect 1	Defect 2	Defect 3	Defect 4
1	0.115	99.8%	98.7%	98.34%	94.16%
2	0.130	99.36%	98.7%	98.88%	92.86%
	5.533	76.5%	76.2%	79.7%	76.7%