Constrained Minimum Energy Designs

${ }^{1}$ Gerogia Institue of Technology
${ }^{2}$ US Army - CCDC Armaments Center

Space-Filling Designs

(a) Maximin

(b) Maximin LHD

(c) MaxPro

- Most of the space-filling designs focus on unit hypercube $\mathcal{X}=[0,1]^{p}$.
- Many real world problems deal with non-rectangular bounded design space

$$
\mathcal{X}=\left\{x \in[0,1]^{p}: g_{k}(x) \leq 0 \forall k=1, \ldots, K\right\}
$$

where the rectangular shape is jeopardized by the K inequality constraints.

- How can we construct space-filling design in the constrained region?

Constrained Space-Filling Designs

- General purpose constrained optimization techniques: Expensive!
- Alternative two-step approach:

Candidate Generation: generate a large set of uniformly distributed candidates in \mathcal{X} - Design Construction: choose points from the set of candidates by a desired criterion. The key difficulty is to efficiently simulate good quality candidate points.

> Existing Candidate Generation Methods

- Acceptance/rejection sampling on Latin hypercube designs (LHDs)

(a) 2,385 LHD samples

(b) 14 feasible samples
- Sequentially constrained Monte Carlo (SCMC) with kernel adaptation.

(a) 2,385 SCMC samples

(b) 1,205 feasible samples

Probabilistic Relaxation of Constratint

- Introduced in SCMC to relax constriant $g(x) \leq 0$ via probit function,

$$
\rho_{\tau}=\Phi(-\tau g(x))
$$

where Φ is the standard normal c.d.f. and τ is the rigidity parameter.

- When $\tau=0$, we have the uniform distribution. When $\tau \rightarrow \infty$, we have

$$
\lim _{\tau \rightarrow \infty} \rho_{\tau}(x)=\lim _{\tau \rightarrow \infty} \Phi(-\tau g(x))=\mathbb{1}(g(x) \leq 0) .
$$

- The generalization to multiple constraints $\left\{g_{k}(x) \leq 0\right\}_{k=1}^{K}$ is straightfoward,

$$
\rho_{\tau}(x)=\prod_{k=1}^{K} \Phi\left(-\tau g_{k}(x)\right) .
$$

- This allows for a sequential approach by starting with an easy problem ($\tau=0$) and slowly increasing τ to a large number, e.g. 10^{6}, to achieve the space-filling design in the desired constrained region.

Minimum Energy Designs

- Minimum energy designs (MinED) finds the design that minimizes the total potential energy with respect to any distribution π. Its design criterion is

$$
\arg \max _{\mathcal{D}_{n}} \min _{\substack{x_{i}, x_{j} \in \mathcal{D}_{n} \\ i \neq j}} \frac{1}{2 p} \log \gamma\left(x_{i}\right)+\frac{1}{2 p} \log \gamma\left(x_{j}\right)+\log \left\|x_{i}-x_{j}\right\|_{2},
$$

where $\gamma \propto \pi$ is the unnormalized p.d.f. When $\pi=\operatorname{Uniform}[0,1]^{p}$, it reduces to a maximin design in the unit hypercube.

(a) MinED

(b) Monte Carlo

Constrained Minimum Energy Designs

- Constrained minimum energy designs (CoMinED) with respect to π and the non-rectangular bounded space $\mathcal{X}=\left\{x \in[0,1]^{p}: g_{k}(x) \leq 0 \forall k=1\right.$, is the optimal solution of

$$
\arg \max _{\mathcal{D}_{n}} \min _{\substack{x_{i}, x_{j} \in \mathcal{D}_{n} \\ i \neq j}} \frac{1}{2 p} \log \tilde{\gamma}_{\tau}\left(x_{i}\right)+\frac{1}{2 p} \log \tilde{\gamma}_{\tau}\left(x_{j}\right)+\log \left\|x_{i}-x_{j}\right\|_{2},
$$

where $\tilde{\gamma}_{\tau}(\cdot)=\gamma(\cdot) \times \rho_{\tau}(\cdot)=\gamma(\cdot) \prod_{k=1}^{K} \Phi\left(-\tau g_{k}(\cdot)\right)$ and $\gamma \propto \pi$.

- We focus on $\pi=$ Uniform $[0,1]^{p}$ for the comparison with existing methods.
- The algorithm iterates between (i) the intermediate design construction with respect to the increasing τ_{t} and (ii) the candidate samples augmentation to exploit the important region indicated by the intermediate design.

Evolution of CoMinED

(a) $\tau_{1}=e^{1}$

(b) $\tau_{2}=e^{2}$

(e) $\tau_{5}=e^{5}$

(f) $\tau_{6}=e^{6}$

(c) $\tau_{3}=e^{3}$

(g) $\tau_{7}=e^{7}$

(d) $\tau_{4}=e^{4}$

Numerical Results

Figure: Comparisons of the candidates quality and the resulted 109-point design from applyin CoMinED (squares) and adaptive SCMC (violin plots over 50 runs) on 14 benchmark problems. The problems are in ascending order by number of dimensions (2-13) and descending order by the feasibility ratio (11 out of 14 are less than 0.01 with the smallest being 1e-6).

References

[1] Joseph, V. R., Gul, E., and Ba, S. (2015), "Maximum projection designs for computer experiments," Biometrika, 102.2, pp. 371-380.
2] Golchi, S. and Campbell D. A. (2016), "Sequentially constrained Monte Carlo," Computational Statistics \& Data Analysis, 97, 98-113.
3] Joseph, V. R., Wang, D., Gu, L., Lyu, S., and Tuo, R. (2019), "Deterministic sampling of expensive posteriors using minimum energy designs,", Technometrics, 61, 297-308.

