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Space-Filling Designs

(a) Maximin (b) Maximin LHD (c) MaxPro
• Most of the space-filling designs focus on unit hypercube X = [0, 1]p.
• Many real world problems deal with non-rectangular bounded design space

X =
{
x ∈ [0, 1]p : gk(x) ≤ 0 ∀k = 1, . . . , K

}
,

where the rectangular shape is jeopardized by the K inequality constraints.
• How can we construct space-filling design in the constrained region?

Constrained Space-Filling Designs
• General purpose constrained optimization techniques: Expensive!
• Alternative two-step approach:
• Candidate Generation: generate a large set of uniformly distributed candidates in X .
• Design Construction: choose points from the set of candidates by a desired criterion.
The key difficulty is to efficiently simulate good quality candidate points.

Existing Candidate Generation Methods
• Acceptance/rejection sampling on Latin hypercube designs (LHDs).

(a) 2,385 LHD samples (b) 14 feasible samples
• Sequentially constrained Monte Carlo (SCMC) with kernel adaptation.

(a) 2,385 SCMC samples (b) 1,205 feasible samples

Probabilistic Relaxation of Constratint
• Introduced in SCMC to relax constriant g(x) ≤ 0 via probit function,

ρτ = Φ(−τg(x)) ,

where Φ is the standard normal c.d.f. and τ is the rigidity parameter.
• When τ = 0, we have the uniform distribution. When τ →∞, we have

lim
τ→∞

ρτ(x) = lim
τ→∞

Φ(−τg(x)) = 1(g(x) ≤ 0) .

• The generalization to multiple constraints {gk(x) ≤ 0}Kk=1 is straightfoward,

ρτ(x) =
K∏
k=1

Φ(−τgk(x)) .

• This allows for a sequential approach by starting with an easy problem
(τ = 0) and slowly increasing τ to a large number, e.g. 106, to achieve the
space-filling design in the desired constrained region.

Minimum Energy Designs
• Minimum energy designs (MinED) finds the design that minimizes the total

potential energy with respect to any distribution π. Its design criterion is

arg max
Dn

min
xi,xj∈Dn

i 6=j

1
2p

log γ(xi) + 1
2p

log γ(xj) + log‖xi − xj‖2 ,

where γ ∝ π is the unnormalized p.d.f. When π = Uniform[0, 1]p, it reduces
to a maximin design in the unit hypercube.

(a) MinED (b) Monte Carlo

Constrained Minimum Energy Designs
• Constrained minimum energy designs (CoMinED) with respect to π and the

non-rectangular bounded space X = {x ∈ [0, 1]p : gk(x) ≤ 0 ∀k = 1, . . . , K}
is the optimal solution of

arg max
Dn

min
xi,xj∈Dn

i 6=j

1
2p

log γ̃τ(xi) + 1
2p

log γ̃τ(xj) + log‖xi − xj‖2 ,

where γ̃τ(·) = γ(·)× ρτ(·) = γ(·)
∏K

k=1 Φ(−τgk(·)) and γ ∝ π.
• We focus on π = Uniform[0, 1]p for the comparison with existing methods.
• The algorithm iterates between (i) the intermediate design construction with

respect to the increasing τt and (ii) the candidate samples augmentation to
exploit the important region indicated by the intermediate design.

Evolution of CoMinED

(a) τ1 = e1 (b) τ2 = e2 (c) τ3 = e3 (d) τ4 = e4

(e) τ5 = e5 (f) τ6 = e6 (g) τ7 = e7 (h) τ8 = e8

• Total of 2,155 evaluations of the constraints, 915 feasible samples.

Numerical Results

(a) Feasible Ratio (Larger is Better) (b) Fill Distance (Smaller is Better)

(c) Maximin (Larger is Better) (d) MaxPro (Smaller is Better)
Figure: Comparisons of the candidates quality and the resulted 109-point design from applying
CoMinED (squares) and adaptive SCMC (violin plots over 50 runs) on 14 benchmark problems. The
problems are in ascending order by number of dimensions (2 - 13) and descending order by the
feasibility ratio (11 out of 14 are less than 0.01 with the smallest being 1e-6).
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