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Abstract
Vapor pressure is a temperature-dependent characteristic of pure

liquids, and also of their mixtures. This thermodynamic property can
be characterized through a wide range of models. Antoine’s equation
stands out among them for its simplicity and precision. Its parameters
are estimated via maximum likelihood with experimental data. Once
the parameters of the equation have been estimated, vapor pressures
between known values of the curve can be interpolated. Other physical
properties such as heat of vaporization can be predicted as well.

The probability distribution of a physical phenomenon is often hard
to know in advance, as it depends on the phenomenon itself as well
as the procedures to carry on the experiments and the measurements.
Hence, assuming a probability distribution for such events has to be
done with caution, as it affects the Fisher Information Matrix and con-
sequently the optimal designs. This work presents D-, Ds-, A- and
I-optimal designs to estimate the unknown parameters of the Antoine’s
equation as accurately as possible for homoscedastic and heteroscedas-
tic normal distribution of the response, with the characteristic objec-
tives of the different criteria.

An online tool to calculate Antoine’s optimal designs for the crite-
ria included in this work has been developed.

Antoine’s Equation
The Antoine’s Equation is a class of semi-empirical correlations
describing the relation between vapor pressure, p, and temper-
ature, T , for pure components (Wisniak, 2001). The usual ho-
moscedastic variance, constant absolute error, was considered
initially

P (T ) = η(T ) + ε = 10a−
b

c+T + ε, ε ∼ N (0, σ2o),

and the heteroscedastic model with constant relative error, as
suggested by Brozena et al. (2016), was considered later on

P (T ) = η(T ) + ε = 10a−
b

c+T + ε, ε ∼ N (0, σ2eη(T )
2).

being θ = (a, b, c)t the unknown parameters of the model related
with enthalpy and entropy of vaporization.

Optimal Experimental Design
The aim of the Optimal Experimental Design (OED) is to define
the best experiment, regarding a certain optimality criterion.
Different optimality criteria have been use in this work. Since
the model is non-linear for some of the parameters, the designs
calculated numerically are locally optimal. For this sake, the ex-
ample of water in liquid state has been considered, giving the
design space X = [Tmin, Tmax] = [1◦C, 100◦C], and nominal
values θ0 = (8.07131, 1730.63, 233.426)t, Dortmund Data Bank.

D-Optimality for Antoine’s Equation

D-Optimality is a criterion with the goal of minimizing the de-
terminant of the inverse of the information matrix, which trans-
lates to minimizing the volume of the parameters confidence el-
lipsoid.

A handful of theoretical results have been proved in de la Calle-
Arroyo et al. (2021). These results lead to the analytical expres-
sions for the D-optimal designs, both for the homoscedastic and
the heteroscedastic model. The D-optimal designs for the ho-
moscedastic and heteroscedastic model for liquid water have,
respectively, the following expressions

ξ?oD =

{
44.90 83.20 100
1/3 1/3 1/3

}
, ξ?eD =

{
1 41.87 100
1/3 1/3 1/3

}
.

The efficiency of the heteroscedastic optimal design for the ho-
moscedastic model is effoD(ξ?eD) = 25.4%, while for the analo-
gous it is effeD(ξ?oD) = 18.7%.

The nominal values are the best guesses for the values of the
parameters. There can be uncertainty about the accuracy of these
specifications. A sensitivity analysis can be performed to esti-
mate the loss of efficiency in case the guess is not precise.

Both models are quasi-linear on a, and hence the optimal de-
signs do not depend on the value of this parameter. Figure 1
shows that, in the homoscedastic model, it is better to either un-
derestimate or overestimate both parameters at the same time
than to underestimate one and overestimate the other. The het-
eroscedastic model is not dependent on the value of b, and is
very robust to a misspecification of the parameter c. It is better
to understimate this parameter, although the loss of efficiency is
very small on either case.
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Figure 1: Efficiency for a misspecification of the parameters of the models,
homoscedastic (left) and heteroscedastic (right).

Ds-Optimality
The Ds-Optimality is a criterion that, with the same philosophy
as the D-Optimality, looks for the best design in order to esti-
mate a subset of s parameters of θ.

Table 1: Ds-optimal designs for the six different subsets of the parameters.
In bold are the weights greater than 1/3. The first part of the table gives the
optimal designs for the homoscedastic model while the second part includes
those for the heteroscedastic model.
Criterion Ds-optimal designs effeDs

(·)
ξ?oDa

33.11 (0.561) 83.90 (0.302) 100 (0.138) 2.6%
ξ?oDb

33.13 (0.582) 83.90 (0.289) 100 (0.129) 2.8%
ξ?oDc

33.14 (0.606) 83.90 (0.274) 100 (0.119) 2.3%
ξ?oDab

42.25 (0.487) 79.82 (0.334) 100 (0.178) 10.7%
ξ?oDac

42.29 (0.491) 79.66 (0.340) 100 (0.169) 9.7%
ξ?oDbc

42.33 (0.493) 79.53 (0.347) 100 (0.161) 8.9%
effoDs

(·)
ξ?eDa

1 (0.210) 41.75 (0.492) 100 (0.297) 3.3%
ξ?eDb

1 (0.229) 41.77 (0.500) 100 (0.271) 3%
ξ?eDc

1 (0.250) 41.75 (0.500) 100 (0.250) 3.5%
ξ?eDab

1 (0.256) 44.65 (0.338) 100 (0.406) 13.6%
ξ?eDac

1 (0.295) 43.31 (0.333) 100 (0.372) 12.8%
ξ?eDbc

1 (0.333) 41.89 (0.333) 100 (0.333) 12.8%

Table 1 features Ds-optimal designs for the six different pa-
rameters subset, for both the homoscedastic and heteroscedastic
model. Each of column represent a pair of point and (weight),
whereas the last column indicates the efficiency of the design in
case of a wrong assumption over the heteroscedasticity or ho-
moscedasticity of response.

Note that the support points remain the same for each of the
three designs estimating a single parameter, while there are
slight variances on the weight of these points.

A-Optimality
The A-optimality criterion minimizes the mean of the estimates
of the parameters, a, b and c. For the two response variances, the
respective A-optimal designs are

ξ?oA =

{
33.13 83.73 100
0.582 0.289 0.129

}
, ξ?eA =

{
1 41.77 100

0.229 0.500 0.271

}
,

(1)
The efficiency of the heteroscedastic optimal design for the

homoscedastic model is effoA(ξ?eA) = 2.8%. Meanwhile, the
efficiency of the homoscedastic design for the heteroscedastic
model is effeA(ξ?oA) = 3%. In both cases, once again, we see
very low efficiencies when comparing optimal designs for the
different models. Figure 2 shows the sensitivity function of the
A-optimal design for both models. It can be seen that the Equiv-
alence Theorem holds for both of them.

Figure 2: Sensitivity function for the A-optimal designs, homoscedastic
(left) and heteroscedastic (right).

I-Optimality
The I-optimality criterion aims to minimize the variance over a
region of interest. In these models, it is of special relevance as
precise estimation near the boiling point is important.

Two probability distributions were used, the uniform distribu-
tion, U , with different regions of interest near the vaporization
point, and the triangular distribution, T , with vertex at 100ºC
with the same regions.

In Table 2 we can see the different I-optimal designs, consid-
ering the probability distributions mentioned above, for both the

homoscedastic and heteroscedastic model. Again, in the last col-
umn the efficiency of the design for the other model is included.
For these designs, while the homoscedastic design for the het-
eroscedastic model has a reasonable effiency, around 60%, the
efficiency loss of the analogous case is very strong.

Table 2: I-optimal designs for different choices of µ(T ). In bold the weights
greater than 1/3.

Criterion I-optimal designs effeI(·)
ξ?oIU(70,100)

52.46 (0.168) 83.80 (0.578) 100 (0.253) 61.7%
ξ?oIU(60,100)

52.58 (0.280) 83.06 (0.506) 100 (0.214) 57.6%
ξ?oIT (70,100)

49.71 (0.108) 85.72 (0.560) 100 (0.332) 65.6%
ξ?oIT (60,100)

51.18 (0.175) 84.54 (0.538) 100 (0.287) 61.5%

effoI(·)
ξ?eIU(70,100)

1 (0.023) 62.07 (0.444) 100 (0.533) 1%
ξ?eIU(60,100)

1 (0.026) 58.72 (0.512) 100 (0.462) 1%
ξ?eIT (70,100)

1 (0.019) 62.70 (0.335) 100 (0.646) 0.9%
ξ?eIT (60,100)

1 (0.023) 60.43 (0.399) 100 (0.578) 0.9%

Shiny App

Figure 3: QR code
for the Shiny Appli-
cation

All the designs and efficiencies pre-
sented in this work, as well as
the sensitivity function figures, have
been calculated using an online tool
developed for the use of the practi-
tioners. The software uses the ana-
lytical expressions, when available,
and an implementation in R of the
cocktail algorithm to calculate the
optimal designs. It is an intuitive
app that allows optimal design calculation with a minimal set
up, choosing the response of the model, the design space and
best guesses of parameters, with some substances already avail-
able to compute. The application can be found at https:
//kezrael.shinyapps.io/AntoineOptimal/ or ac-
cessed through the QR code.

Conclusions
This work presents locally optimal designs for the Antoine
Equation for the homoscedastic and heteroscedatic models.
Efficiencies for these models have been compared, showing
strong differences between optimal designs for each situation.
Therefore is very important to obtain information about the be-
havior of the variance of the response in order to obtain robust
designs.

With the Shiny Application D−, Ds−, A− and I− optimal
designs for water in the range X = [1, 100]ºC have been ob-
tained. Other compounds, or a manual setting of the parameters,
are available for the practitioner to choose from and calculate
optimal designs for their particular substance.
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C. de la Calle-Arroyo, J. López-Fidalgo, and L. J. Rodrı́guez-
Aragón. Optimal designs for antoine equation. Chemomet-
rics and Intelligent Laboratory Systems, 214:104334, 2021.
doi: DOI:10.1016/j.chemolab.2021.104334. URL https:
//doi.org/10.1016/j.chemolab.2021.104334.

Dortmund Data Bank, 2020. URL www.ddbst.com.
J. Wisniak. Historical development of the vapor pressure equa-

tion from dalton to antoine. Journal of Phase Equilibria, 22:
622–630, 2001.

https://kezrael.shinyapps.io/AntoineOptimal/
https://kezrael.shinyapps.io/AntoineOptimal/
https://kezrael.shinyapps.io/AntoineOptimal/
https://apps.dtic.mil/dtic/tr/fulltext/u2/1022530.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/1022530.pdf
https://doi.org/10.1016/j.chemolab.2021.104334
https://doi.org/10.1016/j.chemolab.2021.104334
www.ddbst.com

