KU LEUVEN

Enumeration of large four-and-two-level designs

Introduction

Four-level factors are useful:

- ► to study multi-level categorical factors
- ► to study non-linear effects of numerical factors

Current catalogs of four-and-two-level designs:

- ▶ Wu & Zhang (1993; [1]): 16 and 32-run designs, 1 or 2 four-level factors, up to 11 two-level factors
- ▶ Ankenman (1999; [2]): 16 and 32-run designs, 1, 2 or 3 four-level factors, up to 14 two-level factors

Cheese-making experiment

Screening experiment in 128 runs. There are 10 potentially influential factors :

- ▶ 9 two-level factors $\rightarrow 2^9$

No available catalog !

Goal

designs with large run sizes

- ► Large run sizes: for up to 256 runs

Methodology

Parents with *n* two-level columns

n+1 two-level columns

Selected algorithms

- \blacktriangleright Extension procedures: Search Table (ST; [3]), Delete-One-Factor Projection (DOP; [4]), Minimum Complete Set (MCS; [5])
- Reduction procedures: NAUTY graph isomorphism [6, 7], LMC canonical form testing [5]

\mathbf{T}	DOP	MCS
	DOD NAUTV	Not optimo

NAUTY	ST-NAUTY	DOP-NA
LMC test	Not optimal	Incompa

S

► ST-NAUTY was the most efficient of the 3 enumeration methods. Similar results for other test cases.

Results

Number of non-equivalent $4^{m}2^{n}$ designs for $n \leq 20$:

m	\perp N			
m	32	64	128	256
1	8,279	254	1,442,301	> 86,528
2	36,692	137	2,837,275	> 40,848
3	_	28	$2,\!141,\!911$	> 78,386

Cheese-making experiment revisited

There are 264 $4^{1}2^{9}$ designs involving 128 runs

	Added	\mathbf{WLP}
ID	columns	(A_4, A_5, A_6)
1	60, 77, 86, 103	(0, 8, 6)
2	29, 46, 90, 101	(0, 9, 3)
3	13, 58, 91, 116	(1, 6, 6)

- ▶ Designs 1 and 2 were not compatible with required restrictions on the randomization.
- restrictions.
- ► Remaining designs have inferior WLP.

References

- Biometrika, 80(1):203–209, March 1993.
- *Technology*, 31(4):363–375, October 1999.
- Designs. *Technometrics*, 41(1):62–70, February 1999.
- Sizes. Technometrics, 51(3):262-277, August 2009.
- and mixed-level orthogonal arrays. Journal of Combinatorial Designs, 18(2):123–140, 2010.
- Large N. *Technometrics*, 52(2):250–255, May 2010.
- Computation, 60:94–112, January 2014.
- * alexandre.bohyn@kuleuven.be

Representatives with n + 1 twolevel columns

AUTY Not optimal patible MCS - LMC

Alexandre Bohyn^{1*}, Eric Schoen¹ and Peter Goos^{1,2} ¹KU Leuven, Belgium ²University of Antwerp, Belgium

▶ Design 3 is the best design that is compatible with these

[1] C. F. J. Wu and Runchu Zhang. Minimum aberration designs with two-level and four-level-factors.

[2] Bruce E. Ankenman. Design of Experiments with Two- and Four-Level Factors. Journal of Quality

[3] Derek Bingham and Randy R. Sitter. Minimum-Aberration Two-Level Fractional Factorial Split-Plot

Hongquan Xu. Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run

[5] Eric D. Schoen, Pieter T. Eendebak, and Man V. M. Nguyen. Complete enumeration of pure-level

[6] Kenneth J. Ryan and Dursun A. Bulutoglu. Minimum Aberration Fractional Factorial Designs With

[7] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. Journal of Symbolic