KU LEUVEN

Enumeration of large four-and-two-level designs

Introduction

Four-level factors are useful:

- to study multi-level categorical factors
- to study non-linear effects of numerical factors

Current catalogs of four-and-two-level designs:

- Wu \& Zhang (1993; [1]): 16 and 32-run designs, 1 or 2 four-level factors, up to 11 two-level factors
- Ankenman (1999; [2]): 16 and 32-run designs, 1, 2 or 3 four-level factors, up to 14 two-level factors
Cheese-making experiment
Screening experiment in 128 runs. There are 10 potentially influential factors
- 9 two-level factors $\rightarrow 2^{9}$
- 1 four-level factor $\rightarrow 4^{1}$

No available catalog !

Goal

Create a complete catalog of regular four-and-two-level designs with large run sizes

- Complete: all non-equivalent designs
- Large run sizes: for up to 256 runs

Methodology

Selected algorithms

- Extension procedures: Search Table (ST; [3]) , Delete-One-Factor Projection (DOP; [4]), Minimum Complete Set (MCS; [5])
- Reduction procedures: NAUTY graph isomorphism $[6,7]$, LMC canonical form testing [5]

	ST	DOP	MCS
NAUTY	ST-NAUTY	DOP-NAUTY Not optimal	

Computing times for 32-run designs

Method

- DOP
- MCS
= st
Results
Number of non-equivalent $4^{m} 2^{n}$ designs for $n \leq 20$:

	\mathbf{N}			
\mathbf{m}	$\mathbf{3 2}$	$\mathbf{6 4}$	$\mathbf{1 2 8}$	$\mathbf{2 5 6}$
$\mathbf{1}$	8,279	254	$1,442,301$	$>86,528$
$\mathbf{2}$	36,692	137	$2,837,275$	$>40,848$
$\mathbf{3}$	-	28	$2,141,911$	$>78,386$

Cheese-making experiment revisited
There are $2644^{1} 2^{9}$ designs involving 128 runs

ID	Added columns	WLP $\left(\mathrm{A}_{4}, \mathrm{~A}_{5}, \mathrm{~A}_{6}\right)$
1	$60,77,86,103$	$(0,8,6)$
2	$29,46,90,101$	$(0,9,3)$
3	$13,58,91,116$	$(1,6,6)$

- Designs 1 and 2 were not compatible with required restrictions on the randomization.
- Design 3 is the best design that is compatible with these restrictions.
- Remaining designs have inferior WLP.

References

[1] C. F. J. Wu and Runchu Zhang. Minimum aberration designs with two-level and four-level-factors Biometrika, 80(1):203-209, March 1993.
[2] Bruce E. Ankenman. Design of Experiments with Two- and Four-Level Factors. Journal of Quality
Technology, 31(4):363-375, October 1999.
3] Derek Bingham and Randy R. Sitter. Minimum-Aberr
Designs. Technometrics, $41(1): 62-70$, February 1999 .
[4] Hongquan Xu. Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run
Sizes. Technometrics, $51(3): 262-277$, August 2009 .
[5] Eric D Schoen Pieter T. Eendebak, and Man V. M
5] Eric D. Schoen, Pieter T. Eendebak, and Man V. M. Nguyen. Complete enumeration of pure-leve
and mixed-level orthogonal arrays. Journal of Combinatorial Designs, 18(2):123-140, 2010.
[6] Kenneth J. Ryan and Dursun A. Bulutoglu. Minimum Aberration Fractional Factorial Designs With
Large N. Technometrics, $52(2): 250-255$, May 2010
Computation, 60:94-112, January 2014. Practical graph isomorphism, II. Journal of Symbolic
alexandre.bohyn@kuleuven.be

