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Quantitative-Sequence (QS) factors:

• In modern scientific areas, there are non-traditional experiments considering both the quantities and se-

quences for arranging components, named as quantitative-sequence (QS) factors.

• Cancer Treatment − in vitro study:

– Three anti-tumor drugs A, B and C were added in a sequence with different doses.

– The percentage of tumor inhibition was measured six hours after administering the last drug.

Run Drug A Drug B Drug C Response

dosage order dosage order dosage order

1 3.75 µM 1 95 nM 2 0.16 µM 3 39.91

2 2.80 µM 1 70 nM 2 0.16 µM 3 30.00

3 3.75 µM 3 95 nM 1 0.16 µM 2 34.68

• Experiments with QS Inputs

– Characteristics of Quantitative-Sequence (QS) factor:

∗ Different drug dosage affects the response.

∗ Different sequence order affects the response.

∗ The QS factor is not purely continuous, not purely categorical and not purely ordinal.

– Objectives:

∗ To study the relationship between the response and the QS factor.

∗ To optimize the dosage and the order in the sequence for each drug.

– Challenges:

∗ Numerous possibilities: for k components with s levels, sk × k! possible runs.

∗ A good design for QS input is not trivial.

∗ A good statistical model for QS input is needed.

QS-learning

We propose an active learning approach (QS-learning) which includes

1. MaGP: a novel mapping-based additive Gaussian process model for prediction and uncertainty quantifi-

cation,

2. QS-EGO: a sequential scheme using efficient global optimization algorithms,

3. QS-design: a new class of optimal experimental designs for collecting initial data points.
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• Consider the ith input as wi = (xT

i ,o
T

i)
T with xi takes quantitative values and oi is a vector containing the

orders of the components in the arrangement sequence.

• For an experiment with n runs and k components, we model the output at w = (xT,oT)T as

Y (w) = µ +

k∑

h=1

Gh(w) + ε,

where G1, . . . , Gk are independent zero-mean GP with stationary covariance functions and ε ∼ N(0, τ2) is

a random error ( τ2 > 0 for physical experiments and τ2 = 0 for computer experiments).

•Gh corresponds to the impact of hth component with its covariance function φh as
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where σ2
h is the variance parameter and θh is the correlation parameter for the hth component.

• We consider mapping the order oh to a vector (õ
(1)
h , . . . , õ

(t)
h ). The t-dimensional mapping (t = 1, . . . , k−1)

for the order of any component is defined as

mapping (t = 1, . . . , k − 1) for the order of any component is defined as
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where we set δ
(j)
l = 0 for all j ≥ l to avoid over-parametrization. The interactions among

different levels (i.e., orders) could be reflected by the mapping parameters in (5) which are

estimated from the data. As all components use the same mapping, the total number of

mapping parameters is t(t+ 1)/2 + (k − t− 1)t. Specifically, when t = k − 1, we call it the

full mapping, where there are k(k − 1)/2 mapping parameters in total. When t = 2, we call

it the 2d-mapping which has (2k − 3) mapping parameters.

Example 1 As an illustration, consider a QS experiment to find the optimal sequence and

the quantity-to-add for k = 4 operations in a single production line which has four fixed

locations to be assigned with different operations. We use the same mapping for all four

operations (c1, c2, c3, c4), which quantifies the impacts due to the locations (i.e. position-

orders) to be assigned with the four operations:
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2d-mapping
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õ(1) õ(2)

0 0

δ
(1)
2 0

δ
(1)
3 δ

(2)
3

δ
(1)
4 δ

(2)
4




,

where δ
(j)
l (j < l) are parameters to be estimated via MLE.

The pre-specified tuning parameter t (t ∈ {1, . . . , k− 1}) controls the flexibility of defin-

ing similarities between pairs of order-positions. Under the full mapping (t = k − 1), all

pairwise distances between order-positions can be independently determined. It can then

capture all possible patterns on defining the similarities between sequence inputs. On

the contrary, under the 1d-mapping (t = 1), the mapping in (5) simplifies as order 1 → 0,

order 2 → δ1, . . . , order k → δk−1, or equivalently order 1 → 0, order 2 → δ
′
1, order 3 →

8

where we set δ
(j)
l = 0 for all j ≥ l to avoid over-parametrization.

QS-EGO

1. Step 1: Construct an optimal initial design for QS factors with n0 runs w1, . . . ,wn0, evaluate their responses

Y (w1), . . . , Y (wn0), and fit the MaGP model based on these observations.

2. Step 2: Let the next design point wn+1 maximize the expected improvement E[I(wn+1)] and observe

Y (wn+1). (We proposed an algorithm.)

Here for a target input w∗ = (x∗,o∗):
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3. Step 3: Re-fit the MaGP model based on observations (w1, y(w1)), . . . , (wn+1, Y (wn+1)).

4. Step 4: Repeat Step 2 and 3 until the stopping criterion is met or the maximum number of sequential runs

is reached.

QS-design

1. We propose a new class of optimal designs for QS factors, named as QS-design, which achieves space-filling

and pair-balanced properties.

2. We propose a general approach to construct QS-design with any run and factor sizes; and provide a deter-

ministic algebraic construction for certain design sizes.

3. Denote the design for QS factors as D = (X,O) where X is the quantitative part and O is the sequence

part, both using components as columns.

4. Our key idea is to first construct a good design O, and then construct a good design X in combination with

O to obtain the QS-design D = (X,O).

A Real Combinatorial Drug Experiment on Lymphoma

Lymphoma is cancer that causes lymphocytes grow out of control.

• Real Data: a 24-run three-drug (A: paclitaxel, B: doxorubicin, C: mitoxantrone) experiment for Lym-

phoma cancer treatment. (Wang et al. 2020)

– All six possible sequences of the three drugs were enumerated. For each sequence, two dose-levels for A

(Level 0: 2.8 µM; Level 1: 3.75 µM) and B (Level 0: 70 nM; Level 1: 95 nM), and a fixed dose-level for

C (0.16 µM) were considered.

– We run the proposed QS-learning to see if we can use fewer runs to identify the optimal treatment in this

experiment. We construct an 8-run QS-design to collect the initial data and the proposed QS-learning

selects 7 sequential runs until the stopping rule is satisfied.

– The true maximum response 47.18 has been found, along with the third and fourth largest responses
44.38 and 44.33.
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Simulation Studies

• Single Machine Scheduling Problem

R(x) − C(α,x) = w0

k∑

i=1

xi −
k∑

h=1

whT
2(αh)

2d-MaGP model
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• Traveling Salesman Problem

F (x,α) = ka+e
k∑

i=1

xi−bC(x, αk)−f
k∑

j=1

T (x, αj).

2d-MaGP model

●
●

●

●
●

●

●

●

●

● ●

●
●

●
●

●
●

●
●

● ●
●

●
● ● ●

●

●

● ●

●

●

●

● ●

●

●
●

● ● ● ●

0 10 20 30 40

0
20

40
60

80

Sequential runs

E
I

● ● ● ● ●

● ● ● ●

● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ●

0 10 20 30 40

27
0

29
0

31
0

33
0

Sequential runs

C
um

ul
at

iv
e 

m
ax

im
a

y = 336

Expected improvements Cumulative maximum responses

Conclusions

• In this work, we propose an active learning approach to identify optimal solutions for experiments with

quantitative-sequence (QS) factors.

• Analyzing such experiments is challenging due to their semi-discrete and possibly very large solution spaces

as well as complex input-output relationships.

• From our empirical results, the proposed QS-learning can provide desirable solutions within a few number

of sequential runs.


