Modeling and Active Learning for Experiments with Quantitative-Sequence Factors

Qian Xiao¹, Yaping Wang², Abhyuday Mandal¹, and Xinwei Deng³

¹ University of Georgia, Athens, GA ² East China Normal University, Shanghai, China ³ Virginia Tech, Blacksburg, VA

Quantitative-Sequence (QS) factors:

- In modern scientific areas, there are non-traditional experiments considering both the quantities and sequences for arranging components, named as quantitative-sequence (QS) factors.
- Cancer Treatment in vitro study:
- Three anti-tumor drugs A, B and C were added in a sequence with different doses.
- The percentage of tumor inhibition was measured six hours after administering the last drug.
 - RunDrug ADrug BDrug CResponse

QS-EGO

- 1. Step 1: Construct an optimal initial design for QS factors with n_0 runs $\mathbf{w}_1, \ldots, \mathbf{w}_{n_0}$, evaluate their responses $Y(\mathbf{w}_1), \ldots, Y(\mathbf{w}_{n_0})$, and fit the MaGP model based on these observations.
- 2. Step 2: Let the next design point \mathbf{w}_{n+1} maximize the expected improvement $E[I(\mathbf{w}_{n+1})]$ and observe $Y(\mathbf{w}_{n+1})$. (We proposed an algorithm.) Here for a target input $\mathbf{w}_* = (\mathbf{x}_*, \mathbf{o}_*)$:

	dosage	order	dosage	order	dosage	order	
1	$3.75 \ \mu M$	1	95 nM	2	$0.16 \ \mu M$	3	39.91 👗
2	$2.80~\mu\mathrm{M}$	1	70 nM	2	$0.16~\mu\mathrm{M}$	3	30.00 📥
3	$3.75~\mu\mathrm{M}$	3	95 nM	1	$0.16~\mu\mathrm{M}$	2	34.68

• Experiments with QS Inputs

- Characteristics of Quantitative-Sequence (QS) factor:

* Different drug dosage affects the response.

* Different sequence order affects the response.

* The QS factor is not purely continuous, not purely categorical and not purely ordinal.

- Objectives:

- \ast To study the relationship between the response and the QS factor.
- * To optimize the dosage and the order in the sequence for each drug.

- Challenges:

* Numerous possibilities: for k components with s levels, $s^k \times k!$ possible runs. * A good design for QS input is not trivial. * A good statistical model for QS input is needed.

QS-learning

We propose an active learning approach (QS-learning) which includes

- 1. **MaGP**: a novel mapping-based additive Gaussian process model for prediction and uncertainty quantification,
- 2. **QS-EGO**: a sequential scheme using efficient global optimization algorithms,
- 3. **QS-design**: a new class of optimal experimental designs for collecting initial data points.

 $E[I(w^*)] = (y_{\min}^{(n)} - \widehat{Y}(\mathbf{w}_*))\Phi\left(\frac{y_{\min}^{(n)} - \widehat{Y}(\mathbf{w}_*)}{s(\mathbf{w}_*)}\right) + s(\mathbf{w}_*)\varphi\left(\frac{y_{\min}^{(n)} - \widehat{Y}(\mathbf{w}_*)}{s(\mathbf{w}_*)}\right)$

3. Step 3: Re-fit the MaGP model based on observations $(\mathbf{w}_1, y(\mathbf{w}_1)), \ldots, (\mathbf{w}_{n+1}, Y(\mathbf{w}_{n+1}))$.

4. Step 4: Repeat Step 2 and 3 until the stopping criterion is met or the maximum number of sequential runs is reached.

QS-design

- 1. We propose a new class of optimal designs for QS factors, named as QS-design, which achieves space-filling and pair-balanced properties.
- 2. We propose a general approach to construct QS-design with any run and factor sizes; and provide a deterministic algebraic construction for certain design sizes.
- 3. Denote the design for QS factors as D = (X, O) where X is the quantitative part and O is the sequence part, both using components as columns.
- 4. Our key idea is to first construct a good design O, and then construct a good design X in combination with O to obtain the QS-design D = (X, O).

A Real Combinatorial Drug Experiment on Lymphoma

Lymphoma is cancer that causes lymphocytes grow out of control.

- \bullet Real Data: a 24-run three-drug (A: paclitaxel, B: doxorubicin, C: mitoxantrone) experiment for Lymphoma cancer treatment. (Wang et al. 2020)
- All six possible sequences of the three drugs were enumerated. For each sequence, two dose-levels for A (Level 0: 2.8 μ M; Level 1: 3.75 μ M) and B (Level 0: 70 nM; Level 1: 95 nM), and a fixed dose-level for C (0.16 μ M) were considered.

MaGP

- Consider the i^{th} input as $\mathbf{w}_i = (\mathbf{x}_i^{\mathsf{T}}, \mathbf{o}_i^{\mathsf{T}})^{\mathsf{T}}$ with \mathbf{x}_i takes quantitative values and \mathbf{o}_i is a vector containing the orders of the components in the arrangement sequence.
- For an experiment with n runs and k components, we model the output at $\mathbf{w} = (\mathbf{x}^{\mathrm{T}}, \mathbf{o}^{\mathrm{T}})^{\mathrm{T}}$ as

$$Y(\mathbf{w}) = \mu + \sum_{h=1}^{k} G_h(\mathbf{w}) + \epsilon,$$

where G₁,..., G_k are independent zero-mean GP with stationary covariance functions and ε ~ N(0, τ²) is a random error (τ² > 0 for physical experiments and τ² = 0 for computer experiments).
G_h corresponds to the impact of hth component with its covariance function φ_h as

$$\phi_h(\mathbf{w}_i, \mathbf{w}_j) = \sigma_h^2 \exp\left\{-\theta_h (x_{i,h} - x_{j,h})^2\right\} \exp\left\{-\sum_{l=1}^t (\tilde{o}_{i,h}^{(l)} - \tilde{o}_{j,h}^{(l)})^2\right\}$$

where σ_h^2 is the variance parameter and θ_h is the correlation parameter for the h^{th} component.

- We run the proposed QS-learning to see if we can use fewer runs to identify the optimal treatment in this experiment. We construct an 8-run QS-design to collect the initial data and the proposed QS-learning selects 7 sequential runs until the stopping rule is satisfied.
- The true maximum response 47.18 has been found, along with the third and fourth largest responses 44.38 and 44.33.

X_A	O_A	X_B	O_B	O_C	Y		V	0	\mathbf{V}	0	0	V
0	3	0	2	1	35.04			O_A	X_B	O_B	O_C	Y .
1	2	0	1	3	22.26		1	2	1	1	3	17.08
	1	1	יד ר	0 ถ	12.20		1	1	1	2	3	39.91
0	1	1	5	2	45.95	+	1	2	0	3	1	31.40
1	2	1	3	1	20.88		1	1	0	2	3	44 33
0	1	0	2	3	30.00			1	1	2 2	0 ว	11.00
1	1	0	3	2	38.18			1	1	о О	7	44.30
0	2	1	1	3	26.02			3	Ţ	2	Ţ	37.37
1	2 9	1	1	ິ ງ	20.02		0	1	0	3	2	47.18
1	5	1	T	Ζ	34.08		L					•

Simulation Studies

• Single Machine Scheduling Problem • Traveling Salesman Problem $R(\mathbf{x}) - C(\boldsymbol{\alpha}, \mathbf{x}) = w_0 \sum_{i=1}^k x_i - \sum_{h=1}^k w_h T^2(\alpha_h) \qquad F(\mathbf{x}, \boldsymbol{\alpha}) = ka + e \sum_{i=1}^k x_i - bC(\mathbf{x}, \alpha_k) - f \sum_{j=1}^k T(\mathbf{x}, \alpha_j).$ 2d-MaGP model 2d-MaGP model

• We consider mapping the order o_h to a vector $(\tilde{o}_h^{(1)}, \ldots, \tilde{o}_h^{(t)})$. The *t*-dimensional mapping $(t = 1, \ldots, k-1)$ for the order of any component is defined as

$$\begin{bmatrix} 1 \\ 2 \\ \vdots \\ k \end{bmatrix} \rightarrow \begin{bmatrix} \delta_{1}^{(1)} & \delta_{1}^{(2)} & \dots & \delta_{1}^{(t)} \\ \delta_{2}^{(1)} & \delta_{2}^{(2)} & \dots & \delta_{2}^{(t)} \\ \vdots & \vdots & \vdots & \vdots \\ \delta_{k}^{(1)} & \delta_{k}^{(2)} & \dots & \delta_{k}^{(t)} \end{bmatrix}_{k \times t} ,$$

where we set $\delta_l^{(j)} = 0$ for all $j \ge l$ to avoid over-parametrization.

Expected improvements Cumulative maximum responses

Expected improvements Cumulative maximum responses

Conclusions

- In this work, we propose an active learning approach to identify optimal solutions for experiments with quantitative-sequence (QS) factors.
- Analyzing such experiments is challenging due to their semi-discrete and possibly very large solution spaces as well as complex input-output relationships.
- From our empirical results, the proposed QS-learning can provide desirable solutions within a few number of sequential runs.