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Abstract4

To weight or not to weight in regression analyses with survey data has been debated in the5

literature. The problem is essentially a tradeoff between the bias and the variance of the6

regression coefficient estimator. An array of diagnostic tests for informative weights have7

been developed. Nonetheless, studies comparing the performance of the tests, especially8

for finite samples, are scarce, and the theoretical equivalence of some tests has not been9

investigated. Focusing on the linear regression setting, we review a collection of such tests10

and propose enhanced versions of some of them that require an auxiliary regression model for11

the weight. Further, the equivalence of two popular tests is established which has not been12

reported before. In contrast to existing reviews with no empirical comparison, we compare13

the sizes and powers of the tests in simulation studies. The reviewed tests are applied to an14

regression analysis of the family expenditure using the data from the China Family Panel15

Study.16

Keywords: bias-variance tradeoff; complex survey; hypothesis test; weighted regression17



1 Introduction18

To weight or not to weight in analyses of survey data is a long standing question for survey19

methodologists, dating back to Smith (1988). The same question keeps coming back in20

statistics (e.g., Bertolet, 2008) as well as application fields such as epidemiology (Frohlich21

et al., 2001; Tchetgen et al., 2012), economics (Nguyen and Murphy, 2015; Gluschenko,22

2018), and social and behavioral studies (Hsieh, 2004). Survey data are often released23

with a weight for each observation. “Contrary to what is assumed by many theoretical24

statisticians, survey weights are not in general equal to inverse probabilities of selection25

but rather are typically constructed based on a combination of probability calculations and26

nonresponse adjustments” (Gelman, 2007, p.153). There is a general consensus that weights27

should be used for descriptive statistics such as means and ratios (e.g., Kish and Frankel,28

1974). For regression models, however, it has been debated on whether weights should be29

used (Winship and Radbill, 1994; Gelman, 2007; Solon et al., 2015). When weights are quite30

different, especially when they represent different probabilities of being selected, weighting31

corrects biases in inferences about the population. If weights are ingorable in the sense32

that the inference is valid without them, not weighting may be preferred for lower variance33

than otherwise. Given the fundamental importance of linear regression in practice and the34

extensibility of the concepts beyond linear regression, we limit our scope to diagnostic tests35

of informative weight in linear regression.36

A recent review by Bollen et al. (2016) classifies the tests for the necessity of weights37

in regression analysis into two groups. Tests in the first group are difference-in-coefficients38

(DC) tests, which examine whether the difference between the weighted and unweighted co-39

efficients estimates is different from zero (Kott, 1991; Pfeffermann, 1993). Tests in the second40

group are weight-association (WA) tests, which examine whether the weight is informative41

about the response variable after conditioning on the covariates (Dumouchel and Duncan,42

1983; Pfeffermann and Sverchkov, 1999; Wu and Fuller, 2005; Pfeffermann and Sverchkov,43

2007). Bollen et al. (2016) conceptually reviewed the assumptions and properties of the44
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tests, and noted that Monte Carlo simulation studies on the finite sample performance of45

these tests are quite limited, most of which were designed to illustrate a new test with a46

small simulation study to demonstrate its potential. Unaddressed questions remain that are47

important for guiding the practitioners. For example, do these tests hold their size? Which48

tests have higher power? Are some of the tests equivalent to each other? Are there software49

implementations for the tests?50

There are tests that belong to neither the DC nor the WA groups. Some are reviewed51

as tests of informative sampling process (Pfeffermann and Sverchkov, 2003, Section 12.2.2)52

or sampling ignorability (Pfeffermann and Sverchkov, 2010, Section 7). Pfeffermann and53

Nathan (1985) proposed a test based comparing the out-of-sample prediction power between54

the weighted and unweighted fits. A large difference in squared prediction errors indicates55

non-ignorable weights. Pfeffermann and Sverchkov (2003) proposed a test that compares56

the estimating equations with and without the weights. The estimating equations could57

be score equations if likelihood is specified, but can be more general without distributional58

assumption. Eideh and Nathan (2006) proposed to test based on the Kullback–Leibler59

information against exponential or linear inclusion probability models. It was claimed that60

the testing statistic follows a chi-squared distribution with one degree of freedom. In their61

simulation study, however, the null distribution of the test statistics appears to be far different62

from chi-squared with one degree of freedom (Eideh and Nathan, 2006, Table 3). This test63

thus needs a rigorous further investigation. Finally, Breidt et al. (2013) proposed a likelihood64

ratio (LR) test that compares two weighted log-likelihoods with different weights. The null65

distribution of the test statistic is a mixture of chi-squared distributions with one degree of66

freedom, The performances of these tests in comparison with those reviewed by Bollen et al.67

(2016) would be a great practical value.68

This paper revisits an array of diagnostic tests on ignorable weights in linear regression69

with survey data. We focus on linear regression as this is the arena where most of the widely70

used model in survey data analysis in many fields. Only unclustered and homoskedastic71
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scenarios are considered to simplify the presentation and to remain consistent with the72

literature as there is a lot to summarize. Our contribution is three-fold. First, we conduct73

a comprehensive numerical study to compare the size and power of a few commonly used74

tests and their variations in several scenarios. Such comparison has been long missing in the75

literature. Some tests need an auxiliary linear model, which may not pick up the nonlinear76

associations. Some tests were found to performed almost identically in the study, which77

led to our second contribution — we establish the equivalence of two powerful tests. The78

test statistics of the DC test of Pfeffermann (1993) and the WA test of Dumouchel and79

Duncan (1983) are 1-to-1 maps of each other. Finally, the tests are applied to a regression80

analysis of family expenditures with data from the China Family Panel Studies (CFPS) and81

its subsamples of different sizes.82

2 Tests for Necessity of Weight in Regression83

Consider a regression analysis arising from a survey data obtained without clustered sam-84

pling. Suppose that the survey consists of a sample S from a finite population U of size N .85

The linear regression model for the population U is assumed to be86

Yj = Xjβ + ϵj, j ∈ U, (1)

where Yj is the response variable, Xj is a p× 1 covariate vector (including a component of 187

for intercept), β is a p × 1 vector of regression coefficients, and the regression error ϵj has88

mean zero and variance σ2. The observed survey data S of sample size n is {(Yi, Xi,Wi) :89

i = 1, . . . , n}, where Wi is the survey weight associated with the ith observation. Each90

weight Wi may or may not be the inverse probability of selection. Let Y = (Y1, . . . , Yn)
⊤,91

X = (X⊤
1 , . . . , X

⊤
p )

⊤, ϵ = (ϵ1, . . . , ϵn)
⊤, andW = (W1, . . . ,Wn)

⊤. A working linear regression92

of Y on X for the survey data is93

Y = Xβ + ϵ. (2)
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We are interested in testing the necessity of weighting in fitting (2) to the observed data in94

estimating β, that is, testing whether an unweighted estimator for the β in (2) is unbiased for95

the population parameter β in regression (1). Based on the observed survey data. the least96

squares estimators of β are β̂u = (X⊤X)−1XY without weight and β̂w = (X⊤HX)−1XHY97

with weight matrix H = diag(W ). Tests for the necessity of weight attempt to answer the98

question whether or not to weight. We review six such tests in approximately chronological99

order as follows.100

2.1 Dumouchel–Duncan’s WA Test101

Dumouchel and Duncan (1983) proposed the first WA test for testing informative weights.102

A WA test checks whether it holds that103

H0 : E(Y |X,W ) = E(Y |X). (3)

For linear regression (2), the null hypothesis (3) is equivalent to that the coefficients of the104

interactions between X and the weight are zero in an extended linear model (e.g., Fuller,105

2009, Section 6.3.1). The latter can be easily tested by an F -test. Specifically, consider the106

extended regression model107

E(Y |X,W ) = Xβ +HXγ, (4)

where γ is a p × 1 coefficient vector of HX. Ignorable weight is tested by an F -test for108

H0 : γ = 0 with testing statistic109

F =
(SSEr − SSEf )/p

SSEf/(n− 2p)
, (5)

where SSEr and SSEf are the residual sum of squares under the reduced model (2) and under110

the full model (4), respectively. Under γ = 0 and normality assumption of the regression111

errors, F follows an F (p, n − 2p) distribution. Without the normality assumption, the null112
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distribution is asymptotically F (p, n−2p) for large n. Rejection of γ = 0 implies that weights113

are informative; otherwise, there is no sufficient evidence against the unweighted analysis.114

2.2 Pfeffermann–Nathan’s Test Based on Predictive Power115

Pfeffermann and Nathan (1985) proposed a simple test based on comparing the out-of-sample116

predictive power between the weighted and unweighted estimation. Let S = E + V define117

a split of the sample into two mutually exclusive subsamples E for estimation and V for118

validation. Weighted and unweighted regressions fitted with the estimation set E are used119

to make predictions for observations in the validation set V . Let υui and υwi, i ∈ V , denote120

the prediction errors under the unweighted fit and weighted fit, respectively. Uninformative121

weight implies122

H0 : E(υ2ui − υ2wi) = 0, i ∈ V.

This hypothesis can be tested by standard Z-test with Z = D̄/SD, where D̄ and S2
D are the123

sample mean and sample variance of Di’s, i ∈ V , with Di = υ2ui − υ2wi.124

Implementation of this prescription requires a random splitting of the sample, so the125

result is subject to the random split. The prediction errors are only independent conditional126

on the estimation set E, but not unconditionally independent because they are calculated127

based on the same β̂u or β̂w. There has been no study of the size and power of the test.128

The dependence among the prediction errors may render the test to have empirical sizes129

exceeding its nominal sizes. The reduced sample size by half in the construction of the Z130

may drastically reduce its power. Both conjectures are observed in our numerical studies.131

2.3 Hausman–Pfeffermann’s DC Test132

Pfeffermann (1993) proposed a DC test which directly compares β̂u and β̂w using a model133

specification test in econometrics studied by Hausman (1978). Hausman’s test can be used134

to detect omitted variables, incorrect functional forms, and other model misspecifications.135
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If the weight W is noninformative about Y conditional on X, then β̂u and β̂w converge to136

the same target β as the sample size n increases. A DC test checks whether it holds that137

H0 : E(β̂u) = E(β̂w), (6)

The test statistic is138

T = (β̂u − β̂w)
⊤V̂ −1(β̂u − β̂w), (7)

where V̂ is an estimate of V = V(β̂u − β̂w). The asymptotic null distribution of T is χ2
p.139

When the null hypothesis is rejected, it may be of interest to identify which coefficients are140

causing the rejection. This can be done by considering statistic d̂2i /V̂ii, i = 1, . . . , p, where141

d̂i is the ith component of β̂u − β̂w and V̂Ii is the ith component of the diagonal of V̂ . This142

statistics has asymptotic null distribution of χ2
1.143

In implementation, the estimate V̂ of V needs some care. Hausman (1978) suggested144

V̂ = V̂(β̂w) − V̂(β̂u) because Cov(β̂u, β̂w − β̂u) = 0. Unfortunately, this estimator is not145

necessarily positive definite for small to moderate sample sizes. Asparouhov and Muthen146

(2007) extended the test to compare the estimators from two different weights and proposed147

an estimator for V that is always positive definite. Specifically, they suggested V̂AM =148

[V̂(β̂w)+V̂(β̂u)−2C], where C is an estimator of the covariance matrix of the two estimators.149

This estimator C is not straightforward to obtain. An explicit variance estimator can be150

obtained by fitting a regression model with augmented data including weight (Kott, 2018)151

using a regression routine that allows “design-based” variance estimator. An additional152

advantage is that the resulting test is heteroscedastic-resistant. We propose a more direct153

estimator V̂ = σ̂2AA⊤, where A = (X⊤HX)−1X⊤H − (X⊤X)−1X⊤, and σ̂2 is an estimator154

of the σ2 from least squares under the null hypothesis of noninformative weight. This V̂ is155

different from V̂(β̂w)− V̂(β̂u) in that σ̂2 in V̂(β̂w) is obtained without weight.156

The test statistics of the DC test of Pfeffermann (1993) and the WA test of Dumouchel157

and Duncan (1983) are 1-to-1 maps of each other.158
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Theorem 1. Under the null hypothesis of noninformative weight for the linear model (2), the159

Hausman–Pfeffermann test and the Dumouchel–Duncan test are asymptotically equivalent.160

If the σ2 for the test in (7) is estimated with the mean squared error from the model in (4),161

then the statistics T in (7) and F in (5) are 1-to-1 maps of each other via T = pF .162

The result does not appear to have been noted in the literature. The proof is in the163

Appendix.164

2.4 Pfeffermann–Sverchkov’s WA Tests165

Pfeffermann and Sverchkov proposed multiple WA tests in a sequence of works. Pfeffermann166

and Sverchkov (1999) checked the association between the residuals from the unweighted167

regression and weights. Let ϵ̂u = Y − Xβ̂u. Pfeffermann and Sverchkov (1999) considered168

hypotheses H0k : Corr(ϵ̂
k
u,W ) = 0, k = 1, 2, 3. For a given k, the sample correlation after the169

Fisher transformation follows a normal distribution asymptotically under the null hypothesis.170

Alternatively, Pfeffermann and Sverchkov (1999) suggested considering regressing W on ϵ̂ku:171

E(W |ϵ̂ku) = α + β(k)ϵ̂ku, k = 1, 2, 3, (8)

where α and β(k) are the intercept and slope coefficient, respectively. Then, for a given172

k, a t-test H0k : β(k) = 0 is conducted. The two methods were reported to have similar173

performance.174

The tests of Pfeffermann and Sverchkov (1999) has two limitations. First, for k = 1, 2, 3175

together, a multiple testing issue arises and needs to be appropriately taken care of. Second,176

the regression model forW in Equation (8) does not condition onX so that a high correlation177

between W and ϵ̂u could be due to X. Here we propose a simple modification by regressing178

W on the first two moments of ϵ̂u and its interaction with X in addition to X:179

E(W |ϵ̂u) = f(X; η) +
2∑

k=1

β(k)ϵ̂ku + diag(ϵ̂u)Xγ, (9)
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where f(X; η) is some function of X with parameter η, β(1) and β(2) are scalars, δ is a p× 1180

coefficient vector for X, and γ is a p× 1 coefficient vector for the interaction between X and181

ϵ̂. The simplest forms of f(X; η) are linear and quadratic in X. Then we test the hypothesis182

H0 : β
(1) = β(2) = 0, γ = 0 by a standard F -test.183

Pfeffermann and Sverchkov (2007) suggested another WA test based on regressing W on184

both X and Y :185

E(W |X, Y ) = Xη + Y γ. (10)

Then a t-test is conducted for the hypothesis H0 : γ = 0. Rejecting the hypothesis implies186

that the weight is informative for Y . This test was studied in the context of small area187

estimation, where the same test was conducted in multiple areas.188

The regression model (10) only captures the linear relationship between W and (X, Y ).189

To capture possible nonlinear relationships, here we propose a simple modification by con-190

sidering regression model191

E(W |X, Y ) = f(X; η) +
2∑

k=1

Y kγk, (11)

where f(X; η) is some function of X with parameter η, γk is the coefficient of Y k, k =192

1, 2. The simplest forms of f(X; η) are linear and quadratic. An F -test for hypothesis193

H0 : γ1 = γ2 = 0 can then be used to determines whether W and Y are associated given X.194

Misspecification of f may have serious consequences; in some scenarios we have experimented,195

the size of the test can be completely ruined.196

2.5 Pfeffermann–Sverchkov’s Test Based on Estimating Equations197

Pfeffermann and Sverchkov (2003) proposed a test that uses the estimating equations to198

estimate β. This test requires an auxiliary regression model for W , E(W |X) = f(X; η),199

which is some function of X with parameter η. The unweighted estimating function δi(β) =200

Xi(Yi −X⊤
i β), i ∈ S. Let Ŵi be the fitted value of this regression. Define qi = Wi/Ŵi. Let201
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R(Xi; β) = δi(β)− qiδi(β). Ignorable sampling weight means202

H0 : E[R(Xi; β)] = 0.

This hypothesis can be tested by a Hotelling statistic203

n− p

p
R̄T

n Σ̂
−1
R,nR̄n,

where R̄n is the sample mean and Σ̂R,n is the sample variance matrix of R(Xi; β̂u)’s, i ∈ S.204

The statistic follows approximately an F distribution with degrees of freedom (p, n − p)205

under the null hypothesis.206

Implementation of this test can use any valid estimating equations. If likelihood is spec-207

ified, for example, it can be the score equations as Pfeffermann and Sverchkov (2003) sug-208

gested. The simplest form of f(X; η) is a linear regression, but a more flexible form accom-209

modating non-linearity could improve the power of the test at the cost of a model buiding210

process for W .211

2.6 Wu–Fuller’s WA Test212

Wu and Fuller (2005) proposes a WA test which takes a slightly different extended model213

than that in Dumouchel and Duncan (1983). Similar to Pfeffermann and Sverchkov (2003),214

this test also requires an auxiliary regression model for W , E(W |X) = f(X; η). Let Q =215

diag(q1, . . . , qn), where qi’s are the same as defined in the last subsection. Consider an216

extended regression217

E(Y |X,W ) = Xβ +QXγ.

This regression was suggested by Pfeffermann and Sverchkov (1999) for estimating regression218

models with survey data. Wu and Fuller (2005) used it to test for informative weight by219

testing H0 : γ = 0 with a standard F -test as in Wu and Fuller (2005).220
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The rational of this test is to check the impact ofW on Y after removing the information221

contained in X. The definition of qi’s factors out the part in the weightWi that is predictable222

by Xi. If weight is informative for Y after conditioning on X, then QX is expected to have223

a significantly nonzero coefficient γ in the extended regression. Otherwise, one would expect224

γ = 0. Implementing this test requires an auxiliary regression of W on X, f(x; η). As225

for Pfeffermann and Sverchkov (2003), a model building process may be beneficial. Poor226

approximation for the relation between W and X might lead to incorrect size and poor227

power of the test.228

2.7 LR Test229

Breidt et al. (2013) proposed an LR test, which is neither a DC nor a WA test. A super-230

population model is assumed that have generated the finite population U . Suppose that231

the conditional distribution Yi given Xi in the superpopulation has density f(·|Xi; θ) with232

parameter vector θ of dimension q with true value θ0. Here θ contains β as a subset. For233

example, if the distribution is normal, there is a variance parameter in addition to β in θ.234

Note that ln f(Yi|Xi; θ) is the log-likelihood for the superpopulation distribution, but it may235

not be the log-likelihood for an observation in the sampled data. For convenience, we still236

call it log-likelihood as in Breidt et al. (2013).237

A weighted log-likelihood with a general weight vector ω = (ω1, . . . , ωn)
⊤ is238

l(θ;ω) =
n∑

i=1

ωi ln f(Yi|Xi; θ).

Let θ̂U = argminθ l(θ;U), where U = (1, . . . , 1)⊤, and θ̂W = argminθ l(θ;W ). Two LR239

statistics are considered:240

TU = 2
{
l(θ̂U ;U)− l(θ̂W ;U)

}
= n(θ̂U − θ̂W )TJU(θ̂U − θ̂W ) + op(1),

TW = 2
{
l(θ̂W ;W )− l(θ̂U ;W )

}
= n(θ̂W − θ̂U)

TJW (θ̂W − θ̂U) + op(1),
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where Jω = limn→∞
1
n

∑n
i=1 ωiI(xi; θ0), ω ∈ {U,W}, and I(xi; θ0) is the Fisher Information241

for the ith observation. Under the null hypothesis of noninformative weight, n1/2(θ̂W −242

θ̂U)
L−→ N (0,−J−1

U + J−1
W KWJ

−1
W ), where KW = limn→∞

1
n

∑
i∈S W

2
i I(xi; θ0). The asymptotic243

distribution of Tω, ω ∈ {U,W}, is Tω
L−→

∑q
j=1 λωjZ

2
j , where λω is the vector of eigenvalues244

of245

(−J−1
U + J−1

W KWJ
−1
W )T/2Jω(−J−1

U + J−1
W KWJ

−1
W )1/2

and Zj’s, j = 1, . . . , p, are independent N (0, 1) variables.246

Implementation of the LR tests require maximizing both the weighted and unweighted247

log-likelihood. The limiting distribution is not chi-square as in the commonly encountered248

situations. Instead, it is a linear combination of chi-square random variables with coefficients249

being the eigenvalues of a certain matrix. This matrix depends on the true parameter θ0,250

which has to be evaluated at an estimate θ̂U . This method is limited in that it requires dis-251

tributional specification of the regression errors. The validity of the test may be undermined252

if the distribution is misspecified.253

3 Simulation Studies254

Two simulation studies were conducted to compare the performances of the reviewed tests.255

Eight tests were included in the comparison with the following abbreviations : DD (Du-256

mouchel and Duncan, 1983); PN (Pfeffermann and Nathan, 1985); HP (Hausman, 1978;257

Pfeffermann, 1993); PS1 (Pfeffermann and Sverchkov, 1999); PS2 (Pfeffermann and Sver-258

chkov, 2007); PS3 (Pfeffermann and Sverchkov, 2003); WF (Wu and Fuller, 2005); LR (Breidt259

et al., 2013). The LR test used the one based on TU because it performed better than TW260

in our studies. For PS1 and PS2 that requires regressing W on residuals of Y or Y itself,261

we also used versions that uses quadratic terms to model possible nonlinearity. They are262

abbreviated as PS1q and PS2q, respectively, and also included in the comparison study.263
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3.1 Study 1264

The first study was adapted from Pfeffermann and Sverchkov (1999), A population of size265

N = 3, 000 was generated for (Yi, Xi) with a linear regression model266

Yi = 1 +Xi + εi, i = 1, . . . , N, (12)

where Xi’s were independently generated from the standard uniform distribution U(0, 1) and267

εi’s were independently generated from N (0, σ2) with σ ∈ {0.1, 0.2}. The levels of σ here are268

lower than that used in Pfeffermann and Sverchkov (1999) so that the differences in power269

are visible. Samples of size n ∈ {100, 200} were drawn from the population with probability270

proportional to weight defined by271

Wi = aYi + 0.3Xi + δUi, (13)

where Ui’s are independently drawn from U(0, 1), δ has two levels (1, 1.5), and a has four272

levels (0, 0.2, 0.4, 0.6). When a = 0, the weight Wi is not informative about Yi conditioning273

on Xi. This design led to 2 × 2 × 2 × 4 = 32 configurations. For each configuration, we274

generated 1,000 samples, and applied the nine tests to each sample.275

Table 1 shows the empirical rejection rates of the ten tests with significance level 0.05276

as a function of a. In all the settings for a = 0, the rejection rates are close to 0.05 except277

for the PN test, indicating that these tests maintain their sizes in this study. The empirical278

size of the PN test is repetitively above the nominal size 0.05, which may be explained by279

the dependence among the prediction errors introduced by the shared coefficient estimates.280

Despite being liberal, PN has power that is much lower than other tests due to halved sample281

size. Therefore, PN is excluded in the discussions in the sequel.282

Next we compare the powers of the tests with PN excluded. As a deviates from zero283

further or sample size n increases, the power of all tests in all settings increases. Other factors284
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Table 1: Empirical rejection percentages of ten tests in Study 1 with W linear in Y based
on 1000 replicaties for normal regression error and sample size n ∈ {100, 200}. The rejection
rates are sizes when a = 0 and powers otherwise.

n σ δ a DD PN HP PS1 PS1q PS2 PS2q PS3 WF LR

100 0.1 1.5 0.0 5.9 8.3 5.6 5.2 4.9 5.4 6.0 4.3 5.8 6.2
0.2 5.9 6.8 5.4 4.6 5.8 5.6 5.4 4.1 5.7 6.9
0.4 9.6 9.1 9.2 8.8 8.8 11.6 10.6 6.4 9.6 8.6
0.6 21.2 12.2 21.0 17.4 16.9 27.1 19.8 13.6 21.2 16.5

1 0.0 4.6 9.5 4.5 4.9 4.6 5.9 3.8 4.0 4.7 5.4
0.2 7.2 8.9 6.9 6.7 6.8 9.0 7.2 5.3 7.4 7.1
0.4 21.1 11.0 21.1 16.1 18.9 28.6 21.2 14.0 21.2 14.6
0.6 41.6 12.4 40.7 28.4 34.9 51.2 40.4 28.0 40.6 25.9

0.2 1.5 0.0 5.7 5.9 5.5 4.9 3.9 5.3 4.9 3.2 5.0 5.1
0.2 9.6 8.0 9.3 11.2 10.1 13.3 10.5 7.7 10.0 10.3
0.4 31.5 11.5 30.9 33.7 27.5 41.6 31.1 19.8 31.3 24.8
0.6 64.7 16.1 63.9 65.9 58.0 75.3 64.4 47.1 63.9 48.9

1 0.0 6.0 8.1 5.8 4.1 5.1 4.6 5.9 4.7 6.2 5.8
0.2 16.4 9.5 16.2 17.3 14.8 23.2 16.4 9.9 16.4 12.8
0.4 63.3 15.8 62.9 59.0 55.1 73.3 62.6 44.4 62.7 46.1
0.6 94.6 25.5 94.3 90.2 92.0 97.6 94.2 85.8 94.1 81.7

200 0.1 1.5 0.0 4.5 7.3 4.4 3.9 4.3 4.2 4.0 4.5 4.1 4.8
0.2 9.0 8.4 8.9 8.1 8.9 9.9 9.0 8.4 9.6 8.6
0.4 17.8 11.4 17.6 17.7 14.8 22.0 16.7 13.0 17.9 14.4
0.6 39.6 12.4 39.4 36.6 33.4 48.1 38.8 28.5 38.9 28.0

1 0.0 4.8 7.2 4.7 3.2 4.5 4.3 4.5 4.7 5.1 5.5
0.2 10.5 10.8 10.4 9.8 11.9 14.5 11.3 9.2 11.8 9.6
0.4 36.1 14.6 35.6 29.4 31.4 46.2 36.0 27.2 35.7 23.9
0.6 70.4 19.5 70.1 58.4 64.2 80.5 71.2 57.1 70.8 47.3

0.2 1.5 0.0 4.4 8.3 4.3 4.5 4.5 4.7 4.7 4.5 4.5 5.0
0.2 18.4 10.2 18.0 19.6 15.6 21.5 18.7 14.1 18.0 15.8
0.4 57.4 14.7 57.1 61.2 50.0 67.8 57.1 45.7 56.7 47.4
0.6 91.7 25.2 91.5 91.8 89.0 96.1 92.1 86.3 91.8 83.1

1 0.0 4.4 8.3 4.4 3.2 4.3 4.4 4.2 5.5 4.7 4.2
0.2 35.0 13.9 34.8 35.4 31.3 44.2 34.9 26.9 35.0 27.5
0.4 92.2 26.6 92.0 92.1 87.2 96.4 91.7 85.7 91.8 81.1
0.6 100.0 49.6 100.0 99.8 99.9 100.0 100.0 99.7 100.0 98.8

held constant, higher δ leads to lower power because of more noise in the weight model (13).285

In contrast, higher σ leads to higher power, which is expected as higher σ means higher286

variation of Yi and, hence, higher signal-to-noise ratio in the weight model (13). Among all287

the tests, PS2 appears to have the highest power in all the settings, followed by DD, HP,288
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and WF which are very similar. PS3 and LR appears to have the lowest power in all the289

settings. The modified versions PS1q and PS2q are a bit less powerful than PS1 and PS2,290

respectively. PS3 is not better than the DD or HP.291

The finite sample performance of the tests, especially the LR test, may depend on the292

distribution of the regression error. To investigate this issue, we considered three additional293

distributions of ϵi in Equation (12): 1) gamma with shape 10 and scale
√
10/σ2; 2) student294

t with 5-degrees of freedom and scale
√

5/3σ2; 3) uniform (0,
√

12/σ2). These distributions295

were centered by their means so that they have mean zero and variance σ2, matching the first296

two moments of N (0, σ2). Table 2 shows the empirical rejection percentage of the tests with297

σ = 0.1 and δ = 1 under different error distributions. The LR test does not hold its size in298

the case of heavy-tailed regression error, t distribution; under other distributions, it appears299

to hold its size. The performances of all other tests are robust to the error distribution,300

which is expected because their null distributions are asymptotically valid regardless of the301

error distribution. The relative performances of these tests remain in the same order as those302

under the normal regression error.303

Now we change the weight generation model from a linear function in X and Y to a304

quadratic function in X and Y :305

Wi = a(Yi − 1.5a)2 + 0.3Xi − 0.3X2
i + Ui, (14)

where Ui’s are independent U(0, 1) variables, and the scalar parameter a controlling the306

informativeness of W for Y has four levels {0, 0.5, 1.0, 1.5}. This design has interesting307

features. When a = 0, the weight is obviously noninformative. When a ̸= 0, the weight is308

informative, but for a = 1, the partial correlation between Wi and Yi is zero, which makes it309

hard to tests based on an auxiliary linear regression for Wi to detect the informativeness of310

Wi. Table 3 summarizes the empirical powers in percentage of the tests with σ = 0.1 based311

on 1000 replicates. All tests reported here hold their sizes when a = 0. When a = 0.5, all312
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Table 2: Empirical rejection percentages of ten tests in Study 1 with W linear in Y based
on 1000 replicaties for different error distributions and sample size n ∈ {100, 200}. The
rejection rates are sizes when a = 0 and powers otherwise.

Distribution n a DD PN HP PS1 PS1q PS2 PS2q PS3 WF LR

normal 100 0.0 5.1 8.0 5.0 4.6 4.2 5.7 4.8 3.7 4.7 5.3
0.2 8.9 6.2 8.8 6.7 8.4 10.1 8.7 5.2 8.2 7.5
0.4 19.3 11.8 19.1 13.4 16.7 23.9 18.3 12.9 19.4 12.0
0.6 42.3 12.0 41.8 28.9 36.5 52.4 42.7 26.6 42.3 24.1

200 0.0 5.0 10.2 4.8 3.4 5.0 3.9 4.3 4.8 4.8 5.7
0.2 11.7 10.1 11.6 10.4 10.1 14.5 10.5 7.7 10.8 11.2
0.4 36.8 11.4 36.4 29.3 29.7 44.6 34.8 27.3 35.0 24.6
0.6 72.1 19.9 71.8 61.1 65.1 81.6 71.9 59.9 71.3 49.3

unif 100 0.0 5.3 6.7 5.1 3.2 4.6 3.8 4.4 4.5 4.7 3.0
0.2 10.3 7.8 10.1 8.3 8.2 11.5 9.0 7.6 10.1 4.8
0.4 15.9 10.2 15.4 12.7 14.3 22.3 16.2 13.9 17.3 9.5
0.6 39.0 14.7 38.8 26.6 33.7 49.0 39.7 29.5 40.1 18.7

200 0.0 6.3 7.9 6.3 4.8 5.0 5.1 5.9 5.0 6.2 3.4
0.2 13.1 8.1 12.9 10.6 10.9 15.3 12.7 9.7 12.0 7.9
0.4 35.1 12.5 34.9 31.8 29.8 48.4 35.7 27.9 35.8 17.8
0.6 71.3 21.9 71.1 58.3 64.9 82.0 70.2 62.8 70.1 41.9

gamma 100 0.0 4.8 8.5 4.7 5.4 3.8 5.7 4.5 4.2 5.0 6.8
0.2 9.0 8.7 8.8 7.4 8.1 10.6 8.2 6.2 8.9 11.2
0.4 19.9 8.4 19.2 14.8 14.8 26.5 19.8 11.3 19.3 15.8
0.6 41.5 13.4 40.6 27.9 36.9 51.8 41.5 27.1 40.6 28.5

200 0.0 4.2 9.3 4.1 3.9 4.2 4.9 4.2 4.2 4.4 6.1
0.2 11.3 9.5 10.9 11.4 9.8 15.3 11.3 9.3 11.8 11.9
0.4 38.1 13.4 37.8 32.2 30.9 48.6 37.5 27.1 37.4 30.7
0.6 74.2 18.4 74.0 63.6 70.1 81.8 74.5 62.6 74.5 56.8

t 100 0.0 5.6 8.6 5.5 4.6 4.9 5.5 4.5 3.4 5.6 13.6
0.2 12.7 8.9 12.3 11.1 9.8 14.4 11.3 7.2 12.4 17.7
0.4 34.8 8.6 33.9 29.0 29.1 42.9 33.4 16.7 34.4 32.6
0.6 59.9 13.1 59.1 45.4 52.4 70.9 59.4 34.8 59.2 47.0

200 0.0 5.6 7.8 5.6 3.4 4.6 4.3 4.6 4.1 5.1 16.3
0.2 19.8 11.4 19.8 19.5 15.4 25.5 18.5 11.9 20.7 27.1
0.4 59.9 13.8 59.4 54.2 52.2 69.2 59.0 40.7 59.8 50.9
0.6 91.5 21.0 91.4 86.3 87.8 95.5 91.5 80.8 91.7 79.2

tests have decent powers with PS2 being, again, the most powerful, followed by WF, DD, HP313

and PS1. When a = 1, however, tests PS1 and PS2 appear to be powerless. The modified314

tests PS1q and PS2q turn out to be powerful, with PS2q being the most competitive.315
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Table 3: Empirical rejection percentages of ten tests in Study 1 with W quadratic in Y
based on 1000 replicaties for normal regression error and sample size n ∈ {100, 200}. The
rejection rates are sizes when a = 0 and powers otherwise.

n a DD PN HP PS1 PS1q PS2 PS2q PS3 WF LR

100 0.0 7.8 7.1 7.5 6.1 6.4 6.0 6.3 6.1 7.6 7.6
0.5 69.5 15.2 69.0 60.9 66.0 77.0 72.5 53.0 70.8 43.5
1.0 33.9 8.2 33.5 7.7 35.7 7.7 40.2 17.4 33.4 29.4
1.5 100.0 77.1 100.0 99.8 100.0 100.0 100.0 100.0 100.0 98.1

200 0.0 4.7 10.5 4.7 5.0 5.1 5.0 5.1 4.5 4.9 5.6
0.5 94.0 27.2 93.8 91.2 93.5 96.6 95.9 90.7 95.2 79.8
1.0 66.7 6.5 66.4 6.9 66.0 6.9 72.5 50.1 66.6 58.9
1.5 100.0 97.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3.2 Study 2316

The second study was adapted from Wu and Fuller (2005). The population data (Yi, Xi)’s317

were generated from a linear regression model318

Yi = 0.5 +Xi + ei i = 1, 2, . . . ,

where Xi’s and ei’s were independently generated from N (0, 0.5). The selection probability319

Wi for subject i, i = 1, 2, . . ., was set to be320

Wi = aη(Xi) + bη (ψei + (1− ψ)zi) ,

where zi was generated from N (0, 0.5) independent of ei, and321

η(x) =


0.025, x < 0.2,

0.475(x− 0.20) + 0.025, 0.2 ≤ x ≤ 1.2,

0.5, x > 1.2.

with parameters (a, b, ψ). Function η(·) controls the nonlinear association between Wi and322

Yi through ψei. The weight is noninformative when ψ = 0.323
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The simulation was designed with the following settings. Following Wu and Fuller (2005),324

the sum of a and b was fixed at 2 to ensure thatWi ∈ [0, 1]. The expectation ofWi was 0.221.325

Four levels of a were considered: {0.25, 0.5, 0.75, 1}. As a increases, the correlation between326

Wi and Xi increases while the correlation betweenWi and ei decreases. Four levels of ψ were327

considered, {0, 0.1, 0.2, 0.3}; higher ψ implies thatWi is more informative for Yi. Two sample328

sizes, n ∈ {100, 200}, were attained by a Poisson sampling. That is, subject i, i = 1, 2, . . .,329

is selected in the sample if Ui < Wi, where Ui’s are independent U(0, 1) variables, until the330

desired sample size is reached. In each configuration, 1000 replicates were generated. In each331

replicate, the population was regenerated before the sample was drawn.332

Table 4 summarizes the empirical rejection percentage of the tests with significance level333

0.05 based 1000 replicates for all the settings. When ψ = 0, the powers of all the tests334

are about 5%, suggesting that they all, including the likelihood ratio tests maintain their335

sizes. This is expected as the residuals were normally distributed. Nonetheless, if the336

quadratic term of X in f(X; η) in the PS2q test were dropped, the test would become337

extremely liberal (not shown), which is why we always included the quadratic form in all338

the simulation studies. The powers increase as ψ increases or n increases when other factors339

are held constant. Increases in a reduces the power in general, the powers are highest when340

a = 0.25 and lowest when a = 1. Nonetheless, in this specific design, the effect is not341

monotone; the powers of all the tests increased slightly but noticeably when a increases from342

0.5 to 0.75. Due to the complexity in the design, no single test is uniformly the best. When343

a ∈ {0.25, 0.75}, PS1 and PS2 have the highest power, followed by HP, DD, and WF which344

are very close. The differences are about 10% when they are distinguishable. When a = 0.5,345

PS2 has the highest power, followed closely by HP, DD, and WF. When a = 1, PS2q has346

the highest power, followed by PS1q, HP, DD, PS2, WF, LR, and PS1. The edge of PS2q347

over PS2 suggests the importance of capturing the nonlinear relationship between W and Y348

in the auxiliary regression in a situation like here. PS3 ranks the lowest in all the scenarios349

among all tests except PN. The LR test ranks the second lowest in all scenarios except in350
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Table 4: Empirical rejection percentages of ten tests in Study 2 based on 1000 replicaties for
sample size n ∈ {100, 200}. The rejection rates are sizes when ψ = 0 and powers otherwise.

n a ψ DD PN HP PS1 PS1q PS2 PS2q PS3 WF LR

100 1.0 0.0 4.3 6.7 4.2 1.5 4.6 4.3 5.0 3.6 4.2 5.5
0.1 11.1 9.4 10.9 5.6 10.6 11.4 12.0 6.4 10.0 7.9
0.2 33.1 10.5 33.0 14.7 34.8 31.4 38.0 15.2 24.2 22.6
0.3 66.7 10.7 66.5 25.9 66.0 51.9 70.2 26.1 42.1 38.3

0.75 0.0 5.5 7.3 5.3 3.7 4.8 4.7 4.6 5.6 5.4 5.8
0.1 13.0 8.8 12.8 12.1 11.8 15.5 12.5 10.9 11.9 11.1
0.2 36.7 11.3 36.0 34.9 35.4 42.2 40.9 23.0 33.3 27.6
0.3 78.9 16.7 78.8 66.1 76.4 76.6 83.2 48.2 66.7 64.5

0.5 0.0 6.4 6.7 6.2 4.4 5.1 4.5 4.1 6.0 5.6 6.0
0.1 14.5 9.0 14.3 16.7 12.1 17.5 14.2 10.7 14.1 12.7
0.2 45.4 12.6 45.1 54.8 42.7 56.9 46.4 36.4 45.4 37.2
0.3 86.4 22.0 86.2 90.3 82.0 91.2 87.8 72.7 85.5 75.9

0.25 0.0 4.5 7.2 4.4 6.1 5.0 6.2 5.4 6.9 4.2 4.8
0.1 13.2 8.8 13.1 17.5 11.9 17.8 13.9 11.8 13.6 10.8
0.2 50.6 15.7 50.3 60.1 42.6 60.8 48.3 42.7 51.0 41.1
0.3 91.0 24.6 90.8 94.1 85.9 94.2 90.5 83.0 91.0 82.6

200 1.0 0.0 5.0 6.3 4.7 2.4 5.4 5.8 5.1 3.5 4.4 5.9
0.1 16.8 9.7 16.7 9.0 15.6 19.6 19.5 10.9 14.6 12.3
0.2 61.7 14.0 61.5 31.4 61.2 51.7 66.4 31.2 42.2 39.1
0.3 93.7 18.9 93.6 56.1 94.2 81.6 96.3 58.8 73.5 70.6

0.75 0.0 4.8 7.3 4.8 3.8 5.1 4.6 4.1 7.2 5.9 5.4
0.1 19.4 9.6 19.0 20.1 18.4 24.9 20.8 18.2 18.1 15.6
0.2 68.4 17.5 68.3 66.5 64.0 72.7 71.0 53.4 63.6 57
0.3 98.1 29.4 98.1 95.1 97.8 97.8 98.6 88.3 95.2 91.3

0.5 0.0 6.3 8.3 6.2 5.3 4.4 5.4 5.0 6.3 6.1 6.7
0.1 23.8 12.6 23.7 30.4 19.9 31.2 24.0 21.0 24.1 19.3
0.2 76.8 22.1 76.8 84.0 72.1 85.0 78.3 69.8 75.4 69.2
0.3 99.3 37.4 99.3 99.5 98.6 99.6 99.4 98.0 98.9 97.6

0.25 0.0 4.7 7.3 4.6 6.6 5.1 6.4 5.3 7.1 5.1 5.8
0.1 25.9 10.4 25.7 35.4 22.7 35.0 26.8 26.1 26.3 20.5
0.2 83.3 21.6 82.9 89.8 77.7 90.0 82.6 77.1 83.1 75.7
0.3 99.4 44.4 99.4 99.6 99.2 99.5 99.4 98.9 99.4 99.1

the case of a = 1. The results suggest that the each test may have its own favorable settings.351
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4 Consumption Expenditure of Chinese Families352

We apply the tests to a study on Chinese household consumption expenditure using the353

CFPS data (Institute of Social Science Survey, Peking University, 2015; Xie and Hu, 2014).354

The CFPS is a nearly nationwide, comprehensive, longitudinal social survey that is intended355

to serve research needs on a large variety of social phenomena in contemporary China. A356

multi-stage probability strategy was used in CFPS to reduce operation costs, with implicit357

stratification to increase efficiency (Xie and Lu, 2015). The 2014 data contains 13,946 house-358

holds, each with a weight representing the inverse sampling probability. The data has been359

used in many studies on Chinese families, such as the properties of household wealth (Xie360

and Jin, 2015) and reduction of catastrophic health expenditures (Ma et al., 2019).361

Our focus is the impact of householder’s education level on household consumption ex-362

penditure. For better data quality on household expenditure, we screened the households by363

two conditions: 1) the householder was the one who responded to the questionare; and 2)364

the householder was the principal of family expenditure decisions. After removing cases with365

missing values, we ended up with n = 4, 834 householders. The data needed for regression366

modeling was obtained by joining the household table and householder table. The response367

variable is the log-transformed household consumption expenditure. The householder ed-368

ucation level is a factor with five levels: junior high or lower, high school, junior college,369

bachelor, and master or higher. Control variables include: log-transformed family income in370

Chinese Yuan; proportion of asset-based income in total family income; family size; house-371

holder age; and householder gender. The continuous variable (log family income, property372

income proportion, and age) were centered by their means; family size was centralized by 3,373

which was the mode. Of the 4,384 householders, 2,863 (59%) were male; the proportion of374

householders with different education levels were 76.50%, 14.90%, 5.25%, 3.00%, and 0.35%,375

respectively, for junior high or lower, high school, junior college, bachelor, and master or376

higher. Obviously, householders with a master degree or higher are oversampled. We expect377

to reject that the weight is noninformative.378
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Table 5: Estimated coefficients and their standard errors (SE) from unweighted and weighted
regression. Each p-value is for testing the null hypotheses that there is no difference in
expectation between the two versions of the corresponding coefficient.

Unweighted Weighted P-value for

coefficient SE coefficient SE difference

Intercept 10.259 0.020 10.375 0.032 0.388
log family income 0.250 0.009 0.280 0.023 0.924
asset-based income proportion 0.506 0.116 0.662 0.178 0.000
family size 0.121 0.009 0.101 0.015 0.949
family size, quadratic −0.011 0.002 −0.009 0.003 0.999
age −0.083 0.008 −0.040 0.012 0.899
age, quadratic −0.004 0.005 −0.003 0.008 0.999
male −0.091 0.022 −0.184 0.033 0.460
high school 0.253 0.030 0.268 0.049 0.872
junior college 0.476 0.049 0.418 0.060 0.339
bachelor 0.614 0.064 0.617 0.083 0.958
master or higher 0.938 0.179 0.433 0.150 0.000

Table 5 summarizes the estimated coefficients and their standard errors from both un-379

weighted and weighted regression. The results of weighted regression were obtained with380

R package survey (Lumley, 2004). All the reviewed tests rejected the hypothesis that the381

weight was noninformative strongly with extremely small p-values (below 0.001). Therefore,382

the analyses should be based on the results from the weighted regression. All the coefficients383

are significantly nonzero except the quadratic term of householder age. As expected, fami-384

lies with higher income and higher proportion of asset-based income consumed more; bigger385

families consumed more, but the rate of increase slowed as family size increased as indi-386

cated by the negative quadratic effect. From the householder’s perspective, older and male387

householders spent less. With junior high or lower as reference, householders with higher388

education level tend to spend more, but the increasing trend stopped at the bachelor’s level.389

Householders with a master degree or higher consumed less on average than those with a390

bachelor’s degree; the opposite conclusion was obtained in the unweighted regression.391

If the weight were incorrectly ignored, the results from the unweighted regression would392

be misleading. To tell which coefficients have been estimated significantly differently in the393
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Table 6: Percentage of rejecting the null hypothesis of noninformative weight in the study
of Chinese household consumption expenditure from 1000 valid subsamples of size m ∈
{300, 500, 1000}.

m DD PN HP PS1 PS1q PS2 PS2q PS3 WF LR

300 33.7 17.9 31.9 47.4 32.6 49.2 51.8 35.6 37.0 38.4
500 55.0 18.8 54.2 74.5 64.1 76.8 81.1 70.6 61.3 64.7
1000 91.9 23.3 91.5 97.4 97.3 97.8 99.6 98.6 94.2 96.8

weighted regression, an individual test can be performed on each regression coefficient. The394

p-values of such tests reported in Table 5 suggest that two coefficients were estimated with395

significant differences. One is that the effect of asset-based income proportion is higher from396

the weighted regression than that from the unweighted regression. The other is the effect of397

householders with a master degree or higher with junior higher or lower as reference, which398

is of primary interest. The unweighted regression suggests that, other factors held constant,399

families whose householder had a master degree or higher had the highest consumption400

expenditure; the weighted regression, however, suggests families whose householders had a401

bachelor’s degree has the highest. The drastic difference shows the impact of the correctly402

incorporating weight in this analysis.403

The large sample size of this application provides an opportunity to compare the tests in404

a realistic setting by treating the sample as a population. Using the weight to resample from405

the data, we obtained subsamples of size m = {300, 500, 1000}. Because of the categorical406

nature of the education level, not all subsamples had a full-rank design matrix. We kept407

resampling until 1000 valid subsamples were obtained. The acceptance rates were 42.4%,408

70.6%, and 95.2%, respectively, for subsample size 300, 500, and 1000. For each subsample,409

we tested for noninformative weight using the tests compared in the simulation studies.410

Table 6 summarizes the percentages of rejection with significance level 0.05 based on the411

1000 replicates. For this application, PS2q, PS3, PS2, and PS1 turns out to have the highest412

power; WF comes next, followed by DD, and HP. LR based on normal errors cannot be413

trusted because diagnostics show that the residuals are unlikely to be normally distributed.414
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PN is not recommended for its not holding its size and low power.415

5 Discussion416

Testing for necessity of weight in regression models arises frequently in practical analyses417

of survey data. Reviews on such tests exist (Bollen et al., 2016) but none compares their418

sizes and powers in simulation studies. We conducted a comprehensive numerical study to419

compare the sizes and powers of a few commonly used weight tests under various configu-420

rations. The results show that the test of Pfeffermann and Sverchkov (2007) is the most421

competitive overall in the settings considered. Nonetheless, it is easy to construct scenarios422

where this test completely looses its power; this happens when, for example, the weight423

has zero correlation with the regression error but have strong association with the squared424

regression error. For tests that require an auxiliary regression model for the weight, the size425

and power are affected by the specification of the auxiliary model. Most tests are robust to426

the distribution of the regression error except the likelihood ratio test, which has inflated427

size under a heavy-tailed error distribution. An interesting theoretical result is that the DC428

test of Pfeffermann (1993) and the WA test of Dumouchel and Duncan (1983) are equivalent429

if they use the estimate for the variance of the regression error. In addition, unlike those430

tests that rely an auxiliary regression whose misspecification may affect their performances,431

they have no additional model specification burden but give very competitive powers in our432

simulation study. These findings provide recommendations for choosing the tests in practice.433

Our review suggests several future research directions. Whether or not to use weight434

is a general question applicable to all kinds analyses. This review only focuses on linear435

regression analyses. Similar diagnostic tests for generalized linear models (Nordberg, 1989;436

Lumley and Scott, 2017), survival models with censored data (Boudreau and Lawless, 2006),437

or exploratory data analysis and nonparametric regression (Chambers et al., 2003) merits438

further research. For tests based on correlations (Pfeffermann and Sverchkov, 1999), a new439
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measure of correlation that better distinguishes independence from zero correlation has the440

potential to perform better where linear correlation fails (Chatterjee, 2020). Most tests in441

the literature assumed independent homoscedastic data. In practice, however, many com-442

plex survey data have a clustered or nested data structure with possible heteroscedasticity.443

The dependence structure in such data, sometimes co-present with heteroscedasticity, adds444

considerable complexity to the estimation problem (e.g., Rabe-Hesketh and Skrondal, 2006;445

Kott, 2018) and, hence, diagnostic tests. The DC test can be extended to handle clustered446

data in the general framework of generalized estimating equations (Yan et al., 2013). The447

likelihood ratio test did not perform well in our study because of its dependence on correct448

distributional specifications. The derivation is likely to hold for M-estimation (Stefanski and449

Boos, 2002) where the likelihood specification is replaced with moment specifications. More450

efforts are needed to research on these immediate questions.451
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A Equivalence between the HP Test and the DD Test459

We show that the statistics T in (7) and F in (5) are 1-to-1 maps of each other via T = pF460

if the σ̂2 in T is set to be the SSEf/(n− 2p).461

Proof. We first express the coefficient estimator from the extended regression model (4) in462
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terms of β̂u and β̂w. Let β̂ and γ̂ be the least squares estimator of β and γ under the extended463

regression model (4). They satisfy the following normal equations:464

X⊤Xβ̂ +X⊤HXγ̂ = X⊤Y, (15)

X⊤HXβ̂ +X⊤H2Xγ̂ = X⊤HY. (16)

Multiplying (15) by (X⊤X)−1 and (16) by (X⊤HX)−1, and on subtraction, we get465

γ̂ = (X⊤HX)−1G−1(β̂w − β̂u), (17)

where G = (X⊤HX)−1(X⊤H2X)(X⊤HX)−1−(X⊤X)−1. Putting γ̂ back into Equation (15)466

gives467

β̂ = β̂u − (X⊤X)−1G−1(β̂w − β̂u). (18)

The SSEr and SSEf are, respectively,468

SSEr = Y ⊤Y − β̂⊤
uX

⊤Y,

SSEf = Y ⊤Y − β̂⊤X⊤Y − γ̂⊤X⊤HY.

Their difference is469

SSEr − SSEf = (β̂ − β̂u)
⊤X⊤Y + γ̂⊤X⊤HY

= −(β̂w − β̂u)
⊤G−1(X⊤X)−1X⊤Y + (β̂w − β̂u)

⊤G−1(X⊤HX)−1X⊤HY

= −(β̂w − β̂u)
⊤G−1β̂u + (β̂w − β̂u)

⊤G−1β̂w

= (β̂u − β̂w)
⊤G−1(β̂u − β̂w),

where the second equality is by inserting the expressions of β̂ and γ̂ in (17) and (18),470

respectively. Since G = AA⊤ and V̂ = σ̂2AA⊤, where A = (X⊤HX)−1X⊤H− (X⊤X)−1X⊤,471
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we have472

SSEr − SSEf

σ̂2
= T.

Combined with the DD test statistic (5), we have473

T

F
=

p

σ̂2

SSEf

(n− 2p)
.

Note that under H0, SSEf/(n− 2p) is a consistent estimator of σ2, which has the same limit474

as σ̂2. Therefore, as n → ∞, T/F → p in probability. If the two estimators of σ2 are taken475

to be the same, the map between F and T is established.476

When the null hypothesis is true, the two estimator of σ2 should be similar, so the two477

statistics gives similar p-values. Under the alternative hypothesis, the two estimator of σ2
478

may differ; the p-values of the two statistics may not be very close.479
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