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Abstract

The three parameter log-normal distribution is a popular non-regular model, but surprisingly, whether the

local maximum likelihood estimator (MLE) for parameter estimation is consistent or not has been speculated

about since the 1960s. This note gives a rigorous proof for the existence of a consistent MLE for the three

parameter log-normal distribution, which solves a problem that has been recognized and unsolved for 50

years. Our results also imply a uniform local asymptotic normality condition for the three parameter log-

normal distribution. In addition, we give results on the asymptotic normality and the uniqueness of the

local MLE.

Keywords: Consistency, Local Maximum, Maximum Likelihood, Non-regular model, Uniform Local

Asymptotic Normality

1. Introduction

A random variable Y has the three parameter log-normal distribution if

Z = log (Y −A) ∼ N(µ, σ2), (1)

in which µ, σ and A are unknown parameters. This model has been widely used in applications and its

estimation approaches have been studied by many, including Cohen (1951), Hill (1963), Harter and Moore

(1966), Munro and Wixley (1970), Giesbrecht and Kempthorne (1976), Cohen and Whitten (1980), Crow

and Shimizu (1998) and Basak et al. (2009), among others. But the theoretical properties of the proposed

methods were not fully addressed rigorously in these papers.

Cohen (1951) first considered using the method of maximum likelihood to estimate parameters in

Model (1). He derived the maximum likelihood equations and the Fisher information matrix without noting
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that the likelihood function was unbounded and that the solutions to the likelihood equations were not the

global maximizer of the likelihood function. Aitchison and Brown (1957) gave a comprehensive summary of

estimation methods developed up to that time, including the method of maximum likelihood. Hill (1963)

pointed out that the likelihood function for Model (1) is unbounded and derived a sequence of parame-

ter values along which the likelihood went to infinity. He then suggested using a Bayesian approach for

parameter estimation. A strong restriction on his proposed method is that the priors used must “assign

negligible prior probability in the vicinity of the singularity”. Harter and Moore (1966) then suggested

using the solution to the likelihood equation instead of using the global maximizer to estimate the unknown

parameters and termed this local MLE. They also considered fitting the three parameter log-normal model

from censored data. The likelihood equations were derived and a modified iterative procedure was proposed

to find the estimates numerically. However, whether the local MLE is consistent or not was not discussed

and this problem has been remained unsolved since then. Cohen and Whitten (1980) proposed modifying

the local MLE by using the extreme order statistics to estimate the boundary parameter A. Giesbrecht and

Kempthorne (1976) studied the three parameter log-normal distribution by assuming that data observed

were subject to a grouping error. They defined the likelihood function in this setting for which an explicit

expression was not available.

Cheng and Amin (1979) proposed the maximum product spacings estimation method and proved that it

produced consistent estimators for the three parameter log-normal model. The maximum product spacings

estimation method uses the cumulative distribution function for construction, so the target functions are

always bounded. But there is no closed form for the cumulative distribution function for the three parameter

log-normal distribution so the computation burden is heavy when finding the numerical solution. Cheng

and Amin (1983) derived the asymptotic normality of the maximum product spacings estimator and the

local MLE for the log-normal distribution. However, the normality of the local MLE was obtained based on

the assumption of the existence of a consistent MLE and a rigorous proof for the consistency of the local

MLE was not provided. For a class of non-regular models, Smith (1985) derived the asymptotic properties

of the local MLE’s. However, as shown in Section 2, a key requirement in Smith (1985)’s proof is not met

for Model (1).

In this note, we conquer the obstacle in proving the consistency of the local MLE for Model (1). We also

study the uniqueness of the local maximizer of the likelihood function and a theorem similar to Theorem 2 in

Smith (1985) is provided to help choose a consistent solution when multiple solutions exist. The asymptotic

normality of the local MLE is proved under contiguous alternatives. We briefly review the literature about

the MLE in non-regular models in Section 2 and present our main results in Section 3. Proofs are given in

Section 4.
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2. Maximum likelihood estimation in non-regular models

When some of the classical regularity conditions required in Cramér (1946) and Wald (1949) are not true,

examples can be found in which desirable results of MLE’s fail (e.g., Le Cam, 1990). Such situations are

often termed non-regular. With different violations of regularity conditions, there are different types of non-

regular problems. Model (1) has parameter-dependent support and unbounded likelihood so we only include

results that are related to this type of non-regularity. Other types of non-regularity and related literature

can be found in Smith (1989), Cheng and Traylor (1995) and the references therein. There is a large body

of literature rigorously developing likelihood based inference methods for models with parameter-dependent

support, including Woodroofe (1972), Weiss and Wolfowitz (1973), Woodroofe (1974), Hall (1982), Cheng

and Amin (1981), Smith (1985), Cheng and Iles (1987), Smith (1994) and Hall and Wang (2005). But the

consistency of the MLE for Model (1) is not covered in the literature.

LeCam (1970) pointed out that the classical conditions used for the asymptotic normality of the MLE’s

are too strong, especially the requirement of two or three derivatives of the likelihood function. Interestingly,

this requirement can often be weakened to involve only the first derivatives, which is called differentiable

in quadratic mean (Le Cam, 1960). Model (1) belongs to the quadratic mean differentiable family, but this

does not assure the existence of a consistent MLE (page 506 of Lehmann and Romano, 2005). Woodroofe

(1972) studied the properties of the MLE’s for the following density.

fA(y) = f(y −A), A, y ∈ R, (2)

where f(y) is uniformly continuous and equals 0 for y ∈ (−∞, 0]. It is also required that limy↓0 f
′(y) ∈ (0,∞).

Note that if log f(y) is integrable, then the classical conditions for consistency of the MLE’s in Wald (1949)

still hold, but the classical conditions for asymptotic normality fail since the support of fA depends on A.

Woodroofe (1972) showed that, with some extra assumptions on f , the MLE is still asymptotically normal

with a convergence rate of (n log n)−1/2. Weiss and Wolfowitz (1973) worked further on Model (2) and

proved that the MLE is asymptotically efficient for the single parameter A. Woodroofe (1974) worked on

Model (2) with an alternative restriction on f that

f(y) ∼ αyα−1L(y) as y ↓ 0,

where α ∈ (1, 2) and L(y) varies slowly as y ↓ 0 in the sense that limy↓0 L(ay)/L(y) ∈ (0,∞) for any a > 0.

This class of functions f includes some commonly used densities such as the Gamma density and the Pareto

density. For this class of models, the convergence rate of the MLE, say γn, is determined by

nγαnL(γn)→ 1.

Note that the convergence rate is n−1/α if limy↓0 L(y) is a positive constant. The asymptotic distributions

of the MLE’s are rather complex and were given in the form of complicated characteristic functions in
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Woodroofe (1974). Hall and Wang (2005) derived a simple representation for the asymptotic distribution

under the special case that limy↓0 L(y) is a positive constant. The efficiency of estimators for this class of

models is still an unsolved question.

Smith (1985) generalized the framework of Woodroofe (1974) to multivariate parameter models and

extended the theory of local maximum likelihood estimation to a broad class of non-regular models without

covariates by an elegant mathematical derivation. The models of interest in Smith (1985) take densities of

the form:

f(y;A, φ) = (y −A)α−1g(y −A;φ), A < y <∞, (3)

where φ is a vector parameter and g(x;φ) tends to a positive constant as x ↓ 0. Because of the additional

unknown parameter φ, the likelihood function of (3) may be unbounded. So the MLE considered by Smith

(1985) is a local maximum that satisfies the likelihood equations. Smith (1985) evaluated the asymptotic

behavior of the MLE’s for different true values of α. When α > 2, the convergence rate of the MLE’s of

A and φ are both n−1/2, and they converge jointly to a normal distribution with the asymptotic variance

being the inverse of the Fisher information matrix; when α = 2, the MLE’s of A and φ are asymptotically

independent and are also asymptotically normal, but their convergence rates are (n log n)−1/2 and n−1/2,

respectively; when α ∈ (1, 2), the MLE’s of A and φ are still asymptotically independent but the former

is not asymptotically normal anymore, and the convergence rates are n−1/α and n−1/2, respectively; when

α < 1, the MLE’s do not exist or are inconsistent.

The requirement that g(x;φ) tends to a positive constant as x ↓ 0 in Model (3) is very crucial. It

guarantees that there exist a constant sequence, say cn, such that cn{Y(1) −A} converges weakly to a non-

degenerated distribution, where Y(1) is the smallest order statistic. Smith 1985’s derivation relies heavily on

this fact. But for Model (1), from the result in Lemma 1 of Section 4, exp(−µ0 +σ0rn){Y(1)−A0}
d→ 1, and

there does not exist a constant sequence c∗n → ∞ such that c∗n{Y(1) − A0} converges to a non-degenerate

distribution. So Smith (1985)’s technique cannot be applied directly for the three parameter log-normal

distribution to prove the consistency of the MLE.

3. Main results

Now we address the consistency of the MLE for the three parameter log-normal Model (1). Interestingly,

although the likelihood function is unbounded, the Fisher information matrix of Model (1) exists and is

finite, as given in Theorem 1 below. Denote θ = (µ, σ,A)T. For a independent and identically distributed

random sample {Y1, Y2, . . . , Yn} of size n from Model (1), the log-likelihood function is

`n(θ) = I(A < Y(1))

[
−n

2
log(2π)− n log(σ)−

n∑
i=1

log(Yi −A)−
∑n
i=1 {log (Yi −A)− µ}2

2σ2

]
. (4)

The MLE are defined as local maximizers that satisfy the following likelihood equations.
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∂`n(θ)

∂µ
=

n∑
i=1

log (Yi −A)− µ
σ2

= 0,

∂`n(θ)

∂σ
= −n

σ
+

n∑
i=1

{log (Yi −A)− µ}2

σ3
= 0,

∂`n(θ)

∂A
=

n∑
i=1

1

Yi −A
+

n∑
i=1

log (Yi −A)− µ
σ2(Yi −A)

= 0.

(5)

We obtain the following theorem describing the consistency and asymptotic normality of the MLE.

Theorem 1. Denote the true vale of θ by θ0 = (µ0, σ0, A0)T for the three parameter log-normal distribution.

With probability approaching 1 under θ0, there exists a sequence of local maximizers, θ̂n, of the likelihood

function in (4) that is
√
n-consistent and satisfies ∂`n(θ̂n)/∂θ = 0. Furthermore, under θ0,

√
n(θ̂n − θ0)

d→ N
{

0, I−1(θ0)
}
,

where the Fisher information matrix

I(θ) =
1

σ2


1 0 − exp(−µ+ 1

2σ
2)

0 2 −2σ exp(−µ+ 1
2σ

2)

− exp(−µ+ 1
2σ

2) −2σ exp(−µ+ 1
2σ

2) (1 + σ2) exp(−2µ+ 2σ2)

 .

Remark 1. The asymptotic normality in Theorem 1 is established under θ0. It can also be established

under contiguous alternatives. Let θn = θ0 + n−1/2hn, where hn → h ∈ R3. Then under θn, θ̂n satisfies

√
n(θ̂n − θ0)

d→ N
{
h, I−1(θ0)

}
.

Theorem 1 assures the existence of a consistent MLE for a large sample that is the solution to the

likelihood equation (5), of which a rigorous proof has been missing from the literature for 5 decades. For

practical use, one just needs to solve (5) to find the consistent estimator. From the first two equations of

(5), µ = n−1
∑n
i=1 log (Yi −A) and σ2 = n−1

∑n
i=1{log (Yi −A)− n−1

∑n
i=1 log (Yi −A)}2, which, inserted

into the last equation of (5), yields

λ(A) =

n∑
i=1

1

Yi −A
+

n∑
i=1

n log(Yi −A)−
∑n
i=1 log(Yi −A)

(Yi −A)
∑n
j=1{log(Yj −A)− n−1

∑n
k=1 log(Yk −A)}2

= 0. (6)

To solve (5), one just needs to solve the univariate non-linear equation (6). For given data, λ(A) → 0 as

A → −∞. But since the log-likelihood goes to −∞ along this path, one can ignore values of A that are

far from Y(1). The first term of λ(A) dominates the second term when A ↑ Y(1), so λ(A) ↑ ∞ as A ↑ Y(1)
and hence there is no solution to (6) when A is too close to Y(1). From these two facts, one only needs to

numerically search in a closed interval on the left hand side of Y(1) and Theorem 1 assures the existence of

a consistent solution to (6) for large samples.
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Figure 1 plots λ(A) for a sample of n = 15 with θ0 = (0, 1, 1)T. The lower panel of Figure 1 is the

log-likelihood as a function of A with µ and σ satisfying the first two equations of (5). It is seen that there

are two solutions to (6), one (blue round point) is a local maximizer and the other (red diamond point) is

a local minimizer that is very close to Y(1). The log-likelihood goes to infinity as A approaches Y(1), but

the local maximizer Â gives better estimation. We also tried various values of θ and n and found that the

shapes of λ(A) and the log-likelihood are similar to those in Figure 1 if a solution to (5) exists. In our

numerical studies, a unique local maximizer always exists if n is not too small and σ is not too large. We

provide the following theorem on the uniqueness of the local maximizer for the log-likelihood to justify this

observation.

Theorem 2. Let δ be some fixed value and δn = n−α for some α > 0. Denote by Sδ = {θ : A ≤ A0 − δ}

and Tδ,n = {θ : A0 − δ ≤ A ≤ A0 + δn and |µ − µ0| + |σ − σ0| > δ}. Then, for each compact set

K ⊂ R× (0,∞)× R,

lim
n→∞

Pθ0

{
sup
Sδ∩K

`n(θ) < `n(θ0)

}
= 1, and (7)

lim
n→∞

Pθ0

{
sup

Tδ,n∩K
`n(θ) < `n(θ0)

}
= 1, (8)

where Pθ0
is the probability measure under θ0.

This result is useful when there are multiple solutions to the likelihood equations. By this theorem, one can

insert each solution into the log-likelihood (4) and choose the solution that yields the largest value.

4. Proof

Proofs of the theorems in Section 3 rely on some lemmas which we now establish. In the following, we

use ˙̀
n(·) and ῭

n(·) to denote the gradient and Hessian matrix of the log-likelihood (4), respectively.

Lemma 1. As n→∞ under θ0,

e−µ0+σ0rn

σ0sn

{
1

e−µ0+σ0rn
− (Y(1) −A0)

}
d→ G, (9)

where rn =
√

2 log n − {log log n+ log(4π)}/
√

8 log n, sn = 1/
√

2 log n, and G is a random variable with

distribution function F (t) = e−e
−t

.

Proof. First, following the idea in Chapter 2.3 of Galambos (1978), for any t 6= 0,

lim
n→∞

Pθ0

[{
− log(Y −A0)− µ0

σ0

}
(n)

< rn + snt

]
= e−e

−t

= lim
n→∞

Pθ0

[
−
{

log(Y −A0)− µ0

σ0

}
(1)

< rn + snt

]

= lim
n→∞

Pθ0

{
−(Y(1) −A0) < −eµ0−σ0rn + σ0sne

µ0−σ0rnt
1− e−σ0snt

σ0snt

}
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From Lemma 2.2.2 of Galambos (1978), the result in (9) follows from the fact that (1−e−σ0snt)/(σ0snt)→ 1

for any t 6= 0. When t = 0, the result can be verified by using the properties of the extreme order statistics

of normal distribution directly.

Lemma 2. Let δn = n−α for some α > 0 and let A satisfy |A−A0| < δn. Then for any positive constants

k1 and k2, there exists a constant M such that

lim
n→∞

Pθ0

{
sup

|A−A0|<δn

1

n

n∑
i=1

| log(Yi −A)|k1
(Yi −A)k2

< M

}
= 1. (10)

Proof. Let Zi = log(Yi − A0). Note that on {Yi ≥ A0 + 2δn}, or equivalently on {eZi ≥ 2δn}, 0.5eZi <

eZi +A0 −A < 1.5eZi . So

| log(Yi −A)|k1
(Yi −A)k2

=
| log(eZi +A0 −A)|k1I(eZi ≥ 2δn)

(eZi +A0 −A)k2
+
| log(Yi −A)|k1I(Yi < A0 + 2δn)

(Yi −A)k2

≤ [max{| log(0.5eZi)|, | log(1.5eZi)|}]k1I(eZi ≥ 2δn)

(0.5eZi)k2
+
| log(Yi −A)|k1I(Y(1) < A0 + 2δn)

(Yi −A)k2

≤ 2k2−1
[
{log(1.5) + |Zi|}2k1 + e−2k2Zi

]
+
| log(Yi −A)|k1

(Yi −A)k2
I{δ−1n (Y(1) −A0) < 2} (11)

Since a normal distribution has finite moments of positive orders and a finite moment generating function,

the first term in the right hand side of (11) has an average that converges to a finite constant in probability.

The indicator function in the second term does not depend on i, and from the result in (9) of Lemma 1 the

probability that the indicator function is nonzero is o(1). This shows that the average of the second term is

oP (1). So any M > 2k2−1E
[
{log(1.5) + |Zi|}2k1 + e−2k2Zi

]
satisfies (10).

Lemma 3. Let δn = n−α for some α > 0. For Model (1),

sup
‖θ−θ0‖<δn

∥∥∥∥ 1

n
῭
n(θ) + I(θ0)

∥∥∥∥ = OPθ0

{
max

(
1√
n
, δn

)}
.

Proof. The second order partial derivatives of the log-likelihood are

∂2`n(θ)

∂µ2
= − n

σ2
,

∂2`n(θ)

∂σ∂µ
= −

n∑
i=1

2 {log (Yi −A)− µ}
σ3

,

∂2`n(θ)

∂A∂µ
= −

n∑
i=1

1

σ2(Yi −A)
,

∂2`n(θ)

∂σ2
=

n

σ2
−

n∑
i=1

3 {log (Yi −A)− µ}2

σ4
,

∂2`n(θ)

∂σ∂A
= −

n∑
i=1

2 {log (Yi −A)− µ}
σ3(Yi −A)

,
∂2`n(θ)

∂A2
=

n∑
i=1

1

(Yi −A)2

(
1− 1

σ2

)
+

n∑
i=1

log (Yi −A)− µ
σ2(Yi −A)2

.

So each third order partial derivative of the log-likelihood can be represented as a linear combination of the

form
∑n
i=1

[
{log(Yi − A)}k1/(Yi − A)k2

]
, with k1 being 0 or 1, k2 being 0, 1, 2 or 3, and coefficients being

continuous functions of µ and σ. Thus Lemma 2 and a first order Taylor’s expansion of each element of

n−1 ῭
n(θ) gives

sup
‖θ−θ0‖<δn

1

n

∥∥∥῭
n(θ)− ῭

n(θ0)
∥∥∥ = OPθ0

(δn). (12)
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Note that ῭
n(θ0) is a sum of independent and identically distributed random vectors with a finite covariance

matrix. From the central limit theorem (c.f. Van der Vaart, 2000),

1

n
῭
n(θ0) + I(θ0) = OPθ0

(
1√
n

)
. (13)

Combining (12) and (13), the result follows.

Lemma 3 implies a uniform local asymptotic normality (LAN, Le Cam (1960)) condition below:

sup
‖h‖≤Cn

∣∣∣∣`n(θ0 +
1√
n
h

)
− `n(θ0)− 1√

n
hT ˙̀

n(θ0) +
1

2
hTI(θ0)h

∣∣∣∣ = op(1) (14)

for any Cn = o(n1/6). This can be shown by using a Taylor’s Theorem (Ferguson, 1996) that yields

∆n(h) = `n

(
θ0 +

1√
n
h

)
− `n(θ0)− 1√

n
hT ˙̀

n(θ0) +
1

2
hTI(θ0)h

= hT

∫ 1

0

∫ 1

0

s

{
1

n
῭
n

(
θ + st

h√
n

)
+ I(θ0)

}
dtds h

and the right-hand side of the above equation can be bounded by

C2
n

2
sup
‖h‖≤Cn

∥∥∥∥ 1

n
῭
n

(
θ +

h√
n

)
+ I(θ0)

∥∥∥∥ = OPθ0

(
C3
n√
n

)
= op(1).

The uniform LAN condition (14) establishes the existence of a local maximizer of the log-likelihood. With

this condition and Le Cam’s Third Lemma (Section 12.3 of Lehmann and Romano, 2005), the asymptotic

normality under contiguous alternatives follows from Theorem 1. However, The uniform LAN condition

itself does not indicate that the maximizer satisfies the likelihood equation (5). We provide the following

lemma to show this. It is the Lemma 5 of Smith (1985). We state it for completeness and skip the proof.

Lemma 4. Let h be a continuously differentiable real-valued function of p+1 real variables and let H denote

the gradient vector of h. Suppose that the scalar product of u and H(u) is negative whenever ‖u‖ = 1. Then

h has a local maximum, at which H = 0, for some u with ‖u‖ < 1.

Now we prove Theorem 1.

Proof of Theorem 1. From Lemma 3 and the mean value theorem (Ferguson, 1996), for C ′n = o(n1/6),

sup
‖h‖≤C′n

hT

{
1√
n

˙̀
n

(
θ0 +

1√
n
h

)
− 1√

n
˙̀
n(θ0) + I(θ0)h

}
= sup
‖h‖≤C′n

hT

∫ 1

0

{
1

n
῭
n

(
θ + s

h√
n

)
+ I(θ0)

}
ds h

≤ (C ′n)2 × sup
‖h‖≤C′n

∥∥∥∥ 1

n
῭
n

(
θ +

h√
n

)
+ I(θ0)

∥∥∥∥ = OPθ0

{
(C ′n)3√

n

}
= op(1).

So when C ′n →∞ slowly,

C ′n sup
‖u‖=1

uT
1√
n

˙̀
n

(
θ0 +

C ′n√
n
u

)
= C ′n sup

‖u‖=1

{
1√
n
uT ˙̀

n(θ0)− C ′nuTI(θ0)u

}
+ op(1)→ −∞, (15)
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in probability, which implies

lim
n→∞

Pθ0

{
sup
‖u‖=1

uT ˙̀
n

(
θ0 +

C ′n√
n
u

)
< 0

}
= 1. (16)

From the results in (15), (16) and Lemma 4, with probability approaching 1 under θ0, there is a root θ̂n

to ˙̀
n(θ) = 0 within radius C ′n/

√
n of the true parameter. And since C ′n can goes to ∞ as slow as possible,

this root must satisfy
√
n(θ̂n − θ0) = {I(θ0)}−1 1√

n

∂`n(θ0)

∂θ
+ oP (1).

Noting that Model (1) is differentiable in quadratic mean, the asymptotic normality follows from Theorem

12.4.1 of Lehmann and Romano (2005).

Proof of Theorem 2, equation (7). First we show that for any θ1 ∈ S, E`n(θ1) < ∞, so E[`n(θ1) −

`n(θ0)] < 0 by Jensen’s inequality. This implies the existence of ξθ1 such that

lim
n→∞

Pθ0
{`n(θ1)− `n(θ0) < −ξθ1

} = 1.

For θ and η such that ‖θ − θ1‖ < η < ‖θ1 − θ0‖ − δ,

1

n
|`n(θ)− `n(θ1)| ≤ | log σ − log σ1|+

1

n

n∑
i=1

|log(Yi −A)− log(Yi −A1)|

+
1

n

n∑
i=1

∣∣∣∣∣{log(Yi −A)− µ}2

σ2
− {log(Yi −A1)− µ1}2

σ2
1

∣∣∣∣∣ = ∆3 + ∆4 + ∆5.

∆3 can be made smaller than ξθ1
/4 by choosing η small enough. By the mean value theorem,

∆4 =
1

n

n∑
i=1

∣∣∣∣A−A1

Yi −A∗

∣∣∣∣ ≤ 1

n

n∑
i=1

|A−A1|
Yi −A0

,

for some A∗ between A0 and A1. So E(∆4) can be make arbitrarily small by choosing small enough η, which

implies

lim
n→∞

Pθ0

(
∆4 <

ξθ1

4

)
= 1

for small enough η. Using a similar approach, we obtain

lim
n→∞

Pθ0

(
∆5 <

ξθ1

4

)
= 1.

Combining results for ∆3, ∆4 and ∆5,

lim
n→∞

Pθ0

{
sup

‖θ−θ1‖<η
`n(θ)− `n(θ0) < −ξθ1

4

}
= 1.

For any compact set K, Sδ ∩K can be covered by a finite number of neighborhoods of points in Sδ, so it

follows that

lim
n→∞

Pθ0

{
sup
Sδ∩K

`n(θ)− `n(θ0) < −ξm
}

= 1.
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Proof of Theorem 2, equation (8). First, if A0 is known, model (1) can be transformed to a linear

model with normal random error with unknown mean and variance. It follows that

lim
n→∞

Pθ0

{
sup

|µ−µ0|>δ, |σ−σ0|>δ
`n(µ, σ,A0)− `n(θ0) < −ξ

}
= 1. (17)

For µ1, σ1, η and (µ, σ,A) ∈ T such that (µ1, σ1, A) ∈ T , |µ− µ1| < η, |σ − σ1| < η and δ < η,

1

n
|`n(µ, σ,A)− `n(µ1, σ1, A0)| ≤| log σ − log σ1|+

1

n

n∑
i=1

|log(Yi −A)− log(Yi −A0)|

+
1

n

n∑
i=1

∣∣∣∣∣{log(Yi −A)− µ}2

σ2
− {log(Yi −A0)− µ1}2

σ2
1

∣∣∣∣∣
=∆6 + ∆7 + ∆8.

(18)

The term ∆6 can be made smaller than ξ/8 by choosing η small enough. By the mean value theorem,

∆7 =
1

n

n∑
i=1

∣∣∣∣A−A0

Yi −A∗

∣∣∣∣ ≤ |A−A0|
n

n∑
i=1

1

|Yi −max(A,A0)|

with probability tending to 1. If A ≤ A0,

1

n

n∑
i=1

1

|Yi −max(A,A0)|
=

1

n

n∑
i=1

1

(Yi −A0)
,

and the right hand side of the upper inequality goes to exp(−µ+σ2/2) in probability. If A0 < A < A0 + δn,

Lemma 2 provides that there exists some constant M∗ such that

lim
n→∞

Pθ0

(
1

n

n∑
i=1

1

|Yi −A|
< M∗

)
= 1

for small enough η. This implies that for small enough η,

lim
n→∞

Pθ0

(
∆7 <

ξ

4

)
= 1. (19)

The same result can be found for ∆8 using similar arguments.

lim
n→∞

Pθ0

(
∆8 <

ξ

4

)
= 1. (20)

Combining (17), (18), (19) and (20), we have

lim
n→∞

Pθ0

{
sup `n(µ, σ,A)− `n(θ0) < −3ξ

4

}
= 1,

where the supremum is taken over all θ satisfying (µ1, σ1, A) ∈ T , |µ − µ1| < η and |σ − σ1| < η for fixed

µ1 and σ1. This result can be extended directly to any finite set of values of µ1 and σ1, and then to any

compact sets of values of µ1 and σ1.
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Figure 1: λ(A) and Log-likelihood for a sample of size n = 15 with µ0 = 0, σ = 1 and A0 = 1.
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