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Abstract To meet the challenge of massive data, Wang et al (2018b) devel-
oped an optimal subsampling method for logistic regression. The purpose of
this paper is to extend their method to softmax regression, which is also called
multinomial logistic regression and is commonly used to model data with mul-
tiple categorical responses. We first derive the asymptotic distribution of the
general subsampling estimator, and then derive optimal subsampling proba-
bilities under the A-optimality criterion and the L-optimality criterion with a
specific L matrix. Since the optimal subsampling probabilities depend on the
unknowns, we adopt a two-stage adaptive procedure to address this issue and
use numerical simulations to demonstrate its performance.

Keywords Massive data · Subsampling · Optimality criterion · Softmax
regression

1 Introduction

With the rapid development of science and technology, extremely large datasets
are ubiquitous. How to extract useful information with limited computing re-
sources from these massive datasets is a common challenge. To meet this chal-
lenge, the emerging subsampling-based methods have demonstrated promising
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performance. These methods randomly select subsamples from the full data
and perform calculations on the subsamples to approximate the quantities of
interest based on the full data. This idea has attracted a lot of attention in the
fields of theoretical computer science and machine learning. However, studies
from the statistical point of view are limited. The long history of investigation
in statistics, especially in the field of experimental design and survey sampling,
has accumulated various techniques to obtain useful information as much as
possible with a fixed budget. These techniques can provide us with valuable
guidance to design more efficient subsampling methods for massive datasets.

Investigations on subsampling-based methods are fruitful such as in matrix
operation approximations (Frieze et al, 2004; Drineas et al, 2006a,b,c) and
matrix decompositions (Drineas et al, 2008; Mahoney and Drineas, 2009). To
solve ordinary least-squares, Drineas et al (2006d) developed a subsampling
method focusing on influential data points. Drineas et al (2011) developed an
algorithm that processes the data using a randomized Hadamard transform
and then takes a subsample by uniform subsampling. Look up Mahoney (2011)
for a systematic overview of the emerging field. Existing studies mostly focus
on fast calculation and available results are about algorithmic properties of the
proposed methods. Ma et al (2015) considered some statistical properties of
subsampling-based algorithms for linear regression, and proposed to combine
the uniform subsampling probability and statistical leverage scores for better
performance. Raskutti and Mahoney (2016) assessed statistical properties of
randomized sketching for least-squares estimators in linear regression. By using
some basic indication of optimal design of experiments, Wang et al (2018a)
proposed a novel method called Information-Based Optimal Subdata Selection
for linear regression which outperforms other existing methods significantly.

The aforementioned studies focus on linear regression. Wang et al (2018b)
first considered logistic regression and introduced the idea of optimal design of
experiments into subsampling scheme to develop optimal subsampling meth-
ods. They derived the asymptotic distribution of the general subsampling esti-
mator and then obtained subsampling probabilities that minimize the asymp-
totic variance-covariance matrix. This paper is closely related to the work of
Wang et al (2018b). We consider the softmax regression model, which is also
called multinomial logistic regression and is often used for multi-label classifi-
cation. We will derive optimal subsampling probabilities for this model under
the A-optimality criterion and the L-optimality criterion with a specific L
matrix (Atkinson et al, 2007). We will present the model setup and our main
results in Section 2, and present some simulation results in Section 3. Section 4
summarizes the paper and the proofs of our main results are provided in the
appendix.
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2 Model setup and optimal subsampling

Let y ∈ {c0, ..., cK} be a multiclass categorical response variable and x be a d
dimensional covariate. A softmax regression model assumes that given x,

P(y = ck|x) = pk(x,β) =
ex

Tβk∑K
l=0 e

xTβl

, k = 0, ...,K, (1)

where βk, k = 0, ...,K, are d dimensional regression coefficients belonging
to a compact subset of Rd. For identifiability, we assume that β0 = 0, so the
whole vector of unknown parameters is β = (βT

1 , ...,β
T
K)T, a Kd d dimensional

vector.
Let independent full data of size N be DN = {(x1, y1), ..., (xN , yN )}. The

unknown parameter β can be estimated by the maximum likelihood estimator
(MLE). For ease of presentation, define δi,k = I(yi = ck), k = 0, ...K, where

I() is the indicator function. The MLE based on the full data, denoted as β̂full,
is the maximizer of the following log-likelihood

`f (β) =
1

N

N∑
i=1

K∑
k=0

δi,k log{pk(xi,β)}

=
1

N

N∑
i=1

[ K∑
k=1

δi,kx
T
i βk − log

{
1 +

K∑
l=1

ex
T
i βl

}]
.

There is no general closed-form solution to this optimization problem, and an
iterative algorithm must be used. A commonly used iterative algorithm is the
Newton-Raphson method. To introduce this method, we derive the gradient
(first order partial derivatives) and the Hessian matrix (second order partial
derivatives) of the log-likelihood with respect to the parameter β:

∂`f (β)

∂β
=

1

N

N∑
i=1

si(β)⊗ xi, and
∂2`f (β)

∂β2
= − 1

N

N∑
i=1

φi(β)⊗ (xix
T
i ),

respectively, where si(β) is a K dimensional vector with the kth element being
si,k(β) = δi,k − pk(xi,β), φi(β) is a K ×K matrix with the kth diagonal ele-
ment being φi,k(β) = pk(xi,β)−p2k(xi,β) and the k1k2th off diagonal element
being φi,k1k2(β) = −pk1(xi,β)pk2(xi,β), and ⊗ is the Kronecker product. The

Newton-Raphson method finds the full data MLE, β̂full, by iteratively applying

β̂
(t+1)
full = β̂

(t)
full +

{ N∑
i=1

φi(β̂
(t)
full)⊗ (xix

T
i )
}−1 N∑

i=1

si(β̂
(t)
full)⊗ xi

until convergence. However, for massive data, iterative calculations on the full
data may take too long time, and sometimes this is not feasible. A popular and
practical solution in this case is to take a subsample, and use the estimator
calculated from the subsample to approximate the full data MLE.
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Now we introduce the general subsampling procedure. Let π1, ..., πN be
subsampling probabilities such that

∑N
i=1 πi = 1. Using subsampling with re-

placement, draw a random subsample of size n (� N) from the full data,
according to the probabilities {πi}Ni=1. We use ∗ to indicate quantities for the
subsample. For example, the covariates, responses, and subsampling probabili-
ties in the subsample are denoted as x∗i , y

∗
i , and π∗i , respectively, for i = 1, ..., n.

Here, since the subsampling probabilities πi’s are allowed to depend on the
full data, including the responses, we need to use inverses of πi’s as weights in
the log-likelihood for the subsample. Otherwise, the resulting estimator is in
general biased. Therefore, the subsample estimator, say β̂sub, is the maximizer
of

`∗s(β) =
1

n

n∑
i=1

1

Nπ∗i

[ K∑
k=1

δ∗i,kβ
T
k x
∗
i − log

{
1 +

K∑
l=1

eβ
T
l x∗i

}]
, (2)

where δ∗i,k = I(y∗i = ck). To maximize (2), the Newton-Raphson iterator for
the subsample is

β̂
(t+1)
sub = β̂

(t)
sub +

{ n∑
i=1

φi(β̂
(t)
sub)⊗ (x∗ix

∗
i
T)

Nπ∗i

}−1 n∑
i=1

si(β̂
(t)
sub)⊗ x∗i
Nπ∗i

.

Here, iterative calculations are performed on the subsample, and thus the
required computational resources are in the scale of the subsample size. If∑n
i=1 π

∗
i
−1φi(β

(t))⊗ (x∗ix
∗
i
T) is positive definite, then the objective function

in (2) is concave, and under some conditions, β̂
(t+1)
sub converges to β̂sub in a

quadratic rate (Ortega and Rheinboldt, 1970).

Now we investigate asymptotic properties of β̂sub under some regularity
assumptions listed below.

Assumption 1 As N → ∞, MN = N−1
∑N
i=1 φi(β̂full) ⊗ (xix

T
i ) goes to a

positive-definite matrix in probability and N−1
∑N
i=1 ‖xi‖3 = OP (1), where

OP (1) means bounded in probability.

Assumption 2 For k = 2, 4, N−2
∑N
i=1 π

−1
i ‖xi‖k = OP (1); and there exists

some δ > 0 such that N−(2+δ)
∑N
i=1 π

−1−δ
i ‖xi‖2+δ = OP (1).

Assumption 1 essentially requires that the observed information matrix is
asymptotically non-singular and the third moment of the full data covari-
ates is bounded in probability. Assumption 2 imposes some conditions on the
subsampling probabilities.

Theorem 1 Under Assumptions 1 and 2, given the full data DN in proba-
bility, as n → ∞ and N → ∞, the approximation error β̂πw − β̂full converges
to zero in probability and its conditional distribution is asymptotically normal,
namely

√
nV
−1/2
N (β̂sub − β̂full)

D|DN−−−−→ N(0, I), (3)



Optimal Subsampling for Softmax Regression 5

where “
D|DN−−−−→” means convergence in distribution conditional on the full data;

VN = M−1N VNcM
−1
N ;

MN =
1

N

N∑
i=1

φi(β̂full)⊗ (xix
T
i ); VNc =

1

N

N∑
i=1

ψi(β̂full)⊗ (xix
T
i )

Nπi
; (4)

and ψi(β) is a K ×K matrix with the k1k2th element ψi,k1k2(β) = {δi,k1 −
pk1(xi,β)}{δi,k2 − pk2(xi,β)}.

Remark 1 In this theorem, both n and N go to infinity, but there are no
restrictions on their relative orders. Even if n is larger than N , the theorem
is still valid. However, there is no computational benefit for oversampling, so
it is typical that n� N in practice. In addition, if one focuses on estimating
the true parameter and replace β̂full with the true parameter in (3), then the
asymptotic distribution is valid only if n = o(N).

From Theorem 1, we see that the asymptotic variance-covariance matrix
n−1VN depends on the subsampling probabilities. Thus, we can derive optimal
subsampling probabilities which minimize the asymptotic variance-covariance
matrix. There is no complete ordering for matrices, so we adopt the idea
of optimal design of experiments and use some criterion function to induce
a complete ordering. Specifically, we consider A-optimality and L-optimality
(see Atkinson et al, 2007). A-optimality minimizes the trace of the variance-
covariance matrix and “A” means this criterion minimizes the average of the
variances for all parameter components. For our case, this is to minimize
the trace of VN , tr(VN ). L-optimality minimizes the trace of the variance-
covariance matrix for some linear transformation, say L, of the parameter
estimator; here “L” stands for linear transformation. For our case, we take a
specific case of L = MN , because with this choice the resultant criterion is to
minimize the trace of VNc, tr(VNc), and the resultant optimal subsampling
probabilities require less time to compute. Here n−1VNc is the asymptotic
variance-covariance matrix when we use MN β̂sub to approximate MN β̂full.

The following theorem shows optimal subsampling probabilities under A-
and L- optimality criteria.

Theorem 2 The A-optimal subsampling probabilities that minimize tr(VN )
are

πoptA
i =

‖M−1N {si(β̂full)⊗ xi}‖∑N
j=1 ‖M

−1
N {sj(β̂full)⊗ xj}‖

i = 1, ..., N. (5)

The L-optimal subsampling probabilities with L = MN that minimize tr(VNc)
are

πoptL
i =

√∑K
k=1{δi,k − pk(xi, β̂full)}2‖xi‖∑N

j=1

√∑K
k=1{δj,k − pk(xj , β̂full)}2‖xj‖

i = 1, ..., N. (6)
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The L-optimal subsampling probabilities have a computational advantage be-
cause it takes O(NKd) time to compute πoptL

i for i = 1, ..., N , while computing

πoptA
i for i = 1, ..., N takes O(NK2d2) time.

Both πoptA
i and πoptL

i depend on the full data estimator β̂full, which is
the statistic we are approximating. This is similar to the dilemma in optimal
design of experiments: one has to know the value of the unknown parameter
to find an optimal design which is to be used to collect data to estimate the
unknown parameter. We adopt the idea of two-stage adaptive optimal design
(Lane et al, 2014), and take a first stage subsample to approximate optimal
subsampling probabilities. An easy way to take the first stage subsample is to
use uniform subsampling in which πuni

i = N−1. However, if the numbers of
observations for different categories are very imbalanced, uniform subsampling
may not work well because the probability of including no observation in some
category can be high. In this scenario, we use subsampling probabilities pro-
portional to the inverses of the numbers of observations in the corresponding
categories. To be specific, let mk be the number of observations for which the
responses are in the kth category; that is, mk =

∑N
i=1 δi,k for k = 0, 1, ...,K.

Proportional subsampling probabilities are proportional to
∑K
k=0 δi,km

−1
k , i.e.,

πprop
i =

∑K
k=0 δi,k{(K + 1)mk}−1.

For clear presentation, we describe the two-stage adaptive procedure in
Algorithm 1.

Algorithm 1 Two-stage adaptive algorithm

(1) Randomly draw a subsample of size n0 with replacement according to proportional

subsampling probabilities πprop
i . Use the Newton-Raphson method to obtian β̂0

sub =
argmaxβ `

∗0
s (β) where `∗0s (β) has the same expression as (2) with n and πi replaced by

n0 and πprop
i , respectively. Replace β̂full with β̂0

sub in (5) or (6) to obtain approximated

optimal subsampling probabilities π̃optA
i or π̃optL

i .

(2) According to the approximated optimal subsampling probabilities π̃optA
i or π̃optL

i , ran-
domly select a subsample of size n with replacement. Combine the subsamples and
the corresponding probabilities in these two steps and implement the Newton-Raphson
method to obtain

β̂ada
sub = argmax

β

{ n0

n0 + n
`∗0s (β) +

n

n0 + n
`opt∗s (β)

}
, (7)

where `opt∗s (β) has the same expression as (2) with πi replaced by π̃optA
i or π̃optL

i .

3 Simulation

This section uses numerical simulations to evaluate the performance of the
two-stage adaptive procedure in Algorithm 1. Suppose that in model (1), the
response y has three possible outcomes, c0, c1 and c2, and the dimension d
of the covariate x is three. Thus the dimension of the unknown parameter



Optimal Subsampling for Softmax Regression 7

vector β = (βT
1 ,β

T
2 )T is six. We set the true value of the parameter vector to

β = (1, 1, 1, 2, 2, 2)T.
We simulate full data sets of size N = 10000 for different distributions of

x. Specifically, we consider the following cases.

Case 1. The covariate x follows a multivariate normal distribution N3(0,Σ),
whereΣ is a matrix with all diagonal elements equal to one and off-diagonal
elements equal to 0.5. For this case, the proportions of observations for the
three categories in the responses are around 0.415, 0.166, and 0.420.

Case 2. The covariate x follows a multivariate normal distribution N3(1.5,Σ),
where Σ is the same as in Case 1. For this case, the responses in the full
dataset are heavily imbalanced. More than 91% of responses are c2, around
3% responses are c0, and around 5% responses are c1.

Case 3. The covariate x follows a mixture of two multivariate normal distri-
butions 0.5N3(1,Σ) + 0.5N3(−1,Σ), where Σ is the same as in Case 1.
For this case, the proportions of observations for the three categories in the
responses are around 0.448, 0.0968, and 0.455.

Case 4. The covariate x follows a multivariate t distribution with degrees of
freedom of 3, t3(0,Σ), where Σ is the same as in Case 1. This is a case that
the covariate distribution has a heavier tail than normal distribution. The
proportions of responses in the three categories are around 0.429, 0.152, and
0.419.

To evaluate the accuracy of Algorithm 1 in approximating the full data
MLE, we implement it on the four full datasets corresponding to the afore-
mentioned four cases. We repeat the implementation for S = 1000 times and

calculate the empirical mean squared error (MSE) from S−1
∑S
s=1 ||β̂

ada,(s)
sub −

β̂full||2. For comparison, we also calculate the empirical MSE from uniform
subsampling with a subsample size of n0 + n.

Simulation results are presented in Figure 1. It shows that the two-stage
adaptive procedure based on optimal subsampling probabilities is uniformly
more efficient in approximating the full data MLE than the uniform subsam-
pling method for all the four cases of covariate distributions. For the two-stage
adaptive procedure, the performance based on πoptA

i is better than that based

on πoptL
i , which is consistent with the theoretical results that πoptA

i is derived
to minimize the asymptotic MSE of the subsample estimator.

We also perform simulations with a fixed total subsample size n0 + n and
varying proportions of the two-stage subsample sizes. This gives us information
about how different subsample size allocations between the two stages affect
the performance of the two-stage procedure. Figure 2 gives results with n0 +
n = 2000 for Case 1. It shows that the two-stage algorithm does not have the
best performance if n0 is too small or too large. If n0 is too small, the first stage
estimator β0

sub may not be very accurate and thus the optimal probabilities
may not be approximated well; if n0 is relatively large and n is relatively small,
then the more informative second stage sample is dominated by the first stage
sample. The best approximation result is obtained when n0

n0+n
is around 0.1.

Results in other cases are similar and are omitted to save space.
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200 400 600 800 1000

0.
0

0.
4

0.
8

1

1
1

1 1 1

2

2
2

2
2 2

3

3

3

3
3

3

1
2
3

optA
optL
uniform

n

M
S
E

(c) Case 3
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(d) Case 4

Fig. 1: Empirical MSEs of different methods for different second stage sub-
sample sizes n when the first stage subsample size is fixed at n0 = 200.

We also record the CPU times for the simulation studies. Results for Case 1
are given in Table 1, and results for other cases are omitted due to similarity.
All computations were done using the R programming language (R Core Team,
2017) on a MacBook Pro with 2.5 GHz Intel Core i7 processor and 16 GB
memory. Uniform subsampling uses less time than the two-stage algorithm
based on πoptA

i or πoptL
i because it is a one step procedure and does not need

to calculate the approximated optimal subsampling probabilities. As expected,
the algorithm based on πoptL

i is faster than that based on πoptA
i due to its lower

time complexity. The last row gives the CPU seconds for performing full data
Newton-Raphson method for 1000 times, which is the longest one and confirms
that the two-stage algorithm reduces computation burden.

Table 1: CPU seconds for different methods for Case 1 with n0 = 200 and
different n for 1000 repetitions.

Method n
100 200 300 500 700 1000

optA 20.934 21.137 21.429 21.971 22.962 23.494
optL 15.437 15.991 15.909 16.687 17.653 18.283

Uniform 3.029 3.323 3.720 4.116 5.186 5.752
Full data CPU seconds: 33.286
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Fig. 2: MSEs of different ratios of first step subsample size to total subsample
size for Case 1 when n0 + n = 2000 is fixed.

To further investigate the performance of the two-stage adaptive algorithm
in larger datasets, we enlarge the dimension of covariate to d = 10 (20 unknown
parameters) and set the full data size to N = 104, 105 and 106. The covariate
x is generated from the multivariate normal distribution as in Case 1. We set
the mean of x to be 0 and variance-covariance matrix Σ to be a matrix with
diagonal elements equal to one and off-diagonal elements equal to 0.5. Table 2
presents the CPU seconds for repeating different methods for 200 times. The
results indicate that the two-stage adaptive algorithm reduces computation
burden dramatically compared with the full data MLE, and its advantage is
more significant as the full data size increases.

Table 2: CPU seconds for 200 replications for different methods with a fixed
n0 = 200, n = 1000 and different N when d = 10.

Method N
104 105 106

optA 12.29 89.99 665.55
optL 6.56 24.95 217.87

Uniform 3.44 4.07 8.77
Full 25.64 258.46 2636.99

4 Summary and future work

For the softmax regression model with massive data, we have established the
asymptotic normality of the general subsampling estimator, and then derived
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optimal subsampling probabilities under the A-optimality criterion and the L-
optimality with a specific L. We have used the two-stage adaptive procedure to
address the issue that the optimal subsampling probabilities depend on the full
data estimator, and used numerical simulations to evaluate its performance.

There are some important questions we will investigate further. 1) We
use a first stage subsample to obtain a pilot estimator to approximate optimal
subsampling probabilities. We believe that, under reasonable assumptions, the
resulting estimator is also asymptotically normal with the optimal asymptotic
variance-covariance matrix. 2) Wang (2018) proposed to use the unweighted
MLE of an optimal subsample for logistic regression and then correct the bias.
This method depends on the special structure of the binary logistic regression
model. Whether it can be extended to multinomial logistic regression requires
further investigations.
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Appendix: Proofs

We prove the two theorems in this section. We use OP |DN
(1) and oP |DN

(1)
to denote boundedness and convergence to zero, respectively, in conditional
probability given the full data. Specifically for a sequence of random vector
vn,N , as n → ∞ and N → ∞, vn,N = OP |DN

(1) means that for any ε > 0,
there exists a finite Cε > 0 such that

P
{

sup
n

P(‖vn,N‖ > Cε|DN ) ≤ ε
}
→ 1;

vn,N = oP |DN
(1) means that for any ε > 0 and δ,

P
{
P(‖vn,N‖ > δ|DN ) ≤ ε

}
→ 1.

Proof (Theorem 1) By direct calculation under the conditional distribution
of the subsample given DN , we have

E
{
`∗s(β)

∣∣DN} = `f (β),

E
{
`∗s(β)− `f (β)

∣∣DN}2 =
1

n

[
1

N2

N∑
i=1

t2i (β)

πi
− `2f (β)

]
, (8)

where ti(β) =
∑K
k=1 δi,kx

T
i βk − log

{
1 +

∑K
l=1 e

xT
i βl

}
. Note that
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|ti(β)| ≤
K∑
k=1

‖xi‖‖βk‖+ log

(
1 +

K∑
k=1

e‖xi‖‖βk‖
)

≤ K‖xi‖‖β‖+ log
(

1 +Ke‖xi‖‖β‖
)

≤ K‖xi‖‖β‖+ 1 + logK + ‖xi‖‖β‖
= (K + 1)‖xi‖‖β‖+ 1 + logK,

where the second inequality is from the fact that ‖βk‖ ≤ ‖β‖, and the third
inequality is from the fact that log(1 + x) < 1 + log x for x ≥ 1. Therefore,
from Assumption 2,

1

n2

N∑
i=1

t2i (β)

πi
− `2f (β) ≤ 1

n2

N∑
i=1

t2i (β)

πi
+

(
1

n

N∑
i=1

|ti(β)|

)2

= OP (1). (9)

Combining (8) and (9), `∗s(β) − `f (β) → 0 in conditional probability given

DN . Note that the parameter space is compact, and β̂sub and β̂full are the
unique global maximums of the continuous concave functions `∗s(β) and `f (β),
respectively. Thus, from Theorem 5.9 and its remark of van der Vaart (1998),
we obtain that conditionally on DN in probability,

‖β̂sub − β̂full‖ = oP |DN
(1). (10)

From Taylor’s theorem (c.f. Chapter 4 of Ferguson, 1996),

0 = ˙̀∗
s,j(β̂sub) = ˙̀∗

s,j(β̂full) +
∂ ˙̀∗
s,j(β̂full)

∂βT
(β̂sub − β̂full) +Rj (11)

where ˙̀∗
s,j(β) is the partial derivative of `∗s(β) with respect to βj , and

Rj = (β̂sub−β̂full)
T

∫ 1

0

∫ 1

0

∂2 ˙̀∗
s,j{β̂full + uv(β̂sub − β̂full)}

∂β∂βT
vdudv (β̂sub−β̂full).

Note that the third partial derivative of the log-likelihood for the subsample
takes the form of

∂3`∗s(β)

∂βj1∂βj2∂βj3
=

n∑
i=1

αi,j1j2j3xi,j′1xi,j′2xi,j′3
nNπ∗i

,

where j′l = Rem(jl/d) + dI{Rem(jl/d) = 0}, l = 1, 2, 3, Rem(jl/d) is the re-
minder of the integer division jl/d, and αi,j1j2j3 satisfies that |αj1j2j3 | ≤ 2. Here
|αj1j2j3 | ≤ 2 because it has a form of pk′(xi,β){1−pk′(xi,β)}{1−2pk′(xi,β)},
pk′1(xi,β)pk′2(xi,β){2pk′2(xi,β)−1}, or 2pk′1(xi,β)pk′2(xi,β)pk′3(xi,β) for some
k′ and k′1 6= k′2 6= k′3. Thus,∥∥∥∥∥∂2 ˙̀∗

s,j(β)

∂β∂βT

∥∥∥∥∥ ≤ 2

n

n∑
i=1

K‖x∗i ‖3

Nπ∗i
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for all β. This gives us that

sup
u,v

∥∥∥∥∥∂2 ˙̀∗
s,j{β̂full + uv(β̂sub − β̂full)}

∂β∂βT

∥∥∥∥∥ = OP |DN
(1), (12)

because

P

(
1

n

n∑
i=1

‖x∗i ‖3

Nπ∗i
≥ τ

∣∣∣∣∣DN
)
≤ 1

nNτ

n∑
i=1

E

(
‖x∗i ‖3

π∗i

∣∣∣∣∣DN
)

=
1

Nτ

N∑
i=1

‖xi‖3 → 0,

in probability as τ →∞ by Assumption 1. From (12), we have that

Rj = OP |DN
(‖β̂sub − β̂full‖2). (13)

Denote M∗n = ∂2 ˙̀∗
s(β)/∂β∂βT = n−1

∑n
i=1(Nπ∗i )−1φ∗i (β̂full) ⊗ (x∗ix

∗
i
T).

From (11) and (12), we have

β̂sub − β̂full = −M∗−1n

{
˙̀∗
s(β̂full) +OP |DN

(‖β̂sub − β̂full‖2)
}
. (14)

By direct calculation, we know that

E(M∗n|DN ) = MN . (15)

For any component M∗j1j2n of M∗n where 1 ≤ j1, j2 ≤ d,

V
(
M∗j1j2n |DN

)
=

1

n

N∑
i=1

πi

{
{φi(β̂full)⊗ (xix

T
i )}j1j2

Nπi
−Mj1j2

N

}2

=
1

nN2

N∑
i=1

[{φi(β̂full)⊗ (xix
T
i )}j1j2 ]2

πi
− 1

n
(Mj1j2

N )2

≤ 1

nN2

N∑
i=1

‖xi‖4

πi
= OP (n−1),

where the second last inequality holds by the fact that all elements of φi
are between 0 and 1, and the last equality is from Assumption 2. This result
combined with Markov’s inequality and (15), implies that

M∗n −MN = OP |DN
(n−1/2). (16)

By direct calculation, we have

E

{
∂`∗s(β̂full)

∂β

∣∣∣∣DN
}

=
∂`f (β̂full)

∂β
= 0. (17)

Note that

V

{
∂`∗s(β̂full)

∂β

∣∣∣∣DN
}

=
1

nN2

N∑
i=1

ψi(β̂full)⊗ (xix
T
i )

πi
, (18)
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whose elements are bounded by (nN2)−1
∑N
i=1 π

−1
i ‖xi‖2 which is of order

OP (n−1) by Assumption 2. From (17), (18) and Markov’s inequality, we know
that

∂`∗s(β̂full)

∂β
= OP |DN

(n−1/2). (19)

Note that (16) indicates that M∗−1n = OP |DN
(1). Combining this with

(10), (14) and (19), we have

β̂sub − β̂full = OP |DN
(n−1/2) + oP |DN

(‖β̂sub − β̂full‖),

which implies that

β̂sub − β̂full = OP |DN
(n−1/2). (20)

Note that

˙̀∗
s(β̂full) =

1

n

n∑
i=1

s∗i (β̂full)⊗ x∗i
Nπ∗i

≡ 1

n

n∑
i=1

ηi (21)

Given DN , η1, ...,ηn are i.i.d, with mean 0 and variance,

V(ηi|DN ) = VNc = OP (1). (22)

Meanwhile, for every ε > 0 and some ρ > 0,

n∑
i=1

E{‖n−1/2ηi‖2I(‖ηi‖ > n1/2ε)|DN}

≤ 1

n1+ρ/2ερ

n∑
i=1

E{‖ηi‖2+ρI(‖ηi‖ > n1/2ε)|DN}

≤ 1

n1+ρ/2ερ

n∑
i=1

E(‖ηi‖2+ρ|DN )

=
1

nρ/2
1

N2+ρ

1

ερ

N∑
i=1

‖si(β̂full)‖2+ρ‖xi‖2+ρ

π1+ρ
i

≤ 1

nρ/2
1

N2+ρ

1

ερ

N∑
i=1

‖xi‖2+ρ

π1+ρ
i

= oP (1)

where the last equality is from Assumption 2. This and (22) show that the
Lindeberg-Feller conditions are satisfied in the conditional distribution in prob-
ability. From (21) and (22), by the Lindeberg-Feller central limit theorem
(Proposition 2.27 of van der Vaart, 1998), conditionally on DN in probability,

n1/2V
−1/2
Nc

˙̀∗
s(β̂full) =

1

n1/2
{V(ηi|DN )}−1/2

n∑
i=1

ηi → N(0, I),
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in distribution. From (14) and (20),

β̂sub − β̂full = −M∗−1n
˙̀∗
s(β̂full) +OP |DN

(n−1). (23)

From (16),

M∗−1n −M−1N = −M−1N (M∗n −MN )M∗−1n = OP |DN
(n−1/2). (24)

Based on Assumption 1 and (22), it is verified that,

V = M−1N VNcM
−1
N = OP (1). (25)

Thus, (23), (24) and (25) yield,

n1/2V−1/2(β̂sub − β̂full)

= −n1/2V−1/2M∗−1n
˙̀∗
s(β̂full) +OP |DN

(n−1/2)

= −V−1/2M−1N n1/2 ˙̀∗
s(β̂full)−V−1/2(M∗−1n −M−1N )n1/2 ˙̀∗

s(β̂full) +OP |DN
(n−1/2)

= −V−1/2M−1N V
1/2
NcV

−1/2
Nc n−1/2 ˙̀∗

s(β̂full) +OP |DN
(n−1/2).

The result in Theorem 1 follows from Slutsky’s Theorem(Theorem 6 of Fergu-
son, 1996) and the fact that

V−1/2M−1N V
1/2
Nc (V−1/2M−1N V

1/2
Nc )T = V−1/2M−1N V

1/2
NcV

1/2
NcM

−1
N V−1/2 = I.

Proof (Theorem 2) Note that ψi(β̂full) = si(β̂full)s
T
i (β̂full), so

ψi(β̂full)⊗ (xix
T
i ) = {si(β̂full)⊗ xi}{sTi (β̂full)⊗ xT

i }. (26)

Therefore, for the A-optimality,

tr(VN ) = tr(M−1N VNcM
−1
N )

=
1

N2
tr

{
M−1N

N∑
i=1

ψi(β̂full)⊗ (xix
T
i )

πi
M−1N

}

=
1

N2

N∑
i=1

tr
[
M−1N {si(β̂full)⊗ xi}{sTi (β̂full)⊗ xT

i }M
−1
N

]
πi

=
1

N2

N∑
i=1

‖M−1N {si(β̂full)⊗ xi}‖2

πi
×

N∑
i=1

πi

≥
{

1

N

N∑
i=1

‖M−1N {si(β̂full)⊗ xi}‖
}2

.

Here, the last step due to the Cauchy-Schwarz inequality, and the equality
holds if and only if πi is proportional to ‖M−1N {si(β̂full) ⊗ xi}‖. Thus, the
A-optimal subsampling probabilities take the form of (5).
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For the L-optimality, the proof is similar by noticing that

tr(VNc) =
1

N2

N∑
i=1

tr{ψi(β̂full)⊗ (xix
T
i )}

πi

=
1

N2

N∑
i=1

tr{ψi(β̂full)}tr(xixT
i )

πi
=

1

N2

N∑
i=1

‖si(β̂full)‖2‖xi‖2

πi

=
1

N2

N∑
i=1

[∑K
k=1{δi,k − pk(xi, β̂full)}2

]
‖xi‖2

πi
×

N∑
i=1

πi

≥

(
1

N

N∑
i=1

[ K∑
k=1

{δi,k − pk(xi, β̂full)}
]1/2
‖xi‖

)2

.
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