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Abstract

With increasing availability of massive survival data, researchers need valid statisti-
cal inferences for survival modeling whose computation is not limited by computer
memories. Existing works focus on relative risk models using the online updating
and divide-and-conquer strategies. The subsampling strategy has not been available
due to challenges in developing the asymptotic properties of the estimator under
semiparametric models with censored data. This paper tackles optimal subsampling
algorithms to fast approximate the maximum likelihood estimator for parametric
accelerate failure time (AFT) models with massive survival data. We derive the
asymptotic distributions of the subsampling estimator and the optimal sampling
probabilities that minimize the asymptotic mean squared error of the estimator. A
feasible two-step algorithm is proposed where the optimal sampling probabilities in
the second step are estimated based on a pilot sample in the first step. The asymptotic
properties of the two-step estimator are established. The performance of the estima-
tor is validated in a simulation study. A real data analysis illustrates the usefulness
of the methods.
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1 INTRODUCTION

Massive survival data, which are increasingly available with the rapid advancement of surveillance and storage technologies, call
for novel methodologies for fitting regression models for them. The key challenge is that the data can be so big that they exceed the
memory of even super computers, rendering traditional computational methods in fitting them infeasible. General strategies to
address the challenge can be grouped into three categories1: divide and conquer approaches2,3,4, online updating approaches5,6,
and subsampling approaches7,8. Specifically for big survival data, the divide-and-conquer strategy has been developed for the
Cox model4 and for frailty models with multivariate failure times9. The online updating strategy has been applied to testing
the proportional hazards assumption10 and fitting the Cox model11. Fewer works, nevertheless, have been available using the
subsampling strategy..

The subsampling strategy is a straightforward and efficient approach to approximate the full data inferences by inferences
based on a subsample where observations are appropriately weighted. Subsampling probabilities (SSPs) are constructed with
certain statistical leverage score or variate of the data. SSPs of non-informative subsampling schemes are based on covariates
instead of responses7,8. In contrase, more recent works use informative SSPs, which depend on both responses and covariates.
The optimal SSPs are oftentimes dependent on the maximum likelihood estimator (MLE). Wang et al. 12 , for example, proposed
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an optimal subsampling algorithm for logistic regression based on the A-optimality which minimizes the trace of the variance
matrix of the resultant estimator. This method has been extended to many statistical models such as generalized linear model13

and quantile regression model14. For survival analysis, the asymptotic properties of subsample estimators under semiparametric
models with censored data are difficult to access and they may no provide useful guidance to define optimal sampling probabil-
ities. One exception is Zuo et al. 15 for the additive hazard model, where the sampling probabilities were derived in an ad hoc
way.

The accelerate failure time (AFT) model is one of the most popular models for survival data, such as generalized Gamma AFT
model16. No existing work has investigated the optimal subsampling algorithms for AFT models with massive data. Understand-
ing the challenging issues from a semiparametric model, we consider a less ambitious problem and develop optimal subsampling
algorithms for parametric AFT models. The parametric setting facilitates the derivation of the optimal SSPs. We establish the
optimal SSPs based on the A-optimality and the L-optimality, which depend on the full data MLE. As the full data MLE is not
available due to the computational barrier imposed by the large size of the data, we propose a two-step procedure where the opti-
mal SSPs is estimated by a pilot subsample first and then the subsampling estimator based on a subsample selected by the optimal
SSPs is obtained. The asymptotic normality of the two-step estimator are derived, and the asymptotic variance is estimated by
the method of moments. The method is validated through extensive simulation studies and illustrated by a real data example.
Our implementation in R is publicly available in GitHub repo: https://github.com/YEnthalpy/osmac-parametric-aft-models.

The rest of the paper is organized as follows. A general subsampling procedure with given SSPs is presented and the asymptotic
properties of the resulting estimator are established for parametric AFT models in Section 2. The optimal SSPs are derived
under two criteria motivated from experiment design in Section 3. As the optimal SSPs depend on unknown full-data MLE,
a feasible two-step algorithm is proposed in Section 4, with the asymptotic properties of the resulting estimator established
and an estimator of the asymptotic variance derived. The performance of the estimator is assessed in a simulation study in
Section 5. The method is applied to analyzing the survival time of lymphoma patients in the Surveillance, Epidemiology, and
End Results (SEER) program in Section 6. Section 7 concludes with a discussion. Proofs of the theoretical results are relegated
to the Supplementary Material.

2 SUBSAMPLING FOR PARAMETRIC AFT MODELING

For subject 𝑖, 𝑖 = 1, 2, ..., 𝑛, let 𝑡𝑖, 𝑐𝑖, and 𝐱𝑖 be the log-transformed failure time, the log-transformed censoring time, and a 𝑝 × 1
covariate vector, respectively. Given 𝐱𝑖, assume that 𝑡𝑖 is independent of 𝑐𝑖. A general form of Parametric AFT models is

𝑡𝑖 = 𝐱⊤𝑖 𝜷 + 𝜎𝜖𝑖, 𝑖 = 1, 2, ..., 𝑛, (1)

where 𝜷 is a 𝑝× 1 vector of regression coefficients, 𝜎 is the scale parameter, and 𝜖𝑖’s are independent and identically distributed
(i.i.d.) random variables with probability density function 𝑓𝜖(𝑥), cumulative distribution function 𝐹𝜖(𝑥), survival function
𝑆𝜖(𝑥) = 1 − 𝐹𝜖(𝑥) and hazard function ℎ𝜖(𝑥) = 𝑓𝜖(𝑥)∕𝑆𝜖𝑖(𝑥), 𝑥 ∈ ℝ. Due to right censoring, the observed data are i.i.d.
copies of (𝑦𝑖, 𝛿𝑖, 𝐱𝑖), where 𝑦𝑖 = min(𝑡𝑖, 𝑐𝑖), 𝛿𝑖 = 𝐼(𝑡𝑖 < 𝑐𝑖), and 𝐼(⋅) is the indicator function. Denote the full data matrix as
𝑛 =

{

𝑦𝑖, 𝛿𝑖, 𝐱𝑖, 𝑖 = 1, ..., 𝑛
}

.
The target of inferences is the parameters of parametric AFT models 𝜽 = (𝜎, 𝜷⊤)⊤. The MLE is the maximizer of the log-

likelihood function,

𝑙(𝜽) =
𝑛
∑

𝑖=1
𝑙𝑖(𝜽),

where
𝑙𝑖(𝜽) = (1 − 𝛿𝑖) log{𝑆𝑖(𝜽)} + 𝛿𝑖 log{𝑓𝑖(𝜽)},

𝑆𝑖(𝜽) = 𝑆𝜖{𝑒𝑖(𝜽)}, 𝑓𝑖(𝜽) = 𝑓𝜖{𝑒𝑖(𝜽)}∕𝜎, and 𝑒𝑖(𝜽) = (𝑦𝑖 − 𝐱⊤𝑖 𝜷)∕𝜎. In the sequel, we denote the gradient and Hessian matrix
of 𝑙𝑖(𝜽) as �̇�𝑖(𝜽) and 𝑙𝑖(𝜽), respectively. We use ‖𝐁‖ for the Frobenius norm of a matrix or vector 𝐁.

For massive data with large 𝑛, the subsampling strategy makes inferences about the MLE �̂�MLE =
[

�̂�MLE, 𝜷⊤
MLE

]⊤ based on
an appropriately formed subsample of a much smaller size. Suppose that the SSPs are given as 𝝅 = (𝜋1, 𝜋2, ..., 𝜋𝑛) for all
observations. We first draw a subsample of size 𝑟 with replacement denoted by

{

𝑦∗𝑖 , 𝛿
∗
𝑖 , 𝐱

∗
𝑖 , 𝜋

∗
𝑖 , 𝑖 = 1, ..., 𝑟

}

, where 𝑦∗𝑖 , 𝛿∗𝑖 , 𝐱∗𝑖 , and
𝜋∗
𝑖 are the responses, censoring indicators, covariates, and subsampling probabilities of the subsample, respectively. We obtain

https://github.com/YEnthalpy/osmac-parametric-aft-models
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the subsample estimator �̃�𝑟 by maximizing the following target function

𝑙∗(𝜽) =
𝑟

∑

𝑖=1

𝑙∗𝑖 (𝜽)
𝜋∗
𝑖

,

where
𝑙∗𝑖 (𝜽) = (1 − 𝛿∗𝑖 ) log{𝑆

∗
𝑖 (𝜽)} + 𝛿∗𝑖 log{𝑓

∗
𝑖 (𝜽)},

𝑆∗
𝑖 (𝜽) = 𝑆𝜖{𝑒∗𝑖 (𝜽)}, 𝑓 ∗

𝑖 (𝜽) = 𝑓𝜖{𝑒∗𝑖 (𝜽)}∕𝜎, and 𝑒∗𝑖 (𝜽) = (𝑦∗𝑖 − 𝜷⊤𝐱∗𝑖 )∕𝜎. In particular, the maximization can be approached by a
block coordinate decent method, where 𝜷 is treated as one block and 𝜎 as the other.

The following assumptions are needed to derive the asymptotic properties of �̃�𝑟.

Assumption 1. The true value 𝜽0 of 𝜽 is an interior point of the compact parameter space 𝚯 in which ‖𝜷‖ ≤ 𝐵 < ∞ and 0 <
𝐴 ≤ 𝜎 for some positive constants 𝐴 and 𝐵.

Assumption 2. As 𝑛 → ∞,

(𝑖) 𝑛−2 sup
𝜽∈𝚯

{ 𝑛
∑

𝑖=1
𝜋−1
𝑖

‖

‖

�̇�𝑖(𝜽)‖‖
2

}

= 𝑂𝑃 (1),

(𝑖𝑖) 𝑛−2 sup
𝜽∈𝚯

{ 𝑛
∑

𝑖=1
𝜋−1
𝑖

‖

‖

𝑙𝑖(𝜽)‖‖
2

}

= 𝑂𝑃 (1),

(𝑖𝑖𝑖) 𝑛−1 sup
𝜽∈𝚯

{ 𝑛
∑

𝑖=1

‖

‖

‖

‖

‖

‖

𝜕2 �̇�(𝑘)𝑖 (𝜽)
𝜕𝜽𝜕𝜽⊤

‖

‖

‖

‖

‖

‖

}

= 𝑂𝑃 (1),

(𝑖𝑣) 𝑛−1
𝑛
∑

𝑖=1

‖

‖

‖

�̇�𝑖(�̂�MLE)
‖

‖

‖

4
= 𝑂𝑃 (1),

where �̇�(𝑘)𝑖 (𝜽) is the 𝑘th component of �̇�𝑖(𝜽), 𝑘 = 1, 2, ..., 𝑝 + 1. Specifically, conditions (𝑖) and (𝑖𝑖) hold when 𝜋𝑖 = 1∕𝑛.

Assumption 3. The maximum likelihood estimator �̂�MLE is unique and 𝐌𝑛 = 𝑛−1
∑𝑛

𝑖=1 𝑙𝑖(�̂�MLE) goes to a negative definite matrix
as 𝑛 → ∞.

Assumption 4. There exists some 𝜉 > 0 such that

1
𝑛2+𝜉

𝑛
∑

𝑖=1

1
𝜋1+𝜉
𝑖

‖

‖

‖

�̇�𝑖(�̂�MLE)
‖

‖

‖

2+𝜉
= 𝑂𝑃 (1).

Assumption 1 assures that the regression coefficients are finite and the scale 𝜎 is bounded away from zero. Assumption 2 puts
moment conditions on the derivatives of the log-likelihood function to ensure the consistency and asymptotic normality of the
estimator based on the subsample. Assumption 3 imposes a condition on the Hessian matrix. Assumption 4 is required by the
Lindeberg–Feller central limit theorem.

The theorem below establishes the consistency and asymptotic normality of �̃�𝑟.

Theorem 1. If Assumptions 1–4 hold, as 𝑟 → ∞, 𝑛 → ∞, 𝑟∕𝑛 → 0, given 𝑛 in probability,

𝑟1∕2𝚪−1∕2
𝑛 (�̃�𝑟 − �̂�MLE) → 𝑁(𝟎, 𝐈)

in distribution, where 𝚪𝑛 = 𝐌−1
𝑛 𝐕𝑛𝐌−1

𝑛 = 𝑂𝑃 (1), and

𝐕𝑛 =
1
𝑛2

𝑛
∑

𝑖=1

�̇�𝑖(�̂�MLE)�̇�⊤𝑖 (�̂�MLE)
𝜋𝑖

.

The simplest subsampling method is to use the uniform SSPs where 𝝅 = {𝑛−1}𝑛𝑖=1 but it is far from optimal. Thus, we will
consider a more efficient subsampling procedure which intend to “minimize" the asymptotic variance-covariance matrix 𝚪𝑛∕𝑟
mentioned in Theorem 1.
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3 OPTIMAL SUBSAMPLING PROBABILITIES

In this section, we consider the idea of A-optimality from optimal design of experiment which seeks to minimize the trace of
the asymptotic variance-covariance matrix 𝚪𝑛∕𝑟. From Theorem 1, this is the same as minimizing the asymptotic MSE of the
resultant estimator �̃�𝑟. The following theorem gives the specific expression of the A-optimal SSP.

Theorem 2. Given 𝑛, the optimal SSP denoted as 𝝅mMSE(�̂�MLE) = {𝜋mMSE
𝑖 (�̂�MLE)}𝑛𝑖=1 which minimizes tr(𝚪𝑛) satisfies

𝜋mMSE
𝑖 (�̂�MLE) =

‖𝐌−1
𝑛 �̇�𝑖(�̂�MLE)‖

∑𝑛
𝑖=1 ‖𝐌−1

𝑛 �̇�𝑖(�̂�MLE)‖
, 𝑖 = 1, 2,… , 𝑛,

where

‖𝐌−1
𝑛 �̇�𝑖(�̂�MLE)‖ = 1

�̂�MLE

‖

‖

‖

‖

‖

‖

𝐌−1
𝑛

[

𝑒𝑖(�̂�MLE) + 𝛿𝑖
𝑓𝜖{𝑒𝑖(�̂�MLE)}

𝑓 ′
𝜖{𝑒𝑖(�̂�MLE)}

, 𝐱⊤𝑖

]⊤
‖

‖

‖

‖

‖

‖

[

(1 − 𝛿𝑖)ℎ𝜖{𝑒𝑖(�̂�MLE)} + 𝛿𝑖
𝑓 ′

𝜖{𝑒𝑖(�̂�MLE)}

𝑓𝜖{𝑒𝑖(�̂�MLE)}

]

,

and 𝑓 ′

𝜖(𝑥) is the first derivative of 𝑓𝜖(𝑥).

Since multiplying a 𝑝 dimensional vector by a 𝑝× 𝑝 matrix takes 𝑂(𝑝2) time, the time complexity for calculating 𝝅mMSE(�̂�MLE)
is 𝑂(𝑛𝑝2). In order to save the computing time, we also consider the L-optimality criterion from optimal design of experiment17.
Specfically for our problem, consider minimizing tr(𝐕𝑛) = tr(𝚪𝑛𝐌2

𝑛) where 𝚪𝑛∕𝑟 is the asymptotic variance-covariance matrix
of �̃�𝑟. Note that given 𝑛,

𝑟1∕2𝐌𝑛(�̃�𝑟 − �̂�MLE) → 𝑁(𝟎,𝐕𝑛)
in distribution, which indicates that minimizing tr(𝐕𝑛) is minimizing the asymptotic MSE of 𝐌𝑛�̃�𝑟. The following theorem
presents the SSP for this criterion.

Theorem 3. The optimal SSP denoted as 𝝅mVc(�̂�MLE) = {𝜋mVc
𝑖 (�̂�MLE)}𝑛𝑖=1 which minimizes tr(𝐕𝑛) is

𝜋mVc
𝑖 (�̂�MLE) =

‖�̇�𝑖(�̂�MLE)‖
∑𝑛

𝑖=1 ‖�̇�𝑖(�̂�MLE)‖
, 𝑖 = 1, 2,… , 𝑛,

where

‖�̇�𝑖(�̂�MLE)‖ = 1
�̂�MLE

√

√

√

√

√‖

‖

𝐱𝑖‖‖
2 +

(

𝑒𝑖(�̂�MLE) + 𝛿𝑖
𝑓𝜖{𝑒𝑖(�̂�MLE)}

𝑓 ′
𝜖{𝑒𝑖(�̂�MLE)}

)2 [

(1 − 𝛿𝑖)ℎ𝜖{𝑒𝑖(�̂�MLE)} + 𝛿𝑖
𝑓 ′

𝜖{𝑒𝑖(�̂�MLE)}

𝑓𝜖{𝑒𝑖(�̂�MLE)}

]

.

The time complexity for deriving 𝜋mVc
𝑖 (�̂�MLE) is 𝑂(𝑛𝑝) because calculating the norm of a 𝑝 dimentional vector takes 𝑂(𝑝) time.

This shows that calculating 𝝅mVc(�̂�MLE) is faster than calculating 𝝅mMSE(�̂�MLE).
The sensitivity of the optimal SSP in response to 𝑒𝑖(�̂�MLE) is interesting. For parametric models without censoring, obser-

vations with residuals of large magnitude have large optimal SSPs in existing investigations13,14. This is not true for censored
observations. Nevertheless, it does not contradict the fact that optimal SSPs prefer data points that are harder to predict. Since the
influences of 𝑒𝑖(�̂�MLE) on 𝜋mMSE

𝑖 and 𝜋mVc
𝑖 are complicated as seen in Theorems 2 and 3, respectively, we use a specific example

of Weibull parametric AFT model, and plot ‖�̇�𝑖(�̂�MLE)‖ and ‖𝐌−1
𝑛 �̇�𝑖(�̂�MLE)‖ against 𝑒𝑖(�̂�MLE) in Figure 1 for a fixed covariate 𝐱𝑖.

Here 𝐌𝑛 and �̂�MLE were calculated from a simulated full data set where the covariates followed a multivariate normal distribu-
tion with mean zero and covariance matrix 𝚺𝑖𝑗 = 0.5𝐼(𝑖≠𝑗). Figure 1 shows that ‖�̇�𝑖(�̂�MLE)‖ and ‖𝐌−1

𝑛 �̇�𝑖(�̂�MLE)‖ both approach zero
as 𝑒𝑖(�̂�MLE) approaches −∞ for censored observations. This indicates that 𝜋mVc

𝑖 and 𝜋mMSE
𝑖 are smaller with a larger negative

𝑒𝑖(�̂�MLE). We can explain this result based on the definition of censoring. A censored observation means 𝑐𝑖 ≤ 𝑡𝑖, and a negative
𝑒𝑖(�̂�MLE) means 𝑐𝑖 < 𝑡𝑖. Thus, for a censored observation, a larger magnitude of a negative 𝑒𝑖(�̂�MLE) does not mean a larger pre-
diction error, |𝑡𝑖 − 𝑡𝑖|. On the other hand, a positive 𝑒𝑖(�̂�MLE) means 𝑐𝑖 > 𝑡𝑖, and thus a larger magnitude of a positive 𝑒𝑖(�̂�MLE)
means a larger prediction error, |𝑡𝑖 − 𝑡𝑖|. For uncensored observations, clearly a large absolute 𝑒𝑖(�̂�MLE) means hard to predict,
thus both 𝜋mVc

𝑖 and 𝜋mMSE
𝑖 are large when 𝑒𝑖(�̂�MLE) is far away from zero. However, the minimum SSP may not be achieved at

zero 𝑒𝑖(�̂�MLE), which is different from the results in existing investigations13,14. The reason is these investigations considered esti-
mating regression coefficient 𝜷 only, while our SSPs are optimal when both the scale parameter 𝜎 and regression coefficients 𝜷
are of interest.



Zehan Yang ET AL v

0.0

0.5

1.0

1.5

2.0

2.5

-5 -4 -3 -2 -1 0 1

ei(θ̂MLE)

∥ ∥ ∥l̇
i(
θ̂

M
L
E
)∥ ∥ ∥

0

5

10

-5 -4 -3 -2 -1 0 1

ei(θ̂MLE)

∥ ∥ ∥M
−
1

n
l̇ i
(θ̂

M
L
E
)∥ ∥ ∥

censored observed

FIGURE 1 The influence of 𝑒𝑖(�̂�MLE) on ‖�̇�𝑖(�̂�MLE)‖ (left panel) and ‖𝐌−1
𝑛 �̇�𝑖(�̂�MLE)‖ (right panel) when 𝐱𝑖 is fixed for Weibull AFT

model.

4 A TWO-STEP PROCEDURE

Note that the SSPs in Theorem 2 and 3 depend on �̂�MLE, so they are not feasible in practice. Therefore, we will propose a workable,
two-step procedure in this section. In the first step, we approximate 𝝅mVc(�̂�MLE) and 𝝅mMSE(�̂�MLE) based on a pilot estimator �̃�0

𝑟
which is obtained from a small, pilot subsample of size 𝑟0. In the second step, a subsample of size 𝑟 is drawn according to
the SSPs derived in the first step and, in combination with the pilot subsample, is used to obtain the subsampling estimator as
presented in Section 2 with combined subsample of size 𝑟 + 𝑟0. In practice, the subsample size is typically restricted by the
computing resources we have. We recommend choosing as many observations as allowed by the capacity of the computing
facility in order to extract maximum amount of information.

Note that the approximate optimal SSPs, denoted by 𝝅opt(�̃�0
𝑟 ), are derived from a random pilot estimator which may cause

additional disturbance. For those data points whose exact optimal SSPs denoted by 𝝅opt(�̂�MLE) are more closer to zero, this
additional disturbance may be amplified. In Theorem 1, the matrix 𝐕𝑛 is dominated by these SSPs and thus the asymptotic
variance of the subsample estimator will be inflated by these data points. To protect the subsample estimator, we adopt the idea
of defensive sampling18 and mix the approximated 𝝅opt(�̃�0

𝑟 ) with the uniform SSP denoted by 𝝅Uni. That is, we use adjusted
optimal SSPs 𝝅opt

𝛼 (�̃�0
𝑟 ) = {𝜋opt

𝛼𝑖 (�̃�
0
𝑟 )}

𝑛
𝑖=1 instead of 𝝅opt(�̃�0

𝑟 ) to do subsampling, where

𝜋opt
𝛼𝑖 (�̃�

0
𝑟 ) = (1 − 𝛼)𝜋opt

𝑖 (�̃�0
𝑟 ) +

𝛼
𝑛
, 0 < 𝛼 < 1, 𝑖 = 1, 2, ..., 𝑛.

In the simulation study and the real data analysis, we set 𝛼 = 0.2.
The asymptotic properties of the estimator �̌�𝑟 obtained from the two-step procedure based on 𝝅opt

𝛼 (�̃�0
𝑟 ) are summarized by the

following theorem.

Theorem 4. If Assumptions 1–4 hold and the estimate �̃�0
𝑟 from the first step exists, then, as 𝑟 → ∞, 𝑛 → ∞, 𝑟0 → ∞, 𝑟∕𝑛 → 0,

𝑟0∕𝑟 → 0, conditional on 𝑛 and �̃�0
𝑟 ,

𝑟1∕2(𝚪opt
𝑛 )−1∕2(�̌�𝑟 − �̂�MLE) → 𝑁(𝟎, 𝐈)

in distribution, where 𝚪opt
𝑛 = 𝐌−1

𝑛 𝐕opt
𝑛 𝐌−1

𝑛 = 𝑂𝑃 (1) and

𝐕opt
𝑛 = 1

𝑛2

𝑛
∑

𝑖=1

�̇�𝑖(�̂�MLE)�̇�⊤𝑖 (�̂�MLE)

𝜋opt
𝛼𝑖 (�̃�0

𝑟 )
.

Note that when 𝑟 = 𝑜(𝑛), we can directly use 𝚪opt
𝑛 to discuss the statistical inference on the true parameter 𝜽0

14. Based
on Theorem 4, we construct an estimator of the variance and covariance matrix of �̌�𝑟, called �̌�𝑛𝑟. Consider �̇�𝑟,𝑖(�̌�𝑟), 𝑙𝑟,𝑖(�̌�𝑟)
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and 𝜋opt𝑟
𝛼𝑖 (�̃�0

𝑟 ) as the gradient, Hessian matrix of 𝑙𝑖(�̌�𝑟) and the adjusted optimal SSP for the 𝑖th observation of the second-step
subsample in the two-step procedure, respectively. Also, �̇�𝑟0,𝑖(�̌�𝑟) and 𝑙𝑟0,𝑖(�̌�𝑟) are the gradient and Hessian matrix of 𝑙𝑖(�̌�𝑟) for the
𝑖th observation of the pilot subsample in the two-step procedure, respectively. We can calculate �̌�𝑛𝑟 by the following formula,

�̌�𝑛𝑟 = �̌�−1
𝑛𝑟 �̌�𝑛𝑟�̌�−1

𝑛𝑟 , (2)

where

�̌�𝑛𝑟 =
1

𝑛(𝑟0 + 𝑟)

( 𝑟
∑

𝑖=1

𝑙𝑟,𝑖(�̌�𝑟)

𝜋opt𝑟
𝛼𝑖 (�̃�0

𝑟 )
+ 𝑛

𝑟0
∑

𝑖=1
𝑙𝑟0,𝑖(�̌�𝑟)

)

,

�̌�𝑛𝑟 =
1

𝑛2(𝑟0 + 𝑟)

⎛

⎜

⎜

⎜

⎝

𝑟
∑

𝑖=1

�̇�𝑟,𝑖(�̌�𝑟)
[

�̇�𝑟,𝑖(�̌�𝑟)
]⊤

{

𝜋opt𝑟
𝛼𝑖 (�̃�0

𝑟 )
}2

+ 𝑛2
𝑟0
∑

𝑖=1
�̇�𝑟0,𝑖(�̌�𝑟)

[

�̇�𝑟0,𝑖(�̌�𝑟)
]⊤
⎞

⎟

⎟

⎟

⎠

.

In the above formulas, �̌�𝑛𝑟 and �̌�𝑛𝑟 are obtained by method of moment. If we replace �̌�𝑟 by �̂�MLE, then �̌�𝑛𝑟 and �̌�𝑛𝑟 are unbiased
estimators of 𝐌𝑛 and 𝐕𝑛, respectively. The variance of (�̌�𝑟)𝑖 is the 𝑖𝑡ℎ diagonal component of �̌�𝑛𝑟. We can obtain the estimated
MSE of �̌�𝑟 by calculating tr(�̌�𝑛𝑟).

5 SIMULATION STUDY FOR WEIBULL AFT MODEL

The performance of the estimator from the two-step procedure was assessed in a simulation study based on the Weibull AFT
model. In the Weibull AFT model, the error terms are i.i.d standard Gumbel variables with probability density function 𝑓𝜖(𝑥) =
exp {𝑥 − exp(𝑥)}, 𝑥 ∈ ℝ . We generated data from model (1) with seven covariates and an intercept, where the coefficients were
all set to be 0.01. The distribution of the covariates had two levels, multivariate normal and multivariate 𝑡 with 5 degrees of
freedom, denoted by “Normal” and “T5”, both had mean zero and covariance matrix 𝚺𝑖𝑗 = 0.5𝐼(𝑖≠𝑗). The true scale parameter in
(1) was set to be 𝜎 ∈ {1.0, 2.0} (i.e. the true Weibull shape parameter was set in {0.5, 1.0} ). The censoring distribution was set
to be Weibull with the same shape parameters as that of the survival time and the scale parameter was tuned to achieve censoring
rates 𝑐𝑟 ∈ {0.25, 0.50, 0.75}. For each of the 12 configurations, a large dataset of size 𝑛 = 100, 000 was generated. For each
configuration, the pilot sample size was 𝑟0 = 1000 and the subsample size considered were 𝑟 ∈ {1000, 2000, 3000, 4000}. In
each setting, we compared the empirical MSE of �̌�𝑟 from 𝑠 = 1000 replicates of the subsampling process from the given dataset

MSE = 𝑠−1
𝑠
∑

𝑖=1
‖�̌�(𝑖)

𝑟 − �̂�MLE‖
2, (3)

where �̌�(𝑖)
𝑟 is the estimate from the 𝑖𝑡ℎ subsample. Note that for each replicate, the pilot subsample is different. We report the

results for 𝜎 = 1, in the sequel; the results for 𝜎 = 2.0, which are similar, are summarized in the supplement material.
Figure 2 shows the MSEs of �̌�𝑟 based on the uniform, mMse, and mVc SSPs. As expected, in all 6 data configurations,

𝝅mVc(�̃�0
𝑟 ) and 𝝅mMSE(�̃�0

𝑟 ) give smaller MSE than uniform SSP. In particular, in the case of censoring rate 0.25, T5 covariates,
and 𝑟 = 4000, the MSE of 𝝅mMSE(�̃�0

𝑟 ) is less than a quarter of that from the uniform SSP. This is a striking reduction; four times
of the sample size would be needed for the uniform SSP to achieve this. Covariates with a heavier-tail T5 distribution are likely
to yield subsamples with higher variance under 𝝅mVc(�̃�0

𝑟 ) and 𝝅mMSE(�̃�0
𝑟 ), which leads to slightly smaller MSE in comparison to

those from normally distributed covariates. As the censoring rate increases, the MSEs of all methods increase as less information
is available. In all configurations, the MSE decreases as the subsample size 𝑟 increases.

The accuracy of the variance estimator (2) is assessed by comparing its average over the 1000 subsamples with the empirical
variance. Because the biases are virtually zero, the comparison of the variances can be done with the MSE, which simplifies
the comparison over all the parameters to a comparison of the normed version of the MSE in Equation (3). Figure 3 shows the
results of the comparison with 𝝅mVc(�̃�0

𝑟 ). The estimated and empirical MSEs are close in all 6 settings. As there is little bias, this
close agreement indicates that the variance formula estimates the true variance well. Consequently, when the variance estimate
is used construct 95% confidence intervals for the true MLE, the empirical coverage rate matches closely the nominal level (not
shown). The result for the other optimal SSP 𝝅mMSE(�̃�0

𝑟 ) is similar and thus omitted.
Finally, we assess the computational efficiency of the proposed methods. We recorded the computing times for the two-step

procedure and the uniform subsampling method implemented in R for the ‘Normal’ data set with scale parameter 𝜎 = 1.0.
The computing was carried out on a laptop running Window 10 with an Intel i7-8650U processor and 16 GB memory. Table 1
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FIGURE 2 MSE for different second step subsample size 𝑟 and different censoring rate with the first being fixed at 𝑟0 = 1000
for different distributions when 𝜎 = 1.0.

summarizes the results based on 1000 replicates. We scaled the computing times using the time for the uniform subsampling
method when 𝑟 = 1000 and censoring rate 𝑐𝑟 = 0.25 as the unit 1. The mVc method used much less time than the mMSE method
as expected. Both the mVc and the mMSE methods used more CPU times than the uniform subsampling method because the
latter does not need the extra step of calculating the SSPs.

To further investigate the computational gain of the subsampling approach for massive data volume, we collected computing
time of the two-step procedure and the uniform subsampling from an implementation in R for the ‘Normal’ covariate case with
𝜎 = 1.0 and 𝑐𝑟 = 0.25. We set 𝑟 = 2000 and 𝑟0 = 1000 along with dimension increasing to 𝑑 = 50 and all coefficients were
set to be 0.01 and the full sample sizes was designed as 𝑛 ∈ {5 × 106, 107, 2 × 107} so that the data took 1/8, 1/4, and 1/2 of
the physical memory (RAM), respectively. Note that it was infeasible to get the full data MLE even when 𝑛 = 5 × 106 since R
makes multiple copies of the data internally. Table 2 summarizes the results in seconds. We set the computing time of uniform
subsampling method when 𝑛 = 5 × 106 as the unit 1. As expected, the computing time using 𝝅mVc(�̃�0

𝑟 ) is less than that using
𝝅mMSE(�̃�0

𝑟 ) and both optimal subsampling methods are more computing-intensive than the uniform subsampling method.

6 SURVIVAL OF LYMPHOMA BASED ON WEIBULL AFT MODEL

We applied the two-step procedure to AFT modeling of the survival time of lymphoma patients in the SEER program. This
data set contained 159,149 patients diagnosed with lymphoma from 1973 to 2012. The censoring rate was 58.3%. Available risk
factors included age, nonwhite race indicator (1 = nonwhite), male indicator (1 = male), and the diagnostic year. Interactions
between age with gender and age with nonwhite indicator were included also. All the covariates were standardized so that the
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FIGURE 3 Estimated and empirical MSEs with 𝝅mVc(�̃�0
𝑟 ). The first step subsample size is fixed at 𝑟0 = 1000 and the second

step subsample size 𝑟 and censoring rate is changing when 𝜎 = 1.0.

TABLE 1 CPU time for ‘Normal’ data sets when 𝜎 = 1.0 with 𝑟0 = 1000 and different second subsample sizes and censoring
rates (𝑐𝑟) over 1000 experiments.

𝑟
𝑐𝑟: 25% 𝑐𝑟: 50% 𝑐𝑟: 75%

mVc mMSE uni mVc mMSE uni mVc mMSE uni

1000 1.99 5.78 1.00 2.49 7.50 1.19 2.69 7.92 1.36
2000 2.64 7.94 1.34 2.90 8.90 1.48 3.26 9.97 1.93
3000 2.82 9.66 1.81 3.22 9.96 2.04 3.79 11.82 2.47
4000 3.35 11.27 2.45 4.06 11.84 2.76 4.46 12.75 3.25

TABLE 2 CPU time for the selected ‘Normal’ data set with 𝑟0 = 1000, 𝑟 = 2000 for different sample sizes when the dimension
of covariates is 50.

Method Full sample size: 𝑛

5 × 106 107 2 × 107

mVc 21.71 55.71 116.12
mMSE 70.94 180.24 300.24
uniform 1.00 1.53 1.82
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FIGURE 4 Empirical MSEs for different SSPs when fixing pilot sample size 𝑟0 = 500 and 4 different second step subsample
sizes 𝑟 over 1000 replicates.

TABLE 3 Estimates (EST) and their empirical standard errors (ESE) and average estimated standard errors (ASE) from different
subsampling approaches for 𝑟 = 4000 and 𝑟0=500 over 1000 experiments and Bootstrap standard errors (BSE) for the full data.

mVc mMse uniform Full

EST ESE ASE EST ESE ASE EST ESE ASE EST BSE

Scale 1.756 0.027 0.023 1.755 0.031 0.025 1.756 0.031 0.027 1.757 0.005
Intercept 5.056 0.069 0.061 5.056 0.067 0.060 5.055 0.068 0.063 5.054 0.011

Age −1.115 0.067 0.067 −1.114 0.063 0.063 −1.114 0.075 0.074 −1.116 0.012
Year 0.501 0.037 0.036 0.502 0.040 0.040 0.503 0.041 0.041 0.501 0.007
Male 0.691 0.096 0.092 0.691 0.096 0.090 0.692 0.104 0.101 0.694 0.017

Nonwhite −0.564 0.114 0.113 −0.563 0.098 0.097 −0.564 0.129 0.127 −0.564 0.022
Age×Nonwhite 0.333 0.120 0.119 0.332 0.100 0.099 0.331 0.141 0.143 0.333 0.023

Age×Male −0.463 0.093 0.096 −0.462 0.092 0.093 −0.463 0.114 0.113 −0.462 0.019

norm of covariates does not affect the calculation of SSPs. We set initial pilot subsample size to be 𝑟0 = 500, and the subsample
size 𝑟 ∈ {1000, 2000, 3000, 4000} for three kinds of SSPs (uniform, mMSE, and mVc).

Figure 4 shows the empirical MSEs from 1000 subsamples of size 𝑟0 + 𝑟 with fixed 𝑟0 = 500 . The MSEs based on all SSPs
are going to 0 as 𝑟 increasing which indicates the consistency of the subsampling method for the real data. The optimal SSPs
𝝅MSE(�̃�0

𝑟 ) and 𝝅mVc(�̃�0
𝑟 ) always yield the smaller MSE than the uniform SSPs which shows the efficiency of our method. In

particular, the optimal SSP 𝝅MSE(�̃�0
𝑟 ) always has the smallest MSE which meets the theoretical result.

Table 3 summarizes the average estimates obtained by different SSPs and their corresponding empirical and estimated SEs
over 1000 replicates with 𝑟0 = 500 and 𝑟 = 4000. The full data MLE and the standard errors from nonparametric bootstrap of
1000 replicates are included as they are the target of the subsampling methods. All three subsampling methods produced reliable
estimates, but the two optimal SSPs methods yield smaller standard errors than the uniform SSP, especially for Nonwhite and
the two interactions. The empirical standard errors based on optimal subsampling approaches are small which indicates that
using a smaller subsample instead of the full data is sufficient in practice if computational resources are limited. For all three
methods, the estimated standard errors are close to the empirical ones, confirming that the subsampling method is suitable for
inference. The results suggest that patients who were elder, female, nonwhite, and diagnosed earlier had shorter survival times.
The slope of age was steeper for white patients than nonwhite patients and for male patients than female patients.
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TABLE 4 Overall computing time obtained by different SSPs for different subsample sizes with 𝑟0 = 500 over 1000 experiments.

𝑟 ∶ 1000 𝑟 ∶ 2000 𝑟 ∶ 3000

mVc 3.52 5.15 6.69
mMSE 16.02 29.95 32.38

uni 1.00 2.08 2.62

Table 4 shows the total computing time of 1000 replicates with 𝑟0 = 500 and different 𝑟. Again, we scaled the computing
times so that the time for the uniform subsampling method with 𝑟 = 1000 is unit one. The computing time for the mVc method
is much shorter than that for the mMSE method. The benefit of the mMSE method relative to the mVc method is to be judged
by considering jointly the computing time here and the gain in standard errors in Table 3.

7 DISCUSSION

The subsampling method for big survival data modeling is challenging due to censoring. Unlike the divide-and-conquer or
the online updating methods, which process the whole data, the subsampling method attempts to approximate the whole-
data-inference by one or multiple appropriately chosen subsamples. The ultimately essential component of the method is the
determination of the optimal SSPs. Parametric AFT models provide insights about the impact of censoring on optimal SSPs,
which has not been investigated in existing works15. Two optimal SSPs based on A-optimality and L-optimality from optimal
design of experiment were proposed under parametric AFT models. For uncensored observations, the impact of 𝑒𝑖(�̂�MLE)’s on
the subsampling probabilities are similar to the results in the existing literature that larger absolute 𝑒𝑖(�̂�MLE)’s result in larger
subsampling probabilities. For censored observations, however, positive 𝑒𝑖(�̂�MLE)’s with larger magnitude lead to higher sub-
sampling probabilities while negative 𝑒𝑖(�̂�MLE)’s with larger magnitude lead to smaller probabilities. As shown in the simulation
study and real data analysis, our method is computationally feasible for big survival data with good approximation to the results
based on the full data for the Weibull AFT model. In principle, the subsampling procedure applies to other censoring cases,
such as interval censoring19,20 and left censoring21. The framework could be made more flexible, for example, by finite mixture
construction for parametric distributions, by allowing nonlinear smooth covariate effects, or by adding random effects22.

The likelihood based development of the optimal SSPs does not work well for more advanced survival models. For semipara-
metric Cox relative risk or additive models, the contribution of an observation to the partial likelihood involves information not
only from this observation but also from other observations at risk. For semiparametric AFT models, the estimating equations
in rank-based or least squares inferences also need information from all observations to compute the contribution from each
observation. They are the same challenge as faced by the additive hazard model15. New theories and methodologies are needed
to address the challenge.

Data Availability Statement
The lymphoma survival data were obtained from the SEER program website (https://seer.cancer.gov/data/access).
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