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Abstract

Technological advances have enabled an exponential growth in data volumes, and proven

statistical methods are no longer applicable for extraordinary large data sets due to

computational limitations. Subdata selection is an effective strategy to address this

issue. In this study, we investigate existing sampling approaches and propose a novel

framework of selecting subsets of data for logistic regression models. We show that,

while the information contained in the subdata based on random sampling approaches

is limited by the size of the subset, the information contained in the subdata based on

the new framework increases as the size of the full data set increases. Performances of

the proposed approach and that of other existing methods are compared under various

criteria via extensive simulation studies.
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1. Introduction

Technological advances have enabled an exponential growth in data collection and the

size of data sets. For example, the cross-continental Square Kilometre Array, the next

generation of astronomical telescopes, will generate 700 TB of data per second [1]. While

the extraordinary sizes of data sets provide researchers golden opportunities for scientific5

discoveries, they also bring tremendous challenges when attempting to analyze these large

data sets. Proven statistical methods are no longer applicable due to computational
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limitations. Recent advances in statistical analysis to deal with these challenges are

arguably on two major different strategies: the divide-and-conquer approach and the

subdata selection approach.10

The divide-and-conquer approach takes advantage of the parallel computing technol-

ogy. A large data set is split into chunks of reasonable sizes, and analysis is implemented

separately on each chunk of data and a specified aggregation method is implemented to

merge pieces of information from chunks to produce final analysis. The analysis and ag-

gregation methods depend on the structure of the data set and model assumptions. For15

the linear regression model, the least squares estimate can be directly decomposed into a

weighted average of the least squares estimate based on each chunk. This has become the

standard aggregation method for merging solutions from blocks with linear models. For

nonlinear models, several aggregation methods are proposed. [2] proposed an approach

for approximating the estimating equation estimator using a first order Taylor expansion.20

Under certain conditions, accuracy of the final estimator from aggregation is proved to

be close to the direct estimator from the full data. [3] considered a divide-and-conquer

approach for generalized linear models (GLM) where both the number of observations n

and the number of covariates p are large. They incorporated variable selection via penal-

ized regression into the subset processing step, and showed that, under certain regularity25

conditions, the aggregated estimator in model selection is consistent and asymptotically

equivalent to the penalized estimator based on the full dataset. In [4], an approach

similar to the divide-and-conquer approach is proposed, where accumulated parameter

estimators based on data chunks arrived can be updated using future coming data. The

divide-and-conquer approach gains efficiency mainly from the implementation of parallel30

computing, and it may not reduce computational time if implemented with a single core.

The subdata approach reduces the computation burden by downsizing the data

volume. The key question here is how to select an informative subdata such that it

maintains as much information as possible. As noted in a recent NSF program guideline,

“Tradeoffs between computational costs and statistical efficiency” is one of six research35

directions need to be addressed for theoretical foundation of data science [5].

Existing subdata approaches are mainly based on random subsampling. Combining

the methods of subsampling [6] and bootstrapping [7, 8], [9] proposed a novel approach
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called bags of little bootstraps (BLB) to achieve computational efficiency. [10] proposed

a mean log-likelihood approach using Monte Carlo averages of estimates from subsamples40

to approximate the quantities needed in the analysis. The BLB and mean log-likelihood

methods select subsamples using simple random sampling. Another line of the subsam-

pling method is based on leverage sampling algorithms. In this approach, a sampling

probability is assigned to each dataline according to its leverage score. [11] reviewed ex-

isting subsampling methods in the context of linear regression and termed the methods45

leveraging algorithms, considered the statistical properties of leveraging algorithms, and

proposed a shrinkage algorithmic leveraging method.

A major limitation of random subsampling methods is that the amount of infor-

mation in a resulting subdata is proportional to the size of the subdata, which is often

significantly smaller than the full data size. [12] proved that, in linear regression, the50

variance of an estimator based on the random subsampling method converge to zero at

a rate proportional to the inverse of the subdata size. Is it possible that the information

contained in a subdata is related to the size of the full data rather than that of the

subdata only? Ideally we would want to choose the subdata with the maximum amount

of information among all possible subdata sets. However this is infeasible in practice55

since there are
(
n
r

)
subsets of data with size r from a full data set of size n. This com-

bination number is quickly out of reach even for moderate n and r, so an alternative

approach has to be employed. Under linear models, [12] proposed a novel approach called

Information-Based Optimal Subdata Selection (IBOSS) to select a subdata. Unlike ran-

dom subsampling methods, IBOSS is a deterministic approach. It selects a subdata based60

on the characterization of the D-optimal design. Under certain conditions, [12] showed

that the variance of the resultant estimator converge to zero at a rate corresponding to

the size of the full data. The simulation studies demonstrated that the IBOSS approach

significantly outperformed random subsampling approaches.

While the IBOSS approach effectively addresses the trade off between the compu-65

tational complexity and statistical efficiency, it is under the linear model context. Does

this strategy also work under nonlinear models? Unlike linear models, where the corre-

sponding information matrices are relatively simple with an explicit form, the problem

for nonlinear models is remarkably different, where the information matrices are much
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more complicated and depend on unknown parameters. Consequently, the problem un-70

der nonlinear models is considerably harder than that under linear models.

Nonlinear models, however, are widely applied in practice. Specifically, logistic re-

gression models have played important roles in categorical data analysis. They have been

used in various fields, like finance, medicine, and social sciences. Unlike linear models,

where the estimators have closed form solutions, the estimators for logistic regression75

models have no closed form solutions in general. We have to utilize iterative approaches

to calculate the estimates numerically. Compared with linear regression models, the

computation cost for logistic regression models is much higher for big data sets. There is

limited research on how to choose a subdata from a full data set for a logistic regression

model, perhaps due to the complexity of the nonlinearity feature. [13] proposed the op-80

timal subsampling method under the A-optimality criterion (OSMAC) algorithm, where

the probability weights are specified according to the A-optimality in optimal design

theory [14]. However, like many other random subsampling approaches for linear mod-

els, we shall show in the next section that the information extracted from the OSMAC

approach is limited by the subsample size.85

In this paper, we study subdata selection under logistic regression models utilizing

the IBOSS strategy. A new algorithm of selecting subdata is proposed. Compared with

existing subsampling approaches, the new algorithm has the following two advantages:

the estimation efficiency of the algorithm is significantly higher and the computational

cost is competitive.90

The key contribution of this paper is that, under logistic regression models, it (i)

proves that the information from random subsampling based subdata selection method

is limited by the size of the subdata, (ii) proposes a new approach for the trade off

between the computational complexity and statistical efficiency, and (iii) proves that the

information from the new algorithm increases along with the size of full data. Theses95

results give a theoretical justification for the information based subdata selection under

nonlinear models. Since “data reduction is perhaps the most critical component in

retrieving information in big data” [15], this is a significant step in big data analysis

under nonlinear models.

The rest of the paper is organized as follows: Section 2 introduces notations, provides100

4



a summary of existing methods, and presents lower-bounds of the variance covariance

matrices for subsampling-based estimators. Section 3 introduces a new algorithm and

discusses its asymptotic properties. Section 4 compares the performance of the new

algorithm, the OSMAC algorithm, and the simple random sampling method using various

simulation settings. Section 5 provides a brief summary of this paper and its possible105

extensions. All technical details are provided in the supplemental material.

2. Notations and Existing Methods

We present the model setup and existing methods in this section. Let Fn = {(Yi, Zi),

i = 1, . . . , n} denote the full data, where Yi is a binary response variable and Zi =

(zi1, · · · , zim)T is a m dimensional explanatory variable. Assume the logistic regression110

model:

Prob(Yi = 1|Xi) = pi(β) =
eX

T
i β

1 + eX
T
i β

, (2.1)

where β = (β0, β1, · · · , βm)T and Xi = (1, ZTi )T = (1, zi1, · · · , zim)T . Here, β0 is the

intercept parameter and (β1, · · · , βm)T is the m dimensional slope parameter. Like in

linear models, β is frequently estimated by the maximum likelihood estimator (MLE),115

β̂ = arg max
β

n∑
i=1

[Yi log pi(β) + (1− Yi) log{1− pi(β)}].

However, for logistic regression, there is no general closed-form solution to the MLE and

iterative algorithms such as the Newton-Raphson algorithm [16] are often used to find

it numerically. The computational cost of calculating β̂ based on the full data is at the

order of O(∆nm2), where ∆ is the number of iterations in the optimization algorithm.120

For extraordinary large n, the computational cost could be beyond the available

computation capacity. We may have to consider analyzing a subdata instead of the full

data. Here, we focus on the scenario that we can only analyze a subdata of size k, and the

question is how to choose a subdata that contains the most amount of information about

unknown parameters. In literature, many subsampling strategies are developed for this125

purpose. Most of these strategies, however, are under linear models and usually cannot

be easily extended to logistic regression due to the nonlinearity of the logistic regression
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models. The few strategies suitable for logistic models are the uniform sampling and the

OSMAC algorithm [13].

2.1. Existing Subsampling Approaches and Their Limitations130

In a random subsampling approach, a subsample is taken randomly according to some

sampling distribution and the sampling procedure is often with replacement. We use

η = (η1, ..., ηn) with
∑n
i=1 ηi = k to denote a subsample of size k taken randomly from

the full sample, where ηi denotes the number of times that the ith data point is included

in a subsample. Let πi, i = 1, ..., n be subsampling probabilities such that
∑n
i=1 πi = 1.135

A subsampling-based estimator, say β̂η, has the general form of

β̂η = arg max
β

n∑
i=1

ηi
πi

[Yi log pi(β) + (1− Yi) log{1− pi(β)}].

When the uniform sampling is implemented, all datalines have equal chances to be

selected, i.e., πi = 1
n . It is a widely-used technique to downsize data due to its simplicity

and low cost on computational resources. However, in terms of the information retrieved140

from a big dataset, uniform sampling may not be the best choice.

Inspired by the A-optimality criteria from optimal design theories, [13] proposed

the novel OSMAC algorithm, in which the sampling probabilities are assigned to each

dataline in a way to optimize the A-optimality criteria of the asymptotic covariance ma-

trix of subsample parameter estimators, which is equivalent to minimizing the asymp-145

totic mean squared error (MSE) of some parameter. They recommended result that

minimizes the asymptotic MSE of MX β̂η, where MX = 1
n

∑n
i=1 Ψ(ĉi)XiX

T
i , ĉi = XT

i β̂,

and Ψ(ci) = eci

(1+eci )2 , and call the corresponding strategy mVc strategy as in [13]. The

optimal sampling probabilities under the mVc strategy are

πmV ci =
|Yi − pi(β̂)|‖Xi‖∑n
j=1 |Yj − pj(β̂)‖|Xj‖

, i = 1, ..., n.150

Further details and interpretations of these subsampling probabilities can be found in

[13]. They showed that the mVc strategy has high estimation accuracy and low com-

putational cost through simulation studies and real data analysis. They also derived

the asymptotic property of β̂η in approximating β̂. Specifically, they proved that under155
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certain conditions, conditional on the full data, for large n and k,

β̂η − β̂
a∼ N (0,V), (2.2)

where V = M−1X VcM
−1
X , Vc = 1

kn2

∑n
i=1

(Yi−pi(β̂))2XiX
T
i

πi
, and

a∼ means that the two

quantities have the same asymptotic distribution.

The result in (2.2) builds the bridge between the full data MLE and the subdata160

estimator based on random subsampling strategies. However, the following Theorem 2.1

shows that V is bounded from below by a term that is at the order 1/k and does not

converge to zero as n goes to infinity if k is fixed. Therefore, the information that we

can extract from the random sampling is limited by the subsampling size k, which is a

limitation of the random sampling strategy.165

Theorem 2.1. For the random subsampling-based estimator β̂η, the asymptotic variance

covariance V in (2.2) is larger than, in Lowering ordering, a matrix proportional to the

inverse of subdata size, namely,

V ≥ 4{1 + oP (1)}
k

(
n∑
i=1

πiXiX
T
i

)−1
.

170

Applying Theorem 2.1 to existing sampling-based methods, we see some limitations

of these methods. For uniform sampling, πi = 1
n , i = 1, · · · , n, we have the following

theorem.

Theorem 2.2. For uniform sampling, if Xi, i = 1, . . . , n, are generated independently

from the same distribution X which has finite second moment, then we have175

V ≥ 4{E(XXT )}−1 + oP (1)

k
.

For the mVc sampling strategy, just like that for uniform subsampling, we have the

following Theorem showing its limitation.

Theorem 2.3. If Xi, i = 1, . . . , n, are generated independently from the same distribu-

tion X, which satisfies that E(‖X‖3) <∞, then for a subdata obtained according to the180

mVc subsampling probabilities,

V ≥ a(E(‖X‖XXT ))−1 + oP (1)

k
, (2.3)

where a > 0 is a constant that does not depend on n or k.
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The aforementioned theorems show that the variance covariance matrix of the pa-

rameter estimator from a subdata sampled through existing subsampling strategies for185

logistic regression is bounded in probability from below by a term that is related to the

size of the subdata only.

3. IBOSS Algorithm for Logistic Regression Models

Recently, [12] proposed a novel IBOSS subsampling approach for linear models. Unlike

random subsampling approach which selects a subdata according to some sampling dis-190

tribution, the IBOSS approach directly utilizes the structure of D-optimal design under

linear models and deterministically selects informative subsets. Based on both simulated

and real data, [12] showed that the resultant estimator by implementing this procedure

has significantly higher estimation efficiency. They also showed theoretically that the in-

formation matrix of the subdata from the IBOSS approach with a fixed k is not bounded195

as long as n → ∞ and the covariate distribution is not bounded. These results have

built the theoretical foundation for the IBOSS strategy, which pave the way for applying

IBOSS strategy for more complexity analysis, for example, LASSO. On the other hand,

these results are under linear models. Can such strategy apply for nonlinear models,

specifically, logistic models? This paper gives a positive answer to this question.200

The critical step in IBOSS strategy is to characterize optimal subdata utilizing the

information matrix. Under some regularity conditions [17, 18], for a large n, the full

data MLE β̂ satisfies that, asymptotically,

β̂ − β0 a∼ N
(

0,
( n∑
i=1

Ψ(c0i )XiX
T
i

)−1)
,

where Ψ(c0i ) = ec
0
i

(1+ec
0
i )2

, c0 = XT
i β

0, and β0 is the true parameter. Here, the term205

I =
∑n
i=1 Ψ(c0i )XiX

T
i is called the Fisher information matrix and an optimal design is

to optimize some meaningful functions of I. The nonlinearity of its elements within the

information matrix as well as its dependency on unknown parameters complicate the

characterization of an optimal subdata. Consequently, the picture of IBOSS strategy

under logistic regression models is remarkably different from that of linear models. It is210
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arguably much harder.

3.1. Characterization and the proposed algorithm

Let α1, . . . , αn be the indicators showing whether the corresponding data points are

selected or not, i.e., αi = 1 if (yi, Xi) is selected in the subdata and αi = 0 otherwise. Let

α = (α1, . . . , αn) and β̂α be the resulting estimator from the subdata selected through215

α. We first study the characterization of an optimal subdata under the D-optimality

criterion. If a subdata is selected deterministically, the corresponding information matrix

can be written as

Iα =

n∑
i=1

αiΨ(c0i )XiX
T
i . (3.1)

The following result gives an upper bound for the determinant of the subdata information220

matrix (3.1).

Theorem 3.1. For subdata of size k from full data (Xi, Yi), i = 1, . . . , n,

|Iα| ≤ min
1≤`≤m

{
km+1

4m−1β2
`

(c∗)2Ψ(c∗)m+1
m∏

j=1, j 6=`

(Z(n)j − Z(1)j)
2

}
, (3.2)

where c∗ maximizes c2Ψ(c)m+1, and Z(n)j and Z(1)j are the extreme order statistics for

the jth covariate. If the minimum on the right hand side of (3.2) occurs at ` = m, say,225

then the equality in (3.2) holds for subdata, if it exists, with k/2m data points that have

Z∗i = (zi1, . . . , zi,m−1, zi,m), i = 1, 2, . . . , 2m, where zij = Z(n)j or Z(1)j, j = 1, . . . ,m−1

and zim is chosen to make (X∗i )Tβ equal to c∗ or −c∗, with each of the 2m possible

combinations for Z∗i appearing equally often.

Often, k is much smaller than 2m, and the subdata with the equality in Theorem230

3.1 does not exist. Nonetheless the characterization of the subdata can guide us to

select a more informative subdata. Notice that the IBOSS algorithm for linear models

in [12] cannot be directly applied for the models considered in this paper due to the

different characterizations of the subdata. We will propose a novel algorithm motivated

by Theorem 3.1.235

The characterization in Theorem 3.1 requires c = XTβ to be fixed at constant ±c∗,

which depends on the unknown parameter. To address this issue, we first draw a small
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subdata of size k0 through uniform sampling and obtain a rough estimator, say β̂k0 , of the

parameter β. To best meet the characterization, a two-stage subdata selection strategy

is proposed. In the first stage, a relatively large portion of the full data with their c values240

falling into a pre-specified neighbor of ±c∗ is selected. For example, we can choose some

δ > 0 and then collect all the data lines (Xi, Yi) with {i | min(|ci − c∗|, |ci + c∗|) ≤ δ},

where ci = XT
i β̂k0 . These selected datalines will be treated as the new database for

the second stage data selection procedure. The second stage procedure is similar to

the IBOSS procedure proposed for linear regression, i.e., to select data lines according245

to extreme values of all the m covariates. The proposed IBOSS procedure to select a

subdata of size k is described in details below.

Stage 1:

1. Prefix a constant δ as maximum tolerance on the c values.

2. Given data set Fn = {(Yi, Zi), i = 1, . . . , n}, use random sampling to take a250

subdata of size k0, and derive an estimate β̂k0 based on the selected subdata.

3. Compute ci = XT
i β̂k0 , where XT

i = (1, ZTi ), for i = 1, · · · , n, and construct

B = {i | min(|ci − c∗|, |ci + c∗|) ≤ δ}.

Stage 2:

4. For l = 1, from {(Yi, ZTi ), i ∈ B}, pick
⌈
k
2m

⌉
data lines with largest values of zil255

and
⌈
k
2m

⌉
data lines with smallest values of of zil. Include these datalines in the

subsample, and remove their index from the set B.

5. Repeat Step 4 for l = 2, . . . ,m.

3.2. Asymptotic properties

As we have shown in Section 2.1, one limitation of a subsampling-based procedure is260

that the asymptotic variance covariance matrix of the resultant estimator is bounded

from below by a term proportional to the inverse of subdata size k. In other words, the

information matrix of the subdata is bounded even if n goes to infinity. We will show

that the proposed new algorithm is not restricted by this limitation.
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The two-stage procedure, however, makes it extremely challenge to investigate the265

asymptotic property for the general case. We need to study the asymptotic distribution

of order statistics conditional on the event that min(|ci − c∗|, |ci + c∗|) ≤ δ. In addition,

ci depends on β̂k0 and no closed form solution is available. Fortunately, focusing on the

case of m = 2, we manage to prove the following theorem.

Theorem 3.2. For logistic regression with Xi = (1, zi1, zi2)T and β = (β0, β1, β2)T ,270

assume that the two dimension covariate Zi = (zi1, zi2), i = 1, · · · , n, are generated

independently from a bivariate normal distribution Z with mean vector u and variance

covariance matrix Σ. Let IIBOSS be the information matrix of β based on two-stage

procedure and n1 represent the number of remaining datalines after the first stage. Sup-

pose that β1 6= 0, β2 6= 0 and Σ is nonsingular, then at least one eigenvalue of IIBOSS275

goes to ∞ when n1 goes to ∞.

The assumptions about β1, β2, and Σ are not restricted, and they are reasonable in

practice. In practice, δ is usually specified to keep a certain percentage of the full data

after the first stage, i.e., n1 is proportional to n and thus goes to infinity.

From Theorem 3.2, as long as the size of the remaining data after first stage goes280

to infinity, at least one eigenvalue of the information matrix for the final subdata picked

using the extended IBOSS subdata selection procedure goes to infinity even with a fixed

k. While we could not directly prove that the variance of the slope parameters goes to

zero as n→∞ due to mathematical complicity, Theorem 3.2 is a significant step towards

the ideal result. Despite the case studied here is simple, it shows the great potential on285

estimation efficiency of the proposed subdata selection procedure. The performance of

the IBOSS strategy will be demonstrated numerically in various simulated scenarios in

next section.

4. Simulation settings and result

In this section, the IBOSS procedure is evaluated in various distributions of Zi. The290

distributions used to generate Zi’s are listed below.

• MzNormal: Multivariate-normal distribution with mean vector u = (0, · · · , 0)T
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and variance covariance matrix Σ, where Σij = 0.5 if i 6= j and Σij = 1 if i = j.

• NzNormal: Multivariate-normal distribution with mean vector u = (1, · · · , 1)T and

variance covariance matrix Σ as defined above.295

• MixNormal: Mixed normal distribution 1
2N (u,Σ)+ 1

2N (−u,Σ), where u = (1, · · · ,

1)T and Σ is the same as defined above.

• T3: Multivariate T distribution with 3 degrees of freedom with location parameter

u = (0, · · · , 0)T and shape parameter matrix Σ/10, where Σ is the same as defined

above.300

These distributions were used in [13] to demonstrate the efficiency of the mVc

subsampling strategy. The performance of the new IBOSS strategy is compared with

the uniform sampling strategy and the mVc sampling strategy in all scenarios. To be

consistent with the simulation settings in [13], we assume that there is no intercept

parameter β0 unless otherwise specified and set the of dimension of β to be the same305

as in [13].Since we know the true value β in these simulation studies, the mean squared

error is used to evaluate the deviation as well as the biasness of the estimated β̂ from

β. All the log(MSE) shown in figures in this section is based on a log10 scale. For all

simulations, subsamples of size k are used for the mVc algorithm and the new IBOSS

algorithm, while subsamples of size k + k0 are used for uniform sampling to account for310

the sampling cost in the first stage. For most of the scenarios, the performance of the

full data estimator is not presented in figures as we mainly concern about the relative

performance among different subsampling algorithms. In subsection 4.1 and subsection

4.2, for simulation cases with MzNormal, MixNormal and T3 distributions, the δ criterion

for first stage selection of the new algorithm is fixed at 0.5. For simulation scenarios with315

NzNormal distribution, the δ is fixed at 2.5 as the distribution of c = XTβ is shifted to

the right of zero under this type of distribution. In subsection 4.3, the full data sample

size n is fixed at 500000 with initial k0 = 1000 and subsample size k = 5000. Multiple

δ criterions are tested according to the proportion of data kept in the first stage when

implementing the new algorithm. Some insights on the selection of a proper δ value are320

drawn upon simulation results. In subsection 4.4, the computational costs of different

algorithms are compared under various simulation scenarios.
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4.1. A fixed n with varying k

In this scenario, the full data sample size is n = 500000 and the Xi’s are 7 × 1 vectors

generated from the distribution settings mentioned above. The true parameter β0 =325

(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5)T . In the first stage, a subdata of size k0 = 1000 will be

randomly drawn. In the second stage, the subsample size k is chosen to be 1000, 2000,

5000, and 8000. We repeat the simulations 1000 times to calculate empirical MSEs.

Results for this scenario are shown in Figure 1. The x-axis represents the size

of the subdata in the second stage and the y-axis represents log10 of empirical MSEs.330

Under all the distribution settings, the performance of the new subsampling strategy

is compared with the uniform sampling strategy and the mVc subsampling strategy.

Under MzNormal and MixNormal settings, the new IBOSS strategy performs better

than the mVc strategy, which performs better than the uniform sampling strategy. Under

NzNormal setting, the new IBOSS strategy and the mVc strategy perform similarly, and335

they are both better than the uniform sampling strategy. For the T3 distribution, the

performance of the new IBOSS strategy is significant better. The empirical MSE from

the extended IBOSS can be less than 1
6 of that from the mVc strategy or the uniform

sampling strategy.
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Figure 1: MSEs for different strategies with a fixed n and varying k.

4.2. A fixed k with varying n340

Intuitively, the new IBOSS approach tries to pick data points close to the D-optimal data

points for the logistic regression model. As we have showed in theory, the subdata should

become more informative as n grows larger. This indicates that the new algorithm should

experience an improvement in estimation accuracy as n increases, even when the size of

subdata k is fixed. In this subsection, simulations are conducted to see whether we can345

observe this trend. Here we use the same distribution and parameter settings from the

previous scenario except that we increase the dimension of Xi’s to be 9. We set the true

β0 to be a 9 dimensional vector of 0.5 and choose n to be 50000, 200000, 800000, and

3200000. The subsample size is fixed at k =5000. Log10 of empirical MSEs are shown

in Figure 2. We also provide the results from using the full data as comparisons. In350

this figure, for T3 distributions, a clear trend of increasing estimation efficiency can be

detected for the new IBOSS strategy as data size grows larger. The trend is more clear

if we use the original MSE as y-axis. Here we keep the log transformation for the sake
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of consistence.
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Figure 2: Results of the subsampling algorithms with different full data sizes

4.3. Some insights on determining δ355

In all the simulation scenarios above, δ is pre-specified for the first stage filtering of

data. The value of δ, along with full data size n and distributions to generate Zi,

affect the estimation accuracy of the new algorithm. The selection of the δ value in the

new algorithm need more theoretical investigations on the asymptotic distribution of

extreme order statistics Z(1)j and Z(n)j , as well as many other quantities. [12] studied360

the asymptotic property of Z(1)j and Z(n)j when implementing the IBOSS with in linear

regression. Unfortunately, there is no theoretical result to help select a proper δ for a

specific dataset with logistic regression. However, we can use simulations to get some

insights on selecting a δ value. Here, we still use the distribution settings in the beginning

of this section. The slope parameter (β1, · · · , β9) is again set as a 9 dimensional vector365

of 0.5. We consider 3 cases for the distribution of c = XTβ described below.
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• Balanced case: Intercept β0 is not include in the model. In this case, c is cen-

tered around 0 for MixNormal, MzNormal and T3 distributions, and it is centered

around some positive number depending on the dimension of the covariate for the

NzNormal distribution.370

• Right shift case: Intercept β0 = 2 is include in the model. For this case, the

distribution center for c is shifted to the right hand side of the center of the balanced

case.

• Left shift case: Intercept β0 = −2 is include in the model. For this case, the

distribution center for c is shifted to the left hand side of the center of the balanced375

case.

For all these three cases, we pick certain δ to keep certain percentages of the

full data after the first stage of the IBOSS procedure. The percentage tested are

0.25, 0.35, 0.45, 0.55, 0.65, and 0.75. The full data size is n = 500000. For each setting

in this scenario, 1000 repetitions of the simulation are used to calculate the empirical380

MSEs of the slope parameters. The results for all of these cases are shown in the following

Figure 3, Figure 4, and Figure 5.

From Figures 3, 4, and 5, one can find that, regardless the distributions of covariates

Zi and the shift of the center of c, the 25% to 35% extraction rate range for first stage

seems to have a good and robust performance. This indicates that when we try to pick a385

proper value for δ, we can pick a δ which filtered out around 65% to 75% percent of the

full data and kept around 25% to 35% according to the distance criteria we set up. It

is also worth noting that for the T3 distribution, the different quantiles tested generally

perform well and a slight gain on accuracy can be obtained as the percentage increases.
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Figure 3: Results of performance under different percentages for the new algorithm: Balanced case
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Figure 4: Results of performance under different percentages for the new algorithm: Right skewed case
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Figure 5: Results of performance under different percentages for the new algorithm: Left skewed case

4.4. Computational costs390

The proposed procedure is also competitive compared to the mVc procedure in terms of

computational cost. For varieties of combinations of data size n and dimension m, the

average computational times (in seconds) with 200 repetitions under the T3 distribution

scenario are shown in Table 1. We can easily see that uniform sampling has the smallest

computational cost in all the scenarios. The computational cost of the new IBOSS algo-395

rithm is slightly better than mVc algorithm and they both use much less time compared

with the full data estimator. The reduction on computational cost for mVc and the new

algorithm is more and more apparent as size n or dimension m goes larger and larger.

5. Discussion

In this paper, we study subdata selection under logistic regression models. We show that,400

for random sampling-based strategy, such as the mVc strategy and the uniform sampling,
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Table 1: Computational Cost of Subsampling Procedures (Seconds)

n m FULL mVc UNIF IBOSS

100000 100 3.9097 0.6454 0.4492 0.5431

200000 100 8.3816 0.9973 0.4553 0.8254

500000 100 22.7350 2.1712 0.4591 1.7737

500000 25 1.9599 0.9151 0.0437 0.5177

500000 50 6.4434 1.3291 0.1294 1.0648

500000 100 22.7350 2.1712 0.4591 1.7737

the information in the subdata is bounded by the size of subdata. A novel information-

based optimal subdata selection approach is proposed. For the new approach, we show

that at least one eigenvalue of the information matrix goes to infinity when full data

size increases even when the subdata size is fixed. The results demonstrate that the new405

approach effectively addresses the trade off between the computation complexity and

statistical efficiency under logistic regression models.

Due to the intractable mathematical complication, the result is under the assump-

tion that the covariates are from bivariate normal distribution. It indicates that such

result likely holds for general cases. However, it would be rather challenging, if not410

impossible, to derive such asymptotic property due to the complexity.

The upper bound in Theorem 3.1 is based on the assumption that c = XTβ is

unbounded. If we have more information about the range of c, the upper bound can be

further improved. For example, if the dataset shows that c = XTβ can only take positive

values, then the characterization of optimal subdata should be different. Consequently,415

the algorithm of selecting the subdata would also be different. An interesting question

is to propose a general algorithm of selecting an informative subdata for arbitrary data

set.

In the age of information, big data with complex structures are obtained via various

sources. While they provide us more valuable information, the computational costs of420

analyzing them can be expensive and sometimes out of capacity. Efforts for developing

subdata selection strategies have greatly improved the quality of the subdata which

helps save tremendous computational costs. However, subdata selection strategies for

20



nonlinear models, like the logistic regreesion model considered in this paper, are still

not well developed. We hope that this work can stimulate more ideas and attract more425

researches in this direction.
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1. Theorem and Proof

1.1. Proof of Theorem 2.1

Note that MX = 1
n

∑n
i=1 Ψ(ĉi)XiX

T
i , β̂ → β0 in probability, and Ψ(ĉi) is continuous and

bounded. Thus, from Lemma 1 of [1] and the law of large numbers, we know

MX =
1

n

n∑

i=1

Ψ(c0i )XiX
T
i + oP (1) = E

{
p1(β0)(1− p1(β0))X1X

T
1

}
+ oP (1)5

= E
{

(y1 − p1(β0))2X1X
T
1

}
+ oP (1)

=
1

n

n∑

i=1

(yi − pi(β0))2XiX
T
i + oP (1)

=
1

n

n∑

i=1

(yi − pi(β̂))2XiX
T
i + oP (1),

where c0 = XT
i β

0 and β0 is the true parameter. Therefore, by the definitions of MX and Vc,10

the inverse of matrix V is

V−1 = k

(
n∑

i=1

(yi − pi(β̂))2XiX
T
i

)(
n∑

i=1

(yi − pi(β̂))2XiX
T
i

πi

)−1

×
(

n∑

i=1

(yi − pi(β̂))2XiX
T
i

)
{1 + oP (1)}

1



= k
[
(y1 − p1(β̂))X1

√
π1, · · · , (yn − pn(β̂))Xn

√
πn
]




(y1−p1(β̂))XT1√
π1

...

(yn−pn(β̂))XTn√
πn




×




[
(y1 − p1(β̂))X1√

π1
, · · · , (yn − pn(β̂))Xn√

πn

]




(y1−p1(β̂))XT1√
π1

...

(yn−pn(β̂))XTn√
πn







−1

15

×
[

(y1 − p1(β̂))X1√
π1

, · · · , (yn − pn(β̂))Xn√
πn

]

×




(y1 − p1(β̂))XT
1

√
π1

...

(yn − pn(β̂))XT
n

√
πn



{1 + oP (1)}

Set W = diag( (y1−p1(β̂))√
π1

, · · · , (yn−pn(β̂))√
πn

). Then V−1 can be re-written as

V−1 = k
[
(y1 − p1(β̂))X1

√
π1, · · · , (yn − pn(β̂))Xn

√
πn
]
WX(XTW 2X)−1

20

×XTW




(y1 − p1(β̂))XT
1

√
π1

...

(yn − pn(β̂))XT
n

√
πn



{1 + oP (1)}

= k
[
(y1 − p1(β̂))X1

√
π1, · · · , (yn − pn(β̂))Xn

√
πn
]

×ProjWX




(y1 − p1(β̂))XT
1

√
π1

...

(yn − pn(β̂))XT
n

√
πn



{1 + oP (1)},

2



where X =




XT
1

...

XT
n




. Define BWX =




w1X
T
1 · · ·

...

· · · wnX
T
n




, where wi is the i-th diagonal element in25

W . Clearly the columns of WX are in the column space of BWX . Thus, we have

V−1 ≤ k[(y1 − p1(β̂))X1
√
π1, · · · , (yn − pn(β̂))Xn

√
πn]

×ProjBWX




(y1 − p1(β̂))XT
1

√
π1

...

(yn − pn(β̂))XT
n

√
πn



{1 + oP (1)}

= k[(y1 − p1(β̂))
√
π1X1, · · · , (yn − pn(β̂))

√
πnXn]

×




XT
1 (X1X

T
1 )−1X1 · · ·

...

· · · XT
n (XnX

T
n )−1Xn
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×




XT
1 (y1 − p1(β̂))

√
π1

...

XT
n (yn − pn(β̂))

√
πn



{1 + oP (1)}

= k

(
n∑

i=1

(yi − pi(β̂))2πiXiX
T
i

)
{1 + oP (1)}

≤ k

4

(
n∑

i=1

πiXiX
T
i

)
{1 + oP (1)}

By taking inverse, we have35

V ≥ 4{1 + oP (1)}
k

(
n∑

i=1

πiXiX
T
i

)−1

.

Here the inequalities are under the context of Lowering ordering.
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1.2. Proof of Theorem 2.3

Applying theorem 2.1 and πmV ci = |yi−pi(β̂)‖|Xi‖∑n
j=1 |yj−pj(β̂)‖|Xj‖

, we have40

k−1V−1 =

n∑

i=1

|yi − pi(β̂)‖|Xi‖∑n
j=1 |yj − pj(β̂)‖|Xj‖

XiX
T
i

=
1∑n

j=1 |yj − pj(β̂)‖|Xj‖

n∑

i=1

‖Xi‖|yi − pi(β̂)|XiXT
i

≤ 1∑n
j=1 |yj − pj(β̂)‖|Xj‖

n∑

i=1

‖Xi‖XiXT
i

(1.1)

Note that n−1∑n
i=1 ‖Xi‖XiXT

i → E(‖X1‖X1X
T
1 ) almost surely by the strong law of

large numbers if E(‖X1‖X1X
T
1 ) < ∞. From Lemma 1 of [1], n−1∑n

j=1 |yj − pj(β̂)‖|Xj‖ =

E(|y1 − p1(β0)|‖X1‖) + oP (1). Thus, (1.1) indicates that

k−1V−1 ≤ 1

E(|y1 − p1(β0)|‖X1‖)
E(‖X1‖X1X

T
1 ) + oP (1). (1.2)45

The result in theorem follows by letting a = E(|y1 − p1(β0)|‖X1‖).

1.3. Proof of Theorem 3.1

With a little bit notation abuse, let (Xi, ni), i = 1, . . . , s denote the distinct covariate vectors in

the selected subset and the corresponding replications. Notice that
∑s
i=1 ni = k. We consider a

transformation on one of covariate. Without loss of generation, we transform the last covariate50

zim. Let CTi = (1, zi1, . . . , zi,m−1, ci), where ci = β0 + β1zi1 + . . . + βmzim. Then we have

Xi = A(β)Ci, where

A(β) =




Im 0

A1(β) 1/βm


 and A1(β) = (−β0/βm,−β1/βm, . . . ,−βm−1/βm). By standard

method, the information matrix for β under (2.1) can be written as

Iα = k

s∑

i=1

ωiXiΨ(ci)(Xi)
T

= kA(β)

(
s∑

i=1

ωiCiΨ(ci)(Ci)
T

)
AT (β),

(1.3)55
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where Ψ(c) = ec

(1+ec)2
and ωi = ni/k. Notice we can do the similar transformations on the other

covariates. Consequently, in the view of (1.3), it suffices to show that

|
s∑

i=1

ωiCiΨ(ci)(Ci)
T | ≤

{
(c∗)2Ψ(c∗)m+1

4m−1

m−1∏

j=1

(Z(n)j − Z(1)j)
2

}
. (1.4)

For each covariates, we have zij ∈ [Z(1),j , Z(n),j ], j = 1, . . . ,m. Our conclusion follows if we

can prove (1.4) when there is no constrain on zim, i.e., zim ∈ (−∞,+∞). By Theorem 2 of60

[2], |∑s
i=1 ωiCiΨ(ci)(Ci)

T | is maximized when s = 2m, X∗i = (1, (Z∗i )T )T and ωi = 1/2m,

i = 1, . . . , s. Next we shall show that the maximum value is the right hand side of (1.4). Let

B =




1 0 . . . 0 0

−Z(n),1+Z(1),1

Z(n),1−Z(1),1

2
Z(n),1−Z(1),1

. . . 0 0

...
...

. . .
...

...

−Z(n),m−1+Z(1),m−1

Z(n),m−1−Z(1),m−1
0 . . . 2

Z(n),m−1−Z(1),m−1
0

0 0 . . . 0 1




. (1.5)

It can be verified that

B

(
2m∑

i=1

1

2m
C∗i Ψ(c∗)(C∗i )T

)
B′ = Ψ(c∗)



Im 0

0 (c∗)2


 . (1.6)65

The desired conclusion follows by some routine algebra.

1.4. Proof of Theorem 3.2

Let F1j and F2j be the distribution function of zij and −zij conditional on ci = XT
i β ∈ C

respectively, j = 1, 2. We first derive f1j(z) and f2j(z), the pdf of F1j and F2j .

Since Zi ∼ N (µ,Σ), then Zti = (xi1, X
T
i β) ∼ N ((u1, uc)

T ,Σt). According to the first70

stage procedure of new IBOSS algorithm,

C = {c | |c− c∗| < δ or |c+ c∗| < δ} = (a, b) ∪ (−b,−a)

5



for some constants a < b.

All the proof works here is built with cases that (a, b) ∩ (−b,−a) = ∅. For cases when

(a, b) ∩ (−b,−a) 6= ∅, one can rewrite (a, b) ∩ (−b,−a) as (a′, b′) for some constant a′, b′ and75

prove the same result using exactly the same framework.

Let σ2
c be V ar(ci), σ

2
1 be V ar(zi1) with σ1, σc > 0, and ρ1 be the correlation coefficient

between c = XTβ and z1. By the assumption that Σ is nonsingular as well as β1 6= 0 and

β2 6= 0, we have |ρ1| < 1.

Utilizing the conditional distribution forms derived in [3], we can directly obtain that80

f11(z) =

1
σ1
e
− (z−u1)2

2σ21 g11(z)

Φ( b−uc
σc

)− Φ(a−uc
σc

) + Φ(−a−uc
σc

)− Φ(−b−uc
σc

)

and

f21(z) =

1
σ1
e
− (z+u1)2

2σ21 g12(z)

Φ( b+uc
σc

)− Φ(a+uc
σc

) + Φ(−a+uc
σc

)− Φ(−b+uc
σc

)
,

85

where

g11(z) = Φ(

b−uc
σc
− ρ1 z−u1

σ1√
1− ρ21

)− Φ(

a−uc
σc
− ρ1 z−u1

σ1√
1− ρ21

) + Φ(

−a−uc
σc

− ρ1 z−u1
σ1√

1− ρ21
)

− Φ(

−b−uc
σc

− ρ1 z−u1
σ1√

1− ρ21
)

and90

g12(z) = Φ(

b+uc
σc
− ρ1 z+u1

σ1√
1− ρ21

)− Φ(

a+uc
σc
− ρ1 z+u1

σ1√
1− ρ21

) + Φ(

−a+uc
σc

− ρ1 z+u1
σ1√

1− ρ21
)

− Φ(

−b+uc
σc

− ρ1 z+u1
σ1√

1− ρ21
).

Similarly, we can obtain

f12(z) =

1
σ2
e
− (z−u2)2

2σ22 g21(z)

Φ( b−uc
σc

)− Φ(a−uc
σc

) + Φ(−a−uc
σc

)− Φ(−b−uc
σc

)
95
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and

f22(z) =

1
σ2
e
− (z+u2)2

2σ22 g22(z)

Φ( b+uc
σc

)− Φ(a+uc
σc

) + Φ(−a+uc
σc

)− Φ(−b+uc
σc

)
,

where100

g21(z) = Φ(

b−uc
σc
− ρ2 z−u2

σ1√
1− ρ22

)− Φ(

a−uc
σc
− ρ2 z−u2

σ1√
1− ρ22

) + Φ(

−a−uc
σc

− ρ2 z−u2
σ1√

1− ρ22
)

− Φ(

−b−uc
σc

− ρ2 z−u2
σ1√

1− ρ22
)

and

g22(z) = Φ(

b+uc
σc
− ρ2 z+u2

σ1√
1− ρ22

)− Φ(

a+uc
σc
− ρ2 z+u2

σ1√
1− ρ22

) + Φ(

−a+uc
σc

− ρ2 z+u2
σ1√

1− ρ22
)105

− Φ(

−b+uc
σc

− ρ2 z+u2
σ1√

1− ρ22
).

Now we investigate the information matrix of subdata from the new IBOSS algorithm. By

implementing the new algorithm, we will pick the subdata in which ci = XT
i β ∈ C. And for

the two dimension case discussed here, the second stage procedure is to pick the data rows with110

largest
⌈
k

2∗p

⌉
values and smallest

⌈
k

2∗p

⌉
values from jth covariate sequentially to build the final

subdata with size around k, where j = 1, 2.

With the remaining datalines (X ′1, · · · , X ′n1) after first stage procedure, denote the sub-

data we select from the j-th covariate as (X ′1j , X ′2j , · · · , X ′
⌈
k

2∗p
⌉
j
) and (X ′1(j), · · · , X ′

⌈
k

2∗p
⌉
(j)

).

(X ′1j , · · · , X ′
⌈
k

2∗p
⌉
j
) represents the selected rows with the largest value and (X ′1(j), · · · ,115

X
′
⌈
k

2∗p
⌉
(j)

) represents the selected rows with the smallest value on jth covariate in remaining

data. Then

IIBOSS =

n∑

i=1

αiΨ(ci)XiX
T
i

=

2∑

j=1

⌈
k

2∗p
⌉

∑

i=1

Ψ(c′ij)X
′ij(X ′ij)T +

2∑

j=1

⌈
k

2∗p
⌉

∑

i=1

Ψ(c′i(j))X
′i(j)(X ′i(j))T ,

(1.7)
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where c′ij = (X ′ij)Tβ and c′i(j) = (X ′i(j))Tβ.

Next we focus on the explicit form for X ′ij = (1, z′1
ij
, z′2

ij
). Suppose z′1

11
is the largest120

value among (z′11, · · · , z′n11) and z′i1 are independently generate from F11. If we can prove

that F11 belongs to the Gumbel type and F−1
11 (1− 1

n1
)→∞ as n1 →∞, then the distribution

of z′1
11

will satisfy

Fz′111(an1z + bn1) = e−e
−z (1.8)

when n1 →∞, where an1 =
σ2
1(1−ρ21)

F−1
11 (1− 1

n1
)

and bn1 = F−1
11 (1− 1

n1
).125

By plugging in z =
√
F−1
11 (1− 1

n
) and z = −

√
F−1
11 (1− 1

n
) to (1.8), one can obtain

z′111 = F−1
11 (1− 1

n1
) + o(1). Then by theorem 2.8.1 and theorem 2.8.2 [4], we can derive

z′1
i1

= F−1
11 (1− 1

n1
) + o(1) for i = 1, · · · ,

⌈
k

2 ∗ p

⌉
. (1.9)

Similarly, one can derive

z′2
i2

= F−1
12 (1− 1

n1
) + o(1) for i = 1, · · · ,

⌈
k

2 ∗ p

⌉
. (1.10)130

For X ′i(j) = (1, z′1
i(j)

, z′2
i(j)

), consider random variables VT = (−1, v1j = −z′1j ,

· · · , vn1j = −z′n1j) and cv = VTβ = −c. Thus vij follows distribution F2j for i = 1, · · · , n1.

Reorder (v1j , · · · , vn1j) as (v1j , · · · , vn1
j ) in descending order. Similarly, by assuming that F2j

belongs to the Gumbel type and F−1
2j (1− 1

n1
)→∞, we can get explicit forms for v1i

v1j = F−1
2j (1− 1

n1
) + o(1).135

Again by theorem 2.8.1 and theorem 2.8.2 from [4],

−z′ji(j) = F−1
2j (1− 1

n1
) + o(1)→∞ for i = 1, · · · ,

⌈
k

2 ∗ p

⌉
,

which is equivalent to140

z′j
i(j)

= −F−1
2j (1− 1

n1
) + o(1) for i = 1, · · · ,

⌈
k

2 ∗ p

⌉
. (1.11)

8



By applying (1.9), (1.10), (1.11) and the fact that c ∈ C is bounded, we have

z′j2
ij1 = −

βj1F
−1
1j1

(1− 1
n1

)

βj2
+O(1) for i = 1, · · · ,

⌈
k

2 ∗ p

⌉
and j1 6= j2 (1.12)

and

z′j2
i(j1) =

βj1F
−1
2j1

(1− 1
n1

)

βj2
+O(1) for i = 1, · · · ,

⌈
k

2 ∗ p

⌉
and j1 6= j2. (1.13)145

Let e denote the minimum value for Ψ(β) = p(β)(1−p(β)) = eX
T β

(1+eX
T β)2

in range C. Thus

apply (1.9), (1.10), (1.11), (1.12), (1.13) to (1.7), we can show that

IIBOSS ≥ e



k I12

IT12 I22


 , (1.14)

where the diagonal elements of I22 are

⌈
k

2 ∗ p

⌉(
(F−1

11 (1− 1

n1
))2 + (F−1

21 (1− 1

n1
))2

+

(
β2
β1

)2(
(F−1

12 (1− 1

n1
))2 + (F−1

22 (1− 1

n1
))2
)

+ o(F )

)150

and the off diagonal elements of I12 are

⌈
k

2 ∗ p

⌉(
(F−1

12 (1− 1

n1
))2 + (F−1

22 (1− 1

n1
))2

+

(
β1
β2

)2(
(F−1

11 (1− 1

n1
))2 + (F−1

21 (1− 1

n1
))2
)

+ o(F )

)
.

Here F = max({F−1
ij (1 − 1

n
)}) → ∞. Since F−1

lj (1 − 1
n1

) → ∞, for l = 1, 2 and j = 1, 2, then

the diagonal elements of I22 goes to ∞.

Let λ1, . . . , λ3 be the three eigenvalues of



k I12

IT12 I22


. Then

∑3
i=1 λi goes to ∞. This155

implies at least one of the three eigenvalues goes to ∞.

Now the remaining part is to prove, for l = 1, 2 and j = 1, 2,

• Flj belongs to Gumbel type.
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• F−1
lj (1− 1

n1
)→∞.

Here we will just show the framework to prove these assumptions with F11 and one can160

similarly prove them using similar framework for other Flj ’s.

By [5], the necessary and sufficient condition for distribution F11 to be the Gumbel type

is that

lim
t→∞

1− F11(t+ xr(t))

1− F11(t)
= e−x for x ∈ <, (1.15)

where r(t) is a positive function when t is big enough. Thus as long as (1.15) holds for F11, the165

first assumption will holds for distribution F11.

Set r(t) = σ2
1(1 − ρ21)/(t − u1). Then r(t) > 0 for t big enough and limt→∞ r(t) =

limt→∞ r
′(t) = 0. Thus

lim
t→∞

1− F11(t+ xr(t))

1− F11(t)
= lim
t→∞

f11(t+ xr(t))(1 + xr′(t))

f11(t)

= lim
t→∞

e
− (t+xr(t)−u1)2

2σ21 g11(t+ xr(t))(1 + xr′(t))

e
− (t−u1)2

2σ21 g11(t)

= lim
t→∞

e
− (t+xr(t)−u1)2

2σ21

e
− (t−u1)2

2σ21

lim
t→∞

g11(t+ xr(t))

g11(t)
.

(1.16)

Consider limt→∞ e
− (t+xr(t)−u1)2

2σ21

e
− (t−u1)2

2σ21

first, one can directly derive that170

lim
t→∞

e
− (t+xr(t)−u1)2

2σ21

e
− (t−u1)2

2σ21

= lim
t→∞

e
− (xr(t))2

2σ21 e
− (xr(t)(t−u1))

σ21

= lim
t→∞

e
− (xr(t)(t−u1))

σ21 .

(1.17)

Thus by plugging in r(t) = σ2
1(1− ρ21)/(t− u1), we can obtain

lim
t→∞

e
− (t+xr(t)−u1)2

2σ21

e
− (t−u1)2

2σ21

= e−(1−ρ21)x. (1.18)
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Then to calculate limt→∞
g11(t+xr(t))

g11(t)
, first consider

lim
t→∞

Φ(
b−uc
σc
−ρ1 t+xr(t)−u1σ1√

1−ρ21
)− Φ(

a−uc
σc
−ρ1 a+xr(t)−u1σ1√

1−ρ21
)

Φ(
b−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)− Φ(
a−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)

.175

One can derive that

lim
t→∞

Φ(
b−uc
σc
−ρ1 t+xr(t)−u1σ1√

1−ρ21
)− Φ(

a−uc
σc
−ρ1 a+xr(t)−u1σ1√

1−ρ21
)

Φ(
b−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)− Φ(
a−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)

= lim
t→∞

Φ′(
b−uc
σc
−ρ1 t+xr(t)−u1σ1√

1−ρ21
)− Φ′(

a−uc
σc
−ρ1 t+xr(t)−u1σ1√

1−ρ21
)

Φ′(
b−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)− Φ′(
a−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)

= lim
t→∞

e
−

(
b−uc
σc
−ρ1

t+xr(t)−u1
σ1

)2

2(1−ρ21) −ρ1(1+xr′(t))√
1−ρ21σ1

− e
−

(
a−uc
σc

−ρ1
t+xr(t)−u1

σ1
)2

2(1−ρ21) −ρ1(1+xr′(t))√
1−ρ21σ1

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21) −ρ1√
1−ρ21σ1

− e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21) −ρ1√
1−ρ21σ1

= lim
t→∞

e
−

(
b−uc
σc
−ρ1

t+xr(t)−u1
σ1

)2

2(1−ρ21) − e
−

(
a−uc
σc

−ρ1
t+xr(t)−u1

σ1
)2

2(1−ρ21)

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21) − e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21)

(1 + xr′(t))180

= lim
t→∞

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21) e
−

(ρ1
xr(t)
σ1

)2

2(1−ρ21) e

(
b−uc
σc
−ρ1

t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21) −

e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21) e
−

(ρ1
xr(t)
σ1

)2

2(1−ρ21) e

(
a−uc
σc

−ρ1
t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21)

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21) − e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21)

(1 + xr′(t)).

If ρ1 > 0, one can show that

lim
t→∞

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21)

e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21)

= lim
t→∞

e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21) e
−

( b−a
σc

)2

2(1−ρ21) e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)( b−a
σc

)

(1−ρ21)

e

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21)

=∞.

(1.19)
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Thus185

lim
t→∞

Φ(
b−uc
σc
−ρ1 t+xr(t)−u1σ1√

1−ρ21
)− Φ(

a−uc
σc
−ρ1 a+xr(t)−u1σ1√

1−ρ21
)

Φ(
b−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)− Φ(
a−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)

= lim
t→∞

(
e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21) e
−

(ρ1
xr(t)
σ1

)2

2(1−ρ21) e

(
b−uc
σc
−ρ1

t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21)

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21)

− e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21) e
−

(ρ1
xr(t)
σ1

)2

2(1−ρ21) e

(
a−uc
σc

−ρ1
t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21)

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21)

)(1 + xr′(t))

= lim
t→∞

(e
−

(ρ1
xr(t)
σ1

)2

2(1−ρ21) e

(
b−uc
σc
−ρ1

t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21)

− e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21) e
−

(ρ1
xr(t)
σ1

)2

2(1−ρ21) e

(
a−uc
σc

−ρ1
t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21)

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21)

)(1 + xr′(t)).

(1.20)

Since limt→∞ r(t) = 0, we have

lim
t→∞

e
−

(ρ1
xr(t)
σ1

)2

2(1−ρ21) e

(
b−uc
σc
−ρ1

t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21) = lim
t→∞

e
−

(−ρ1
t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21)

= e−ρ
2
1x.

(1.21)

and

lim
t→∞

e
−

(ρ1
xr(t)
σ1

)2

2(1−ρ21) e

(
a−uc
σc

−ρ1
t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21) = lim
t→∞

e
−

(−ρ1
t−u1
σ1

)(ρ1
xr(t)
σ1

)

(1−ρ21)

= e−ρ
2
1x.

(1.22)190

Apply (1.19),(1.21), (1.22) to (1.20),

lim
t→∞

Φ(
b−uc
σc
−ρ1 t+xr(t)−u1σ1√

1−ρ21
)− Φ(

a−uc
σc
−ρ1 a+xr(t)−u1σ1√

1−ρ21
)

Φ(
b−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)− Φ(
a−uc
σc
−ρ1 t−u1σ1√
1−ρ21

)

= lim
t→∞

(1 + xr′(t))(e−ρ
2
1x − e−ρ21x lim

t→∞
e
−

(
a−uc
σc

−ρ1
t−u1
σ1

)2

2(1−ρ21)

e
−

(
b−uc
σc
−ρ1

t−u1
σ1

)2

2(1−ρ21)

).

As lim
t→∞

r′(t) = 0,

= e−ρ
2
1x.

(1.23)
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Similarly, we can prove that

lim
t→∞

Φ(
−a−uc
σc

−ρ1 t+xr(t)−u1σ1√
1−ρ21

)− Φ(
−b−uc
σc

−ρ1 a+xr(t)−u1σ1√
1−ρ21

)

Φ(
−a−uc
σc

−ρ1 t−u1σ1√
1−ρ21

)− Φ(
−b−uc
σc

−ρ1 t−u1σ1√
1−ρ21

)

= e−ρ
2
1x.

(1.24)

Apply (1.23), (1.24) to limt→∞
g11(t+xr(t))

g11(t)
, we can obtain195

lim
t→∞

g11(t+ xr(t))

g11(t)
= e−ρ

2
1x

for the ρ1 > 0 case.

For the ρ1 < 0 case, one can follow similar frame work and get limt→∞
g11(t+xr(t))

g11(t)
= e−ρ

2
1x.

For the ρ1 = 0 case, one can easily find limt→∞
g11(t+xr(t))

g11(t)
= 1 = e−ρ

2
1x.200

Thus we have

lim
t→∞

g11(t+ xr(t))

g11(t)
= e−ρ

2
1x (1.25)

as long as ρ1 6= ±1.

With (1.25) and (1.17), (1.15) can be written as

lim
t→∞

1− F11(t+ xr(t))

1− F11(t)
= e−x for x ∈ <.205

So the necessary and sufficient condition (1.15) holds and therefore the first assumption

holds for distribution F11.

Now we prove the second assumption that F−1
11 (1− 1

n1
)→∞ as n1 →∞.

Suppose F−1
11 (1 − 1

n1
) → h < ∞. Then there exists N , for all n1 > N , we have |F−1

11 (1 −210

1
n1

)− h| < ε0, where ε0 is a fixed positive constant. Then consider

∫ ∞

h+ε0

f11(z) dx1 ≥
∫ h+2ε0

h+ε0

f11(z) dz

=

∫ h+2ε0

h+ε0

1
σ1
e
− (z−u1)2

2σ1 g11(z)

Φ( b−uc
σc

)− Φ(a−uc
σc

) + Φ(−a−uc
σc

)− Φ(−b−uc
σc

)

13



× dz

=
1

Φ( b−uc
σc

)− Φ(a−uc
σc

) + Φ(−a−uc
σc

)− Φ(−b−uc
σc

)
215

×
∫ h+2ε0

h+ε0

1

σ1
e
− (z−u1)2

2σ21 g11(z) dz.

Since g11(z) is a positive continuous function of z and z is bounded, thus the minimum value

of g(z) is g0 > 0. Then

∫ ∞

h+ε0

f11(z) dz ≥ g0

Φ( b−uc
σc

)− Φ(a−uc
σc

) + Φ(−a−uc
σc

)− Φ(−b−uc
σc

)
220

×
∫ h+2ε0

h+ε0

1

σ1
e
− (z−u1)2

2σ21 dx1

=
g0

Φ( b−uc
σc

)− Φ(a−uc
σc

) + Φ(−a−uc
σc

)− Φ(−b−uc
σc

)

×
√

2π(Φ(
h+ 2ε0 − u1

σ1
)− Φ(

h+ ε0 − u1

σ1
))

≥ ε1 > 0.
225

Thus as long as we take any n1 satisfy n1 ≥ 1
ε1

, we can obtain F−1
11 (1− 1

n1
) > h+ε0, which

is conflict with our assumption. Thus F−1
11 (1 − 1

n1
) → ∞ if ρ1 6= ±1. The second assumption

also holds for distribution F11.
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