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Abstract

Extraordinary amounts of data are being produced in many branches of science.
Proven statistical methods are no longer applicable with extraordinary large data sets
due to computational limitations. A critical step in big data analysis is data reduction.
Existing investigations in the context of linear regression focus on subsampling-based
methods. However, not only is this approach prone to sampling errors, it also leads to
a covariance matrix of the estimators that is typically bounded from below by a term
that is of the order of the inverse of the subdata size. We propose a novel approach,
termed information-based optimal subdata selection (IBOSS). Compared to leading
existing subdata methods, the IBOSS approach has the following advantages: (i)
it is significantly faster; (ii) it is suitable for distributed parallel computing; (iii)
the variances of the slope parameter estimators converge to 0 as the full data size
increases even if the subdata size is fixed, i.e., the convergence rate depends on the full
data size; (iv) data analysis for IBOSS subdata is straightforward and the sampling
distribution of an IBOSS estimator is easy to assess. Theoretical results and extensive
simulations demonstrate that the IBOSS approach is superior to subsampling-based
methods, sometimes by orders of magnitude. The advantages of the new approach
are also illustrated through analysis of real data.
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1 Introduction

Technological advances have enabled an exponential growth in data collection and the size

of data sets. Although computational resources have also been growing rapidly, this pales

in comparison to the astonishing growth in data volume. This presents the challenge of

drawing useful information and converting data into knowledge with available computa-

tional resources. We meet this challenge in the context of linear regression by identifying

informative subdata, which can be fully analyzed.

For linear regression with a n × 1 response vector and n × p covariate matrix, the full

data volume is n(p+1). In the setting of “big data”, this prevents computation of parame-

ter estimates in a traditional way due to insufficient computational resources. The scenario

with p� n is usually referred to as high-dimensional data. Multiple methods for analyzing

high-dimensional data have been proposed and studied, such as LASSO (Tibshirani, 1996;

Meinshausen et al., 2009), Dantzig selector (Candes and Tao, 2007), and sure independence

screening (Fan and Lv, 2008), among others. We focus on the scenario with n� p for an

extremely large n. This is an important problem that arises in practice. For example, for

the chemical sensors data in Section 5.2, n = 4, 208, 261 and p = 15. As another example,

the airline on-time data set from the 2009 ASA Data Expo contains n = 123, 534, 969 ob-

servations on 29 variables about flight arrival and departure information for all commercial

flights within the USA, from October 1987 to April 2008. Clearly, not everyone has the

computing resources to fully analyze the whole data in the aforementioned examples, and

thus data reduction is a crucial step to extract useful information from the data. For the

case of n � p, the required computing time for ordinary least squares (OLS) is O(np2).

This time complexity is too long for big data, and may even be beyond the computational

capacity of available computing facilities. To address this computational limitation, data

reduction is important. Existing investigations in this direction focus on taking random

subsamples from the full data. Interesting studies include Drineas et al. (2006, 2011);

Ma and Sun (2015); Ma et al. (2014, 2015), among others. Parameter estimates are ob-

tained based on a small random subsample of the full data. Normalized statistical leverage

scores are often used for nonuniform subsampling probabilities, and the method is known

as algorithmic leveraging (Ma et al., 2014).
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With exact statistical leverage scores, the computing time of this method is O(np2), just

as for OLS on the full data. Drineas et al. (2012) developed a randomized algorithm to ap-

proximate leverage scores; it is O(np log n/ε2), and o(np2) if log n = o(p), where ε ∈ (0, 0.5].

Thus the computing time for the algorithmic leveraging method is at least O(np log n/ε2).

A subsampling-based method also induces sampling error and the information in the re-

sultant subdata is typically proportional to its size. We find that (details to be shown

in Section 2), for a subsampling-based estimator, the covariance matrix is bounded from

below by a term that is typically of order 1/k, where k is the subsample size. This order is

only a function of k, so that the variance does not go to 0 with increasing full data size n.

In this paper, we propose an alternative subdata selection approach, which we call

information-based optimal subdata selection (IBOSS) method from big data. The basic

idea is to select the most informative data points deterministically so that subdata of a

small size preserves most of the information contained in the full data. It is akin to the

basic motivation of optimal experimental design (Kiefer, 1959), which aims at obtaining

the maximum information with a fixed budget. Traditionally, optimal design is not a data

analysis tool, but focuses on data collection. The idea of “maximizing” an information

matrix, however, can be borrowed to establish a framework to identify the most informative

subdata from the full data for estimating unknown parameters. Using this framework, we

will also gain more insight into the popular subsampling-based methods.

As we will show, the IBOSS approach has the following advantages compared to existing

methods: 1) the computing time for the IBOSS algorithm is O(np), which is significantly

faster than existing methods; 2) the IBOSS algorithm is very suitable for distributed parallel

computing platforms; it identifies informative data points by examining each covariate

individually; 3) the IBOSS method does not induce sampling error and the variance of

estimators can go to 0 as the full data size n becomes large even if the subdata size k is

fixed; and 4) in terms of distributional properties, IBOSS estimators inherit properties of

estimators based on the full data.

The remainder of the paper is organized as follows. In Section 2, we present the IBOSS

framework and use it to analyze the popular subsampling-based methods. A lower bound

for covariance matrices of subsampling-based estimators will be given. In Section 3, we
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characterize IBOSS subdata under the D-optimality criterion and use it to develop a com-

putationally efficient algorithm. In Section 4, we evaluate the IBOSS algorithm by deriving

its asymptotic properties. In Section 5, the performance of the IBOSS method is examined

through extensive simulations and two real data applications. We offer concluding remarks

in Section 6 and show all technical details in the appendix. Additional numerical results

are provided in the Supplementary Material.

2 The framework

Let (z1, y1), ..., (zn, yn) denote the full data, and assume the linear regression model:

yi = β0 + zT
i β1 + εi = β0 +

p∑
j=1

zijβj + εi, i = 1, ..., n, (1)

where β0 is the scalar intercept parameter, β1 = (β1, β2, ..., βp)
T is a p-dimensional vector of

unknown slope parameters, zi = (zi1, ..., zip)
T is a covariate vector, yi is a response, and εi is

an error term. We write xi = (1, zT
i )T, β = (β0,β

T
1 )T, Z = (z1, ..., zn)T, X = (x1, ...,xn)T,

y = (y1, ..., yn)T, assume that the yi’s are uncorrelated given the covariate matrix Z, and

that the error terms εi’s satisfy E(εi) = 0 and V(εi) = σ2.

The intercept parameter is often not of interest and could be eliminated by centralizing

the full data. However, this does not work for streaming data, is not practical if the focus

is on building a predictive model, and requires a computing time of O(np).

When using the full data and model (1), the least-squares estimator of β, which is also

its best linear unbiased estimator (BLUE), is

β̂f =

(
n∑
i=1

xix
T
i

)−1 n∑
i=1

xiyi.

The covariance matrix of this unbiased estimator is equal to the inverse of

Mf =
1

σ2

n∑
i=1

xix
T
i .

This is the observed Fisher information matrix for β from the full data if the εi’s are

normally distributed. While we do not require the normality assumption, for simplicity

we will still call Mf the information matrix. Let (z∗1, y
∗
1), ..., (z∗k, y

∗
k) be subdata of size
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k selected deterministically from the full data, in which the rule to determine whether a

data point is included or not depends on Z only. Then the subdata also follow the linear

regression model

y∗i = β0 + z∗i
Tβ1 + ε∗i , i = 1, ..., k, (2)

with the same assumptions and unknown parameters as for model (1). The LS estimator

β̂s =

(
k∑
i=1

x∗ix
∗
i

T

)−1 k∑
i=1

x∗i y
∗
i ,

is the BLUE of β for model (2) based on the subdata, where x∗i = (1, z∗i
T)T. The observed

information matrix for β based on the subdata is

Ms =
1

σ2

k∑
i=1

x∗ix
∗
i

T,

which is the inverse of the covariance matrix of β̂s, namely,

V(β̂s|Z) = M−1
s = σ2

(
k∑
i=1

x∗ix
∗
i

T

)−1

. (3)

To estimate a linear function of β using subdata, plugging in the LS estimator yields

the estimator with the minimum variance among all linear unbiased estimators. Since this

minimum variance is a function of the covariate values in the subdata, one can judiciously

select the subdata to minimize the minimum variance. This is akin to the basic idea behind

optimal experimental design (Kiefer, 1959). We implement this here by seeking subdata

that, in some sense, maximize Ms.

Some additional notation will help to formulate this idea as an optimization problem.

Let δi be the indicator variable that signifies whether (zi, yi) is included in the subdata,

i.e., δi = 1 if (zi, yi) is included and δi = 0 otherwise. The information matrix with subdata

of size k can then be written as

M(δ) =
1

σ2

n∑
i=1

δixix
T
i , (4)

where δ = {δ1, δ2, ..., δn} such that
∑n

i=1 δi = k. To have an optimal estimator based on a

subdata, one can choose a δ that “maximizes” the information matrix (4). Since M(δ) is a
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matrix, in optimal experimental design (Kiefer, 1959), this is typically done by maximizing

a univariate optimality criterion function of the matrix.

Let ψ denote an optimality criterion function. The problem is presented as the following

optimization problem given the observed big data:

δopt = arg max
δ

ψ{M(δ)}, subject to
n∑
i=1

δi = k. (5)

A popular optimality criterion is the D-optimality criterion. It maximizes the determinant

of M(δ), which has the interpretation of minimizing the expected volume of the joint

confidence ellipsoid for β. We will come back to this criterion in greater detail in Section 3.

2.1 Analysis of existing subsampling-based methods

Based on our information-based subdata selection framework, we can also gain insights

into popular random subsampling-based methods. To see this, let ηL be the n-dimensional

count-vector whose ith entry denotes the number of times that the ith data point is included

in a subsample of size k, which is obtained using a random subsampling method with

probabilities proportional to πi, i = 1, ..., n, such that
∑n

i=1 πi = 1. A subsampling-based

estimator has the general form

β̃L =

(
n∑
i=1

wiηLixix
T
i

)−1 n∑
i=1

wiηLixiyi, (6)

where the weight wi is often taken to be 1/πi. Corresponding to different choices of πi and

wi, some popular subsampling-based methods (Ma et al., 2015) include: uniform subsam-

pling (UNI) in which πi = 1/n and wi = 1; leverage-based subsampling (LEV) in which

πi = hii/(p+ 1), wi = 1/πi and hii = xT
i (XXT)−1xi; shrinked leveraging estimator (SLEV)

in which πi = αhii/(p + 1) + (1 − α)/n, wi = 1/πi and α ∈ [0, 1]; unweighted leveraging

estimator (LEVUNW) in which πi = hii/(p+ 1) and wi = 1.

The distribution of β̃L is complicated, but we can study its performance using the pro-

posed information-based framework. The “information matrix” M(ηL) given Z is random

because ηL is random. While the ηLi’s are correlated, we will only need to use the marginal

distribution of each ηLi. If subsampling is with replacement, then each ηLi has a binomial
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distribution Bin(k, πi); if the subsampling is without replacement, the marginal distribu-

tion of each ηLi is Bin(1, kπi) under the condition that kπi ≤ 1. Either way, E(ηLi) = kπi.

Hence, taking expectations with respect to ηL, the expected observed information matrix

for a subsampling-based method is

MEL = E{M(ηL)|Z} =
1

σ2

n∑
i=1

E(ηLi)xix
T
i =

k

σ2

n∑
i=1

πixix
T
i . (7)

Unlike the IBOSS approach, the inverse of MEL is not the variance covariance matrix

of V(β̃L|Z). In fact, for subsampling with replacement there is a small probability that

V(β̃L|Z) is not well defined because βL is not estimable. To solve this issue, we consider

only subsamples with full-rank covariate matrices to define the covariance matrix of β̃L.

The following theorem states a relationship between MEL and the covariance matrix of β̃L.

Theorem 1. Suppose that a subsample of size k is taken using a random subsampling

procedure with probabilities proportional to πi, i = 1, ..., n, such that
∑n

i=1 πi = 1. Consider

the set ∆ = {ηL :
∑n

i=1 ηLixix
T
i is non-singular}, where ηL is the n-dimensional vector

that counts how often each data point is included. Let I∆(ηL) = 1 if and only if ηL ∈ ∆.

Given I∆(ηL) = 1, β̃L is unbiased for β, and

V{β̃L|Z, I∆(ηL) = 1} ≥ P{I∆(ηL) = 1|Z}M−1
EL =

σ2P{I∆(ηL) = 1|Z}
k

{
n∑
i=1

πixix
T
i

}−1

(8)

in the Loewner ordering.

Remark 1. Theorem 1 is true regardless of the choice for the weights wi’s in β̃L or

whether subsampling is with or without replacement. It provides a lower bound for covari-

ance matrices of subsampling-based estimators, which provides a feasible way to evaluate

the best performance of a subsampling-based estimator. Note that when k � p + 1,

P{I∆(ηL) = 1|Z} is often close to 1, so that the lower bound is close to the inverse of the

expected observed information MEL.

Remark 2. Existing investigations on the random subsampling approach focus on sampling

with replacement where the subsample is independent given the full data. For subsampling

without replacement with fixed sample size, the subsample is no longer independent given
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the full data and the properties of the resultant estimator are more complicated. As a result,

to the best of our knowledge, subsampling without replacement for a fixed subsample size

from big data has never been investigated. Our IBOSS framework, however, is applicable

here to assess the performance of an estimator based on subsampling without replacement.

Applying Theorem 1 to the popular sampling-based methods, we obtain the following

results. For the UNI method,

V
{
β̃

UNI

L

∣∣∣Z, I∆(ηL) = 1
}
≥ σ2P{I∆(ηL) = 1|Z}

k

(
1

n

n∑
i=1

xix
T
i

)−1

; (9)

for the LEV (or LEVUNW) method,

V
{
β̃

LEV

L

∣∣∣Z, I∆(ηL) = 1
}
≥ (p+ 1)σ2P{I∆(ηL) = 1|Z}

k

{
n∑
i=1

xix
T
i

(
XTX

)−1
xix

T
i

}−1

;

(10)

for the SLEV method,

V
{
β̃

SLEV

L

∣∣∣Z, I∆(ηL) = 1
}
≥σ

2P{I∆(ηL) = 1|Z}
k

{
α

p+ 1

n∑
i=1

xix
T
i

(
XTX

)−1
xix

T
i

+
1− α
n

n∑
i=1

xix
T
i

}−1

. (11)

If xi, i = 1, ..., n, are generated independently from the same distribution as random

vector x with finite second moment, i.e., E‖x‖2 < ∞, then from the strong law of large

numbers,
1

n

n∑
i=1

xix
T
i → E(xxT), (12)

almost surely as n → ∞. If we further assume that the fourth moment of x is finite, i.e.,

E‖x‖4 <∞, then we have

n∑
i=1

xix
T
i

(
XTX

)−1
xix

T
i → E

[
xxT{E(xxT)}−1xxT

]
(13)

almost surely as n→∞. Let Pη = lim inf
n→∞

P{I∆(ηL) = 1|Z}. Note that Pη = 1 under some

mild condition, e.g., the covariate distribution is continuous. From (9) - (13), we have

V
{
β̃

UNI

L

∣∣∣Z, I∆(ηL) = 1
}
≥ σ2Pη

k

{
E(xxT)

}−1
, (14)
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V
{
β̃

LEV

L

∣∣∣Z, I∆(ηL) = 1
}
≥ (p+ 1)σ2Pη

k

(
E[xxT{E(xxT)}−1xxT]

)−1
, (15)

V
{
β̃

SLEV

L

∣∣∣Z, I∆(ηL) = 1
}
≥σ

2Pη
k

(
α

p+ 1
E[xxT{E(xxT)}−1xxT] + (1− α)E(xxT)

)−1

,

(16)

almost surely as n → ∞. From (14), (15) and (16), one sees that covariance matrices

of these commonly used subsampling-based estimators are bounded from below in the

Loewner ordering by finite quantities that are at the order of 1/k. These quantities do not

go to 0 as the full data sample size n goes to ∞.

3 The D-optimality criterion and an IBOSS algorithm

In this section, we study the commonly used D-optimality criterion and develop IBOSS

algorithms based on theoretical characterizations of IBOSS subdata under this criterion.

In our framework, for given full data of size n, the D-optimality criterion suggests the

selection of subdata of size k so that

δoptD = arg max
δ

∣∣∣∣∣
n∑
i=1

δixix
T
i

∣∣∣∣∣ ,
n∑
i=1

δi = k.

Obtaining an exact solution is computationally far too expensive. In working towards

an approximate solution, we first derive an upper bound for |M(δ)| which, while only

attainable for very special cases, will guide our later algorithm.

Theorem 2 (D-optimality). For subdata of size k represented by δ,

|M(δ)| ≤ kp+1

4pσ2(p+1)

p∏
j=1

(z(n)j − z(1)j)
2, (17)

where z(n)j = max{z1j, z2j, ..., znj} and z(1)j = min{z1j, z2j, ..., znj} are the nth and first

order statistics of z1j, z2j, ..., znj. If the subdata consists of the 2p points (a1, . . . , ap)
T where

aj = z(n)j or z(1)j, j = 1, 2, ..., p, each occurring equally often, then equality holds in (17).

Remark 3. Often k is much smaller than 2p, so that subdata with equality in Theorem 2

will not exist. However, just as for Hadamard’s determinant bound (Hadamard, 1893),
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the result suggests to collect subdata with extreme covariate values, both small and large,

occurring with the same frequency. This agrees with the common statistical knowledge that

larger variation in covariates is more informative and results in better parameter estimation.

The following algorithm is motivated by the result in Theorem 2.

Algorithm 1 (Algorithm motivated by D-optimality). Suppose that r = k/(2p) is an

integer. Using a partition-based selection algorithm (Mart́ınez, 2004), perform the following

steps:

(1) For zi1, 1 ≤ i ≤ n, include r data points with the r smallest zi1 values and r data

points with the r largest zi1 values;

(2) For j = 2, ..., p, exclude data points that were previously selected, and from the re-

mainder select r data points with the smallest zij values and r data points with the

largest zij values.

(3) Return β̂
D

= {(X∗D)TX∗D}−1(X∗D)Ty∗D and the estimated covariance matrix σ̂2
D{(X∗D)TX∗D}−1,

where X∗D = (1,Z∗D), Z∗D is the covariate matrix of the subdata selected in the previous

steps, y∗D is the response vector of the subdata and σ̂2
D =

∥∥y∗D−X∗Dβ̂
D∥∥2

/(k− p− 1).

Remark 4. For each covariate, a partition-based selection algorithm has an average time

complexity of O(n) to find the rth largest or smallest value (Musser, 1997; Mart́ınez, 2004).

Thus the time to obtain the subdata is O(np). Using the subdata, the computing time for

β̂
D

and σ̂2
D is O(kp2+p3) and O(kp), respectively. Thus, the time complexity of Algorithm 1

is O(np + kp2 + p3 + kp) = O(np + kp2). For the scenario that n > kp, this reduces to

O(np). This algorithm is faster than algorithmic leveraging, which has a computing time

of O(np log n) (Drineas et al., 2012).

Remark 5. Algorithm 1 gives the covariance matrix of the resultant estimator, which

is very crucial for statistical inference. This is the exact covariance matrix of β̂
D

if the

variance of the error term, σ2, is known. With an additional assumption of normality of

εi, β̂
D

has an exact normal distribution.

Remark 6. Algorithm 1 is naturally suited for distributed storage and processing facilities

for parallel computing. One can simultaneously process each covariate and find the indexes
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of its extreme values. These indexes can then be combined to obtain the subdata. While

this approach may result in a subdata size that is smaller than k if there is duplication of

indexes, the resultant estimator will still have the same convergence rate.

Remark 7. Algorithm 1 selects subdata according to extreme values of each covariate,

which may include outliers. However, the selection rule is ancillary, and the resultant

subdata follow the same underlying regression model as the full data. We can thus use

outlier diagnostic methods to identify outliers in the subdata. If there are outliers in the

full data, it is very likely that these data points will be identified as outliers in the subdata.

On the other hand, if there are data points that are far from others but still follow the

underlying model, then these data points actually contain more information about the

model and should be used for parameter estimation.

Remark 8. The restriction that the subdata sample size k is chosen to make r = k/(2p)

an integer is mostly for convenience. In the case that r = k/(2p) is not an integer, one can

either adjust k by using the floor brc or the ceiling dre, or use a combination of brc and

dre to keep the subdata sample size as k.

The following theorem gives some insight on the quality of using Algorithm 1 to ap-

proximate the upper bound of |M(δ)| in Theorem 2.

Theorem 3. Let Z∗D be the covariate matrix for the subdata of size k = 2pr selected using

Algorithm 1 and X∗D = (1,Z∗D). The determinant |(X∗D)TX∗D| satisfies

|(X∗D)TX∗D|
kp+1

4p

∏p
j=1(z(n)j − z(1)j)2

≥ λpmin(R)

pp

p∏
j=1

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

, (18)

where λmin(R) is the smallest eigenvalue of R, the sample correlation matrix of Z∗D.

From this theorem, it is seen that although Algorithm 1 may not achieve the unachiev-

able upper bound in Theorem 2, it may achieve the same order. For example, if p is fixed

and lim inf
n→∞

λmin(R) > 0, then under reasonable assumptions, the lower bound in Equa-

tion (18) will not converge to 0 as n → ∞. This means that |(X∗D)TX∗D| is of the same

order as the upper bound for |M(δ)| in Theorem 2, even though the latter is typically not

attainable.
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4 Properties of parameter estimator

In this section, we investigate the theoretical properties of the D-optimality motivated

IBOSS algorithm, and provide both finite sample assessment and asymptotic results. These

results are provided to evaluate the performance of the proposed method and show more

insights about the IBOSS approach. The application of the D-optimality motivated IBOSS

algorithm does not depend on asymptotic properties of the approach.

Since β̂
D

is unbiased for β, we focus on its variance. The next theorem gives bounds

on variances of estimators of the intercept and slope parameters from the D-optimality

motivated algorithm.

Theorem 4. If λmin(R) > 0, then, the following results hold for the estimator, β̂
D

, obtained

from Algorithm 1:

V(β̂D
0 |Z) ≥ σ2

k
, (19)

4σ2

kλmax(R)(z(n)j − z(1)j)2
≤V(β̂D

j |Z) ≤ 4pσ2

kλmin(R)(z(n−r+1)j − z(r)j)2
, j = 1, ..., p. (20)

Theorem 4 describes finite sample properties of the proposed estimator and does not

require any quantity to go to ∞. It shows that the variance of the intercept estimator is

bounded from below by a term proportional to the inverse subdata size. This is similar

to the results for existing subsampling methods. However, for the slope estimator, the

variance is bounded from above by a term that is proportional to p
k(z(n−r+1)j−z(r)j)2

, which

may converge to 0 as n increases even when the subdata size k is fixed. We present this

asymptotic result in the following theorem.

Theorem 5. Assume that covariate distributions are in the domain of attraction of the

generalized extreme value distribution, and lim inf
n→∞

λmin(R) > 0. For large enough n, the

following results hold for the estimator, β̂
D

, obtained from Algorithm 1:

V(β̂D
j |Z) = OP

{
p

k(z(n−r+1)j − z(r)j)2

}
, j = 1, ..., p. (21)

Furthermore,

V(β̂D
j |Z) �P

p

k(z(n)j − z(1)j)2
, j = 1, ..., p, (22)
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if one of the following conditions holds: 1) r is fixed; 2) the support of Fj is bounded,

r →∞, and r/n→ 0, where Fj is the marginal distribution function of the jth component

of z; 3) the upper endpoint for the support of Fj is∞ and the lower endpoint for the support

of Fj is finite, and r →∞ slow enough such that

r

n[1− Fj{(1− ε)F−1
j (1− n−1)}]

→ 0, (23)

for all ε > 0; 4) the upper endpoint for the support of Fj is finite and the lower endpoint

for the support of Fj is −∞, and r →∞ slow enough such that

r

nFj{(1− ε)F−1
j (n−1)}

→ 0, (24)

for all ε > 0; 5) the upper endpoint and the lower endpoint for the support of Fj are ∞ and

−∞, respectively, and (23) and (24) hold.

Equation (21) gives a general result on the variance of a slope estimator. It holds for any

values of n, r and p, so that it can also be used to obtain asymptotic results when one or

more of n, r and p go to infinity. The expression shows that if p/(z(n−r+1)j − z(r)j)
2 = oP (1),

then the convergence of the variance would be faster than 1/k, the typical convergence rate

for a subsampling method (Ma et al., 2015; Wang et al., 2017). Note that the results are

derived from the upper bound in (20), and thus the real convergence of the variance can

be faster than p
k(z(n−r+1)j−z(r)j)2

.

For the condition in (23), it can be satisfied by many commonly seen distributions, such

as exponential distribution, double exponential distribution, lognormal distribution, normal

distribution, and gamma distribution (Hall, 1979). For different distributions, the required

rate at which r →∞ is different. For example, if Fj is a normal distribution function, then

(23) holds if and only if log r/ log log n → 0; if Fj is an exponential distribution function,

then (23) holds if and only if log r/ log n → 0. The condition in (24) is the same as that

in (23) if one take z = −z.

For the result in (22), it can be shown from the proof that

V(β̂D
j |Z) �P

p

k
{
F−1
j (1− n−1)− F−1

j (n−1)
}2 , j = 1, ..., p.

What we find more interesting is the fact that, when k is fixed, from Theorems 2.8.1

and 2.8.2 in Galambos (1987), z(n−r+1)j − z(r)j goes to infinity with the same rate as that

13



of z(n)j − z(1)j. Thus the order of the variance of a slope estimator is the inverse of the

squared full data sample range for the corresponding covariate. If the sample range goes to

∞ as n→∞, then the variance converges to 0 even when the subdata size k is fixed. This

suggests that subdata may preserve information at a scale related to the full data size. We

will return to this for specific cases with more details. In the remainder of this section, we

focus on the case that both p and k are fixed.

That the variance V(β̂D
0 |Z) does not go to 0 for a fixed subdata size k is not a concern

if inference for the slope parameters is of primary interest, as is often the case. However,

if the focus is on building a predictive model, the intercept needs to be estimated more

precisely. This can be done by using the full data means, ȳ and z̄, say. After obtaining the

slope estimator β̂
D

1 , compute the following adjusted estimator of the intercept

β̂Da0 = ȳ − z̄Tβ̂
D

1 . (25)

The estimator β̂Da0 has a convergence rate similar to that of the slope parameter estimators,

because β̂Da0 − β0 = (β̂full
0 − β0) + z̄T(β̂

full

1 − β1) − z̄T(β̂
D

1 − β1) and the last term is the

dominating term if E(z) 6= 0. The rate may be faster than that of the slope parameter

estimators if E(z) = 0. The additional computing time for this approach is O(np), but

the estimation efficiency for β0 will be substantially improved. We will demonstrate this

numerically in Section 5.

Whereas Theorem 5 provides a general result for the variance of individual parameter

estimators, more can be said for special cases. The next theorem studies the structure of

the covariance matrix for estimators based on Algorithm 1 under various assumptions.

Theorem 6. Let µ = (µ1, ..., µp)
T and let Σ = ΦρΦ be a full rank covariance matrix,

where Φ = diag(σ1, ..., σp) is a diagonal matrix of standard deviations and ρ is a correlation

matrix. Assume that zi’s, i = 1, ..., n, are i.i.d. with a distribution specified below. The

following results hold for β̂
D

, the estimator from Algorithm 1.

(i) For multivariate normal covariates, i.e., zi ∼ N(µ,Σ),

V(Anβ̂
D
|Z) =

σ2

2k

2 0

0 p(Φρ2Φ)−1

+OP

(
1√

log n

)
, (26)
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where An = diag
(
1,
√

log n, ...,
√

log n
)
.

(ii) For multivariate lognormal covariates, i.e., zi ∼ LN(µ,Σ),

V(Anβ̂
D
|Z) =

2σ2

k

 1 −uT

−u pΛ + uuT,

+ oP (1) (27)

where An = diag
{

1, exp
(
σ1

√
2 log n

)
, ..., exp

(
σp
√

2 log n
)}

, u = (e−µ1 , ..., e−µp)T and Λ =

diag(e−2µ1 , ..., e−2µp).

For the distributions in Theorem 6, V(β̂D
0 |Z) is proportional to 1/k and never converges

to 0 with a fixed k. Based on Theorem 6, V(β̂
D

1 |Z) converges to 0 at different rates for dif-

ferent distributions. When z has a normal distribution, the convergence rate of components

of V(β̂
D

1 |Z) is 1/ log n. When z has a lognormal distribution, the component Vj1j2(β̂
D

1 |Z)

has a convergence rate exp
{
− (σj1 + σj2)

√
2 log n

}
, j1, j2 = 1, ..., p. In comparison, for

most popular subsampling-based methods, from the results in Section 2.1, for the normal

and lognormal distributions, variances of the slope parameter estimators never converge to

0 because they are bounded from below by terms that are proportional to 1/k.

For a subsampling-based method, if the covariate distribution is sufficiently heavy-

tailed, then some components of the lower bound in Theorem 1 can go to 0. However, even

then the convergence rate is much slower than that for the IBOSS approach, which may

then produce an estimator with a convergence rate close to that of the full data estimator.

For example, Table 1 summarizes the orders of variances for parameter estimators when

the only covariate z in a simple linear regression model has a t distribution with degrees of

freedom ν. Three approaches are compared: the D-optimality motivated IBOSS approach

(D-OPT), the UNI approach and the full data approach (FULL).

For β0, neither subdata approach produces a variance that goes to 0. For β1, the D-

OPT IBOSS approach results in a variance that goes to 0 at a rate of n−2/ν . When ν ≤ 2,

the variance of the estimator based on the full data goes to 0 at a rate that is slower than

n−(2/ν+α) for any α > 0, so that the D-OPT IBOSS approach reaches a rate that is very

close to that of the full data. For the UNI approach, the lower bound of the variance goes to

0 at a much slower rate. Note that the convergence to 0 does not contradict the conclusion

in (14), which assumes that the xi are i.i.d. with finite second moment.
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Table 1: Orders of variances and orders of lower bounds of variances when the covariate

has a tν distribution. The orders are in probability.

Methods Covariates are tν

β0 β1

ν > 2 ν ≤ 2

D-OPT 1/k 1/(kn2/ν) 1/(kn2/ν)

UNI 1/k 1/k slower than 1/{kn(2/ν−1+α)} for any α > 0

FULL 1/n 1/n slower than 1/{kn(2/ν+α)} for any α > 0

5 Numerical experiments

Using simulated and real data, we will now evaluate the performance of the IBOSS method.

5.1 Simulation studies

Data are generated from the linear model (1) with the true value of β being a 51 dimen-

sional vector of unity and σ2 = 9. An intercept is included so p = 50. Let Σ be a covariance

matrix with Σij = 0.5I(i 6=j), for i, j = 1, ..., 50, where I() is the indicator function. Covari-

ates zi’s are generated according to the following scenarios.

Case 1. zi’s have a multivariate normal distribution, i.e., zi ∼ N(0,Σ).

Case 2. zi’s have a multivariate lognormal distribution, i.e., zi ∼ LN(0,Σ).

Case 3. zi’s have a multivariate t distribution with degrees of freedom ν = 2, i.e., zi ∼

t2(0,Σ).

Case 4. zi’s have a mixture distribution of four different distributions, N(1,Σ), t2(1,Σ),

t3(1,Σ), U[0,2] and LN(0,Σ) with equal proportions, where U[0,2] means its

components are independent uniform distributions between 0 and 2.

Case 5. zi’s consist of multivariate normal random variables with interactions and quadratic

terms. To be specific, denote v = (v1, ..., v20)T ∼ N(0,Σ20×20), where Σ20×20 is the

20 by 20 upper diagonal sub-matrix of Σ. Let z = (vT, v1v
T, v2v11, v2v12, ..., v2v20)T

and zi’s are generated from the distribution of z.
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The simulation is repeated S = 1000 times and empirical mean squared errors (MSE)

are calculated using MSEβ0 = S−1
∑S

s=1(β̂
(s)
0 −β0)2 and MSEβ1

= S−1
∑S

s=1 ‖β̂
(s)

1 −β1‖2 for

intercept and slope estimators from different approaches, where β̂
(s)
0 , and β̂

(s)

1 are estimates

in the sth repetition. We compare four different approaches: D-OPT, the D-optimality

motivated IBOSS algorithm described in Algorithm 1 (black solid line ◦ ), UNI (green

short dotted line + ), LEV (blue dashed line × ), and FULL, the full data approach

(aqua long dashed line � ). To get the best performance of the LEV method in pa-

rameter estimation, exact statistical leverage scores are used to calculate the subsampling

probabilities. Note that for linear regression, the divide-and-conquer method produces re-

sults that are identical to these from the FULL (Lin and Xie, 2011; Schifano et al., 2016),

while the computational cost is not lower than the FULL. Thus the comparisons between

the IBOSS approach and the full data approach reflect the relative performance of the

IBOSS and the divide-and-conquer method in the context of linear regression.

For full data sizes n = 5×103, 104, 105 and 106 and fixed subdata size k = 103, Figures 1

and 2 present plots of the log10 of the MSEs against log10(n). Figure 1 gives the log10 of

the MSEs for estimating the slope parameter β1 using different methods. As seen in the

plots, the D-OPT IBOSS method uniformly dominates the subsampling-based methods

UNI and LEV, and its advantage is more significant if the tail of the covariate distribution

is heavier. More importantly, the MSEs from the D-OPT IBOSS method for estimating

β1 decrease as the full data sample size n increases, even though the subdata size is fixed

at k = 103. For the normal covariate distribution in Figure 1(a), the decrease in the MSE

for the D-OPT IBOSS estimator is not as evident because, as shown in Theorem 6, the

convergence rate of variances for this case is as slow as p/k/ log n. To show the relative

performance of the D-OPT IBOSS approach compared to that of the subsampling-based

approaches, in the right panel of Figure 1(a), we scale all the MSEs so that the MSEs for

the UNI method are one. From this figure, the MSEs for the D-OPT IBOSS approach are

about 80% of those for the subsampling-based approaches.

Unlike the IBOSS method, the random subsampling-based methods yield MSEs that

show very little change with increasing n except for the t2 and mixture covariate distri-

butions. This agrees with the conclusion in Theorem 1 that the covariance matrix for a

17



random subsampling-based estimator is bounded from below by a matrix that depends

only on the subdata size k if the fourth moment of the covariate distribution is finite. For

the t2 and mixture covariate distributions, the second moments of the covariate distribu-

tions are not finite and we see that the MSEs decrease as n becomes larger. However, the

convergence rates are much slower than for the IBOSS method.

For the full data approach, where all data points are used, the MSEs decrease as the

size n increases. It is noteworthy that the performance of the D-OPT IBOSS method can

be comparable to that of using the full data for estimating β1. For example, as shown in

Figure 1 (d) for the mixture of distributions, an analysis using the D-OPT IBOSS method

with subdata size k = 103 from full data of size n = 106 outperforms a full data analysis

with data of size n = 105; the MSE from the full data analysis is 2.4 times as large as the

MSE from using subdata of size k = 103.

Figure 2 gives results for estimating the intercept parameter β0. In general, the D-

OPT IBOSS method is superior to other subdata based methods, but its MSE does not

decrease as the full data size increases. This agrees with the result in Theorem 4. We also

calculate the MSE of the adjusted estimator in (25), β̂Da0 = ȳ− z̄Tβ̂
D

1 , which is labeled with

D-OPTa (red dashed line ◦ ) in Figure 2. It is seen that the relative performances of

β̂Da0 for Cases 2, 4 and 5 are similar to those of the slope estimator, which agrees with the

asymptotic properties discussed below (25) in Section 4. For Cases 1 and 3, the results are

very interesting in that β̂Da0 performs as good as the full data approach, which means that

the convergence rate of β̂Da0 is much faster than that of the slope estimator. This seems

surprising, but it agrees with the asymptotic properties discussed below (25) in Section 4.

For these two cases, E(z) = 0 and this is the reason why the convergence rate can be faster

than that of the slope parameter estimators.

To see the effect of the subdata size k for estimating the slope parameter β1, Figure 3

presents plots of the log10 of the MSEs against the subdata size k, with choices k = 200,

400, 500, 103, 2 × 103, 3 × 103 and 5 × 103, for fixed full data size n = 106. The MSE for

using the full data is a constant with respect to k and is plotted for comparison. Clearly, all

subdata-based methods improve as the subdata size k increases, with the D-OPT IBOSS

method again being the best performer. For example, when n = 106 for the mixture
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covariate distribution, the analysis based on the D-OPT IBOSS method with k = 200 is

about 10 times as accurate as that of the LEV method with k = 5 × 103 as measured by

the MSE value.

To evaluate the performance of the D-OPT IBOSS approach for statistical inference,

we calculate the empirical coverage probabilities and average lengths of the 95% confidence

intervals from this method. Results for the full data analysis are also computed for com-

parison. Figure 4 gives results for the normal and mixture covariate distributions. The

estimated parameter is the first slope parameter β1. Confidence intervals are constructed

using β̂
(s)
1 ±Z0.975SE

(s)
1 , where β̂

(s)
1 and SE

(s)
1 are the estimate and its standard error of β1

in the sth repetition, and Z0.975 is the 97.5th percentile of the standard normal distribution.

It is seen that all empirical coverage levels are close to the nominal level of 0.95, which

shows that the inference based on IBOSS subdata is valid. We do not compare this to

subsampling-based approaches because we are not aware of theoretically justified methods

for constructing confidence intervals under these approaches.

Results on computational efficiency of the D-OPT IBOSS approach are presented in

Table 2, which shows CPU times (in seconds) for different combinations of the full data

size n and the number of covariates p for a fixed subdata size of k = 103 and normal

distribution for the zi’s. The R programming language (R Core Team, 2015) is used to

implement each method. For the IBOSS approach, it requires a partition-based partial

sort algorithm which is not available in R, so the standard C++ function “nth element”

(Stroustrup, 1986), is called from R for partial sorting. In order to get good performance

in terms of CPU times for the LEV method, the leverage scores are approximated using

the fast algorithm in Drineas et al. (2012). The CPU times for using the full data are also

presented for comparison. All computations are carried out on a desktop running Windows

10 with an Intel I7 processor and 16GB memory.

It is seen from Table 2 that the D-OPT IBOSS method compares favorably to the LEV

method, both being more efficient than the full data method. Results for other cases are

similar and thus are omitted.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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(c) Case 3: zi’s are t2.
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(d) Case 4: zi’s are a mixture.
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(e) Case 5: zi’s include interaction terms.

Figure 1: MSEs for estimating the slope parameter for five different distributions for the

covariates zi. The subdata size k is fixed at k = 1000 and the full data size n changes.

Logarithm with base 10 is taken of n and MSEs for better presentation of the figures except

for the right panel of (a) in which MSEs are scaled so that MSEs for the UNI method are

1.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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(c) Case 3: zi’s are t2.
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(d) Case 4: zi’s are a mixture.
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(e) Case 5: zi’s include interaction terms.

Figure 2: MSEs for estimating the intercept parameter for five different distributions for

the covariates zi. The subdata size k is fixed at k = 1000 and the full data size n changes.

Logarithm with base 10 is taken of n and MSEs for better presentation of the figures except

for the right panel of (a) in which MSEs are scaled so that MSEs for the UNI method are

1.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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Figure 3: MSEs for estimating the slope parameter for five different distributions for the

covariates zi. The full data size is fixed at n = 106 and the subdata size k changes.

Logarithm with base 10 is taken of MSEs for better presentation of the figures except for

the right panel of (a) in which MSEs are scaled so that MSEs for the UNI method are 1.
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(a) Case 1: zi’s are normal.
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(b) Case 4: zi’s are a mixture.

Figure 4: Empirical coverage probabilities and average lengths of 95% confidence intervals

from the D-OPT IBOSS method and the full data method. The gray horizontal dashed

line in the left panel is the intended coverage probability 0.95. The subdata size is fixed at

k = 103.

Table 2: CPU times for different combinations of n and p with a fixed k = 103.

(a) CPU times for different n with p = 500

n D-OPT UNI LEV FULL

5× 103 1.19 0.33 0.88 1.44

5× 104 1.36 0.29 2.20 13.39

5× 105 8.89 0.31 21.23 132.04

(b) CPU times for different p with n = 5× 105

p D-OPT UNI LEV FULL

10 0.19 0.00 1.94 0.21

100 1.74 0.02 4.66 6.55

500 9.30 0.31 21.94 132.47
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5.2 Real data

In this section, we evaluate the performance of the proposed IBOSS approach on two real

data examples.

5.2.1 Example 1: food intakes data

The first example is a data set obtained from the Continuing Survey of Food Intakes by

Individuals (CSFII) that was published by the Human Nutrition Research Center, U.S.

Department of Agriculture, Beltsville, Maryland (CSFII Reports No. 85-4 and No. 86-

3). Part of the data set has been used in (Thompson et al., 1992). It contains dietary

intake and related information for n = 1, 827 individuals, such as the intakes of calorie, fat,

protein, and carbohydrate, as well as body mass index, age, etc. The size of this data set

is not too big, and we can compare the IBOSS method to the full analysis. With this size

of the data, we are also able to plot the full data in order to compare its pattern with that

of the subdata selected by the IBOSS method. Interest is in examining the effects of the

average intake levels of fat (z1), protein (z2), carbohydrate (carb, z3), as well as body mass

index (BMI, z4) and age (z5) on calorie intake, y. Thus p = 5. We fit the model

y = β0 + β1z1 + β2z2 + β3z3 + β4z4 + β5z5 + ε,

using both the D-OPT IBOSS method with k = 10p = 50 and the full data. Results are

summarized in Table 3. The D-OPT IBOSS estimates for the slope parameters are not

very different from those from the full data, and the signs of the estimates from the IBOSS

method and from the full data are consistent. The standard errors for the IBOSS method,

while larger than for the full data, are reasonably good in view of the small subdata size.

The estimates for the intercept parameter show a larger difference, and the standard error

for the IBOSS method is large. This agrees with the theoretical result that the intercept

cannot be estimated precisely without a large subdata size. The D-OPT IBOSS method

identifies the significant effects of fat, protein and carbohydrate intake levels on calorie

intake. Based on the full data, the effect of BMI is near the boundary of significance at

the 5% level, and is not identified as significant by the D-OPT IBOSS method.

Figure 5 gives scatter plots of calorie intake against each covariate for the full data of

n = 1, 827 with the D-OPT subdata of k = 50 marked. It is seen that the relationship
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Table 3: Estimation results for the CSFII data. For the D-OPT IBOSS method, the

subdata size is k = 10p = 50.

Parameter D-OPT FULL

Estimate Std. Error Estimate Std. Error

Intercept 33.545 46.833 45.489 11.883

Age -0.496 1.015 -0.200 0.234

BMI -0.153 0.343 -0.521 0.224

Fat 8.459 0.405 9.302 0.115

Protein 5.080 0.386 4.254 0.127

Carb 3.761 0.106 3.710 0.035
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Figure 5: Scatter plots of calorie intake against each covariate for the full CSFII data (grey

dots). The D-OPT subdata is labeled by ◦.

between the response and each covariate is similar for the subdata and the full data,

especially for covariates fat, protein and carbohydrate. Also, there do not seem to be any

extreme outliers in this data set.

To compare the IBOSS performance to that of the subsampling approaches, we com-

pute the MSE for the vector of slope parameters for each method by using one thousand

bootstrap samples. Each bootstrap sample is a random sample of size n from the full data

using uniform sampling with replacement. For a bootstrap sample, we implement each

subdata method to obtain the subdata estimate or implement the full data approach to

obtain the full data estimate. The bootstrap MSEs are the empirical MSEs corresponding
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Figure 6: MSEs for estimating slope parameters for the CSFII data. They are computed

from 1000 bootstrap samples.

to the 1,000 estimates. We do this for k = 4p, 6p, 10p and 20p. Figure 6 shows that

the D-OPT IBOSS method dominates random subsampling-based methods. The full data

approach is shown for comparison.

5.2.2 Example 2: chemical sensors data

In this example, we consider chemical sensors data collected to develop and test strategies

to solve a wide variety of tasks, e.g., to develop algorithms for continuously monitoring

or improving response time of sensory systems (Fonollosa et al., 2015). The data were

collected at the ChemoSignals Laboratory in the BioCircuits Institute, University of Cal-

ifornia San Diego. It contains the readings of 16 chemical sensors exposed to the mixture

of Ethylene and CO at varying concentrations in air. Each measurement was constructed

by the continuous acquisition of the sixteen-sensor array signals for a duration of about 12

hours without interruption. The concentration transitions were set at random times and

to random concentration levels. Further information about the data set can be found in

Fonollosa et al. (2015).

For illustration, we use the reading from the last sensor as the response and readings

from other sensors as covariates. Since trace concentrations often have a lognormal distri-
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Figure 7: Scatter plots of a size 10, 000 simple random sample of the chemical sensors data

(grey dots). The D-OPT subdata of size k = 280 is plotted as ◦.

bution (Goodson, 2011), we take a log-transformation of the sensors readings. Readings

from the second sensor are not used in the analysis because about 20% of the values are

negative for reasons unknown to us. Thus, there are p = 14 covariates in this example. In

addition, we exclude the first 20,000 data points corresponding to less than 4 minutes of

system run-in time. Thus, the full data used contain n = 4, 188, 261 data points.

Figure 7 gives scatter plots of the response variable against each covariate for a simple

random sample of size 10, 000, with D-OPT subdata of k = 280 overlaid. Due to the size

of the data, we cannot plot the full data in Figure 7. However, a simple random sample

with a large sample size should be able to represent the overall pattern of the full data.

It is seen that a linear model seems appropriate for the log-transformed readings and the

relationship between the response and each covariate is similar for the subdata and the full

data.

We also use bootstrap to calculate the MSEs of different estimators for estimating the

slope parameters. As for the first example, we considered k = 4p, 6p, 10p and 20p as
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Figure 8: MSEs from 100 bootstrap samples for estimating slope parameters for the chem-

ical sensors data.

subdata size for each method. Results computed from 100 bootstrap samples are plotted

in Figure 8. The performance of the D-OPT IBOSS method lies between the full data

approach and the subsampling based methods.

6 Concluding remarks

In this paper, we have developed a subdata selection method, IBOSS, in the context of

big data linear regression problems. Using the framework for the IBOSS method, we have

analyzed existing subsampling-based methods and derived a lower bound for covariance

matrices of the resultant estimators. For the IBOSS method, we focused on D-optimality.

After a theoretical characterization of the IBOSS subdata under D-optimality, we developed

a computationally efficient algorithm to approximate the optimal subdata. Theoretical

properties of the D-OPT IBOSS method have been examined in detail through asymptotic

analysis, and its performance has been demonstrated by using simulated and real data.

There are important and unsolved questions that require future study. For example,

while we only considered the D-optimality criterion, there are other optimality criteria

with meaningful statistical interpretations and different inferential purposes. This includes

28



A-optimality, which seeks to minimize the average variance of estimators of regression

coefficients, and c-optimality, which minimizes the variance of the best estimator of a pre-

specified function of the model parameters. These optimality criteria may also be useful

to develop efficient IBOSS methods.

Identifying informative subdata is important for extracting useful information from big

data and more research is needed. We hope that this work will stimulate additional research

in the direction suggested in this paper.

A Appendix

A.1 Proof of Theorem 1

We will use the following convexity result (cf. Nordström, 2011) in the proof of Theorem 1.

Lemma 1. For any positive definite matrices B1 and B2 of the same dimension,

{αB1 + (1− α)B2}−1 ≤ αB−1
1 + (1− α)B−1

2 (28)

in the Loewner ordering, where 0 ≤ α ≤ 1.

Proof of Theorem 1. The unbiasedness can be verified by direct calculation,

E{β̃L|Z, I∆(ηL) = 1} = EηL
[Ey{β̃L|Z, I∆(ηL) = 1}] = EηL

(β) = β.

Let W = diag(w1ηL1, ..., wnηLn). The variance-covariance matrix of the sampling-based

estimators can be written as

V{β̃L|Z, I∆(ηL) = 1} =EηL
[Vy{β̃L|Z, I∆(ηL) = 1}] + VηL

[Ey{β̃L|Z, I∆(ηL) = 1}]

=σ2EηL

{(
XTWX

)−1 (
XTW2X

) (
XTWX

)−1
}

+ VηL
(β)

=σ2EηL

[{(
XTWX

) (
XTW2X

)−1 (
XTWX

)}−1
]

≥σ2
[
EηL

{(
XTWX

) (
XTW2X

)−1 (
XTWX

)}]−1

. (29)

The last inequality is due to Lemma 1. Notice that WX
(
XTW2X

)−1
XTW = pr(WX),
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the orthogonal projection matrix onto the column space of WX. Define

BWX =


w1ηL1x

T
1

. . .

wnηLnx
T
n

 .
Notice that the column-space of WX = (w1ηL1x1, ..., wnηLnxn)T is contained in the column-

space of BWX . Hence we have pr(WX) ≤ pr(BWX) in the Loewner ordering, i.e.,

WX
(
XTW2X

)−1
XTW ≤


xT

1

(
x1x

T
1

)−
x1I(ηL1 > 0)

. . .

xT
n

(
xnx

T
n

)−
xnI(ηLn > 0)

 .
where I() is the indicator function. From this result, it can be shown that

XTWX
(
XTW2X

)−1
XTWX ≤

n∑
i=1

xix
T
i I(ηLi > 0). (30)

For sampling with replacement,

P (ηLi > 0|Z) = 1− (1− πi)k = πi

k∑
i=1

(1− πi)i−1 ≤ kπi.

For sampling without replacement,

P (ηLi > 0|Z) = P (ηLi = 1|Z) = kπi.

Thus, in either case, P (ηLi > 0|Z) ≤ kπi. Therefore,

P{ηLi > 0|Z, I∆(ηL) = 1} =
P{ηLi > 0, I∆(ηL) = 1|Z}

P{I∆(ηL) = 1|Z}
≤ P (ηLi > 0|Z)

P{I∆(ηL) = 1|Z}
≤ kπi
P{I∆(ηL) = 1|Z}

.

(31)

Combining (29), (30) and (31), we have

V{β̃L|Z, I∆(ηL) = 1} ≥ σ2

[
EηL

{
n∑
i=1

xix
T
i I(ηLi > 0)

}]−1

= σ2

[
n∑
i=1

xix
T
i P{ηLi > 0|Z, I∆(ηL) = 1}

]−1

≥ σ2P{I∆(ηL) = 1|Z}
k

{
n∑
i=1

πixix
T
i

}−1

.
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A.2 Proof of Theorem 2

Proof. Let z̆ij = {2zij − (z(n)j + z(1)j)}/(z(n)j − z(1)j). Then we have,

n∑
i=1

δixix
T
i = kB−1

3 M̆(δ)(BT
3 )−1, (32)

where

M̆(δ) =


1 k−1

∑n
i=1 δiz̆i1 . . . k−1

∑n
i=1 δiz̆id

k−1
∑n

i=1 δiz̆i1 k−1
∑n

i=1 δiz̆
2
i1 . . . k−1

∑n
i=1 δiz̆i1z̆ip

...
...

. . .
...

k−1
∑n

i=1 δiz̆ip k−1
∑n

i=1 δiz̆i1z̆ip . . . k−1
∑n

i=1 δiz̆
2
ip

 ,

and

B3 =


1

− z(n)1+z(1)1
z(n)1−z(1)1

2
z(n)1−z(1)1

...
. . .

− z(n)p+z(1)p
z(n)p−z(1)p

2
z(n)p−z(1)p

 (33)

Note that z̆ij ∈ [−1, 1] for all i = 1, ..., n and j = 1, ..., p, which implies k−1
∑n

i=1 δiz̆
2
ij ≤ 1

for all 1 ≤ j ≤ p. Thus,

|M̆(δ)| =
p∏
j=0

λj ≤

(∑p
j=0 λj

p+ 1

)p+1

=

(
1 +

∑p
j=1 k

−1
∑n

i=1 δiz̆
2
ij

p+ 1

)p+1

≤ 1, (34)

where λj, j = 0, 1, ..., p are eigenvalues of M̆(δ). From (32), (33) and (34),∣∣∣∣∣
n∑
i=1

δixix
T
i

∣∣∣∣∣ = kp+1|B3|−2|M̆(δ)| ≤ kp+1

∣∣∣∣∣
p∏
j=1

2

z(n)j − z(1)j

∣∣∣∣∣
−2

=
kp+1

4p

p∏
j=1

(z(n)j − z(1)j)
2.

If the subdata consists of the 2p points (a1, . . . , ap)
T where aj = z(n)j or z(1)j, j = 1, 2, ..., p,

each occurring equally often, then the δopt corresponding to this subdata satisfies M̆(δ) = I.

This δopt attains equality in (34) and corresponds therefore to D-optimal subdata.

A.3 Proof of Theorem 3

Proof. As before, for i = 1, ..., n, j = 1, ..., p, let z(i)j be the ith order statistic for z1j, ..., znj.

For l 6= j, let z
(i)l
j be the concomitant of z(i)l for zj, i.e., if z(i)l = zsl then z

(i)l
j = zsj,
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i = 1, ..., n. For the subdata obtained from Algorithm 1, let z̄∗j and var(z∗j ) be the sample

mean and sample variance for covariate zj. From Algorithm 1, the values zj, j = 1, ..., p, in

the subdata consist of z(m)j, and z
(m)l
j , l = 1, ...j−1, j+1, ..., p, m = 1, ..., r, n−r+1, ..., n.

Note that the subdata may not contain exactly the r smallest and r largest values for each

covariate since some data points may be removed in processing each covariate. However,

since r is fixed when n goes to infinity, this will not affect the final result. Therefore, for

easy of presentation, we abuse the notation and write the range of values of m as 1, ..., r,

n− r + 1, ..., n. The information matrix based on the subdata can be written as

(X∗D)TX∗D = B−1
4

k 0T

0 (k − 1)R

 (BT
4 )−1, (35)

where

B4 =



1

− z̄∗1√
var(z∗1 )

1√
var(z∗1 )

...
. . .

− z̄∗p√
var(z∗p)

1√
var(z∗p)


. (36)

From (35) and (36),

|(X∗D)TX∗D| = k|(k − 1)R|
p∏
j=1

var(z∗j ) ≥ k(k − 1)pλpmin(R)

p∏
j=1

var(z∗j ). (37)

For each sample variance,

(k − 1)var(z∗j ) =
k∑
i=1

(
z∗ij − z̄∗j

)2

=

(
r∑
i=1

+
n∑

i=n−r+1

)(
z(i)j − z̄∗j

)2
+
∑
l 6=j

(
r∑
i=1

+
n∑

i=n−r+1

)(
z

(i)l
j − z̄∗j

)2

≥

(
r∑
i=1

+
n∑

i=n−r+1

)(
z(i)j − z̄∗∗j

)2

=
r∑
i=1

(
z(i)j − z̄∗lj

)2
+

n∑
i=n−r+1

(
z(i)j − z̄∗uj

)2
+
r

2

(
z̄∗uj − z̄∗lj

)2

≥r
2

(
z̄∗uj − z̄∗lj

)2
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≥r
2

(
z(n−r+1)j − z(r)j

)2
(38)

where z̄∗∗j =
(∑r

i=1 +
∑n

i=n−r+1

)
z(i)j/(2r), z̄

∗l
j =

∑r
i=1 z(i)j/r, and z̄∗uj =

∑n
i=n−r+1 z(i)j/r.

From (38),

var(z∗j ) ≥
r(z(n)j − z(1)j)

2

2(k − 1)

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

. (39)

Thus,

|(X∗D)TX∗D| ≥k(k − 1)pλpmin(R)

p∏
j=1

r(z(n)j − z(1)j)
2

2(k − 1)

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

=
rp

2p
kλpmin(R)

p∏
j=1

(z(n)j − z(1)j)
2 ×

p∏
j=1

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

.

This shows that

|(X∗D)TX∗D|
kp+1

4p

∏p
j=1(z(n)j − z(1)j)2

≥λ
p
min(R)

pp
×

p∏
j=1

(
z(n−r+1)j − z(r)j

z(n)j − z(1)j

)2

.

A.4 Proof of Theorem 4

Proof. From (35) and (36),

V(β̂
D
|Z) = σ2{(X∗D)TX∗D}−1 = σ2BT

4

 1
k

0T

0 1
k−1

R−1

B4.

Thus

V(β̂D
0 |Z) = σ2

(
1

k
+

1

k − 1
uTR−1u

)
, (40)

and

V(β̂D
j |Z) =

σ2

k − 1

(R−1)jj
var(z∗j )

, (41)

where u =
{
− z̄∗1/

√
var(z∗1), ...,−z̄∗p/

√
var(z∗p)

}T

and (R−1)jj is the jth diagonal element

of R−1.

From (40), V(β̂D
0 |Z) ≥ σ2/k because uTR−1u ≥ 0.
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Denote the spectral decomposition of R as R = VΛVT. Since Λ−1 ≤ λ−1
min(R)Ip,

R−1 = VΛ−1VT ≤ Vλ−1
min(R)IpV

T = λ−1
min(R)IT

p . Thus R−1
jj ≤ λ−1

min(R) for all j. From

this fact, and (41) and (39), we have

V(β̂D
j |Z) =

σ2

k − 1

(R−1)jj
var(z∗j )

≤ 4pσ2

kλmin(R)(z(n−r+1)j − z(r)j)2
. (42)

Similarly, we have

V(β̂D
j |Z) =

σ2

k − 1

(R−1)jj
var(z∗j )

≥ 4σ2

kλmax(R)(z(n)j − z(1)j)2
. (43)

Here we utilize the following inequality

var(z∗j ) ≤
1

k − 1

k∑
i=1

(
z∗ij −

z(n)j + z(1)j

2

)2

≤ k

4(k − 1)

(
z(n)j − z(1)j

)2
, (44)

where the last inequality is due to the fact |z∗ij −
z(n)j+z(1)j

2
| ≤ z(n)j−z(1)j

2
for all i = 1, . . . , k.

A.5 Proof of Theorem 5

Proof. For (21), it is a direct result from (20).

For (22), we consider the five cases in the following. For the first case that r is fixed,

from results in Theorems 2.8.1 and 2.8.2 in Galambos (1987), we have that

z(n−r+1)j − z(r)j

z(n)j − z(1)j

= OP (1) and
z(n)j − z(1)j

z(n−r+1)j − z(r)j

= OP (1). (45)

Combining (21) and (45), (22) follows.

For the second case when r →∞, r/n→ 0, and the support of Fj is bounded, (45) can

be easily verified.

For the third case when the upper endpoint for the support of Fj is ∞ and the lower

endpoint for the support of Fj is finite, and r → ∞ slow enough such that (23) holds, if

we can show that z(n−r+1)j/z(n)j = 1 + oP (1), then the result in (22) follows. Let bn,j =

F−1
j (1 − n−1). From Hall (1979), we only need to show that z(n−r+1)j/bn,j = 1 + oP (1) in

order to show that z(n−r+1)j/z(n)j = 1 + oP (1). For this, from the proof of Theorem 1 of

Hall (1979), it suffices to show that[
1− Fj(bn,j)

1− Fj{(1− ε)bn,j}

]−1/2 [
1− r{1− Fj(bn,j)}

1− Fj{(1− ε)bn,j}

]
→∞,
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which holds by directly applying the assumption in (23) and the fact that r →∞.

For the fourth case, it can be proved by using an approach similar to the one used for the

third case. It can also be proved by noting that z(r)j = −(−z)(n−r+1)j, z(1)j = −(−z)(n)j,

and the fact that the condition in (24) on z becomes the condition in (23) on −z.

For the fifth case, it can be proved by combining the results in the third case and the

fourth case.

A.6 Proof of Theorem 6

Let σj and ρj1j2 be the jth diagonal element of Φ and entry (j1, j2) of ρ, respectively, for

j, j1, j2 = 1, ..., p. As described in the proof of Theorem 3, from Algorithm 1, the values

zj, j = 1, ..., p, in the subdata consist of z(i)j, and z
(i)l
j , l = 1, ...j− 1, j+ 1, ..., p, i = 1, ..., r,

n− r + 1, ..., n, where z
(i)l
j are the concomitants for zj.

Let v = (Z∗D)T1 and Ω = (Z∗D)TZ∗D. Then

(X∗D)TX∗D =

k vT

v Ω

 . (46)

The jth diagonal element of Ω is

Ωjj =

(
r∑
i=1

+
n∑

i=n−r+1

)
z2

(i)j +
∑
l 6=j

(
r∑
i=1

+
n∑

i=n−r+1

)(
z

(i)l
j

)2

, (47)

while entry (j1, j2), j1 6= j2, is

Ωj1j2 =

(
r∑
i=1

+
n∑

i=n−r+1

)(
z(i)j1z

(i)j1
j2

+ z(i)j2z
(i)j2
j1

)
+
∑
l 6=j1j2

(
r∑
i=1

+
n∑

i=n−r+1

)
z

(i)l
j1
z

(i)l
j2
. (48)

The jth element of v is

vj =

(
r∑
i=1

+
n∑

i=n−r+1

)
z(i)j +

∑
l 6=j

(
r∑
i=1

+
n∑

i=n−r+1

)
z

(i)l
j . (49)

Now we consider the two specific distributions in Theorem 6 and prove the corresponding

results in (26) and (27).
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A.6.1 Proof of equation (26) in Theorem 6

Proof. When zi ∼ N(µ,Σ), using the results in Example 2.8.1 of Galambos (1987), we

obtain

z(i)j = µj − σj
√

2 log n+ oP (1), i = 1, ..., r,

z(i)j = µj + σj
√

2 log n+ oP (1), i = n− r + 1, ..., n.
(50)

Using an approach similar to Example 5.5.1 of Galambos (1987), we obtain

z
(i)l
j = µj − ρljσj

√
2 log n+OP (1), i = 1, ..., r,

z
(i)l
j = µj + ρljσj

√
2 log n+OP (1), i = n− r + 1, ..., n.

(51)

Using (50) and (51), from (47), (48) and (49), we obtain that

Ωjj =4r log nσ2
j

p∑
l=1

ρ2
lj +OP (

√
log n), (52)

Ωj1j2 =4r log nσj1σj2

p∑
l=1

ρlj1ρlj2 +OP (
√

log n) (53)

vj =OP (1), (54)

respectively. From (52), (53) and (54), we have

Ω = 4r log nΦρ2Φ +OP (
√

log n) and v = OP (1). (55)

The variance,

V(β̂
D
|X) = σ2

k vT

v Ω

−1

=
σ2

c

 1 −vTΩ−1

−Ω−1v cΩ−1 + Ω−1vvTΩ−1

 , (56)

where c = k− vTΩ−1v = k+OP (1/ log n) and the second equality is from (55). Note that

from (55) Ω−1 = OP (1/ log n), so

Ω−1 − (4r log nΦρ2Φ)−1 = Ω−1(4r log nΦρ2Φ−Ω)(4r log nΦρ2Φ)−1

= OP

(
1

log n

)
OP

(√
log n

)
O

(
1

log n

)
= OP

{
1

(log n)3/2

}
.

Thus

Ω−1 =
1

4r log n
(Φρ2Φ)−1 +OP

{
1

(log n)3/2

}
. (57)
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Combining (46), (56) and (57), and using that k = 2rp

V(β̂
D
|X) = σ2

 1
k

+OP

(
1

logn

)
OP

(
1

logn

)
OP

(
1

logn

)
1

4r logn
(Φρ2Φ)−1 +OP

{
1

(logn)3/2

}
 .

A.6.2 Proof of equation (27) in Theorem 6

Proof. When zi ∼ LN(µ,Σ). Let zij = exp (Uij) with Ui = (Ui1, ..., Uip)
T ∼ N(µ,Σ).

From (50),

z(i)j = exp(U(i)j) = exp(−σj
√

2 log n)OP (1) = oP (1), i = 1, ..., r,

z(i)j = exp(U(i)j) = exp(σj
√

2 log n){eµj + oP (1)}, i = n− r + 1, ..., n.
(58)

Without loss of generality, assume that ρlj ≥ 0, l, j = 1, ..., p. From (51),

z
(i)l
j = exp(U

(i)l
j ) = exp(−ρljσj

√
2 log n)OP (1) = oP (1), i = 1, ..., r,

z
(i)l
j = exp(U

(i)l
j ) = exp{σj

√
2 log n− (1− ρlj)σj

√
2 log n+ µj +OP (1)}

= exp(σj
√

2 log n)oP (1), i = n− r + 1, ..., n.

(59)

Using (58) and (59), from (47), (48) and (49), we obtain that

Ωjj =r exp(2σj
√

2 log n){e2µj + oP (1)}, (60)

Ωj1j2 =2r exp
{

(σj1 + σj2)
√

2 log n
}
oP (1), (61)

vj =r exp(σj
√

2 log n){eµj + oP (1)}. (62)

From (46), (60)-(62), for An = diag
{

1, exp
(
σ1

√
2 log n

)
, ..., exp

(
σp
√

2 log n
)}

,

A−1
n (X∗D)TX∗DA−1

n = A−1
n

k vT

v Ω

A−1
n =

 k rvT
1

rv1 rB5,

+ oP (1) (63)

where v1 = (eµ1 , ..., eµp)T and B5 = diag(e2µ1 , ..., e2µp). From (63),

V(Anβ̂
D
|X) = σ2An{(X∗D)TX∗D}−1An = σ2

 k rvT
1

rv1 rB5,

−1

+ oP (1)

=
2σ2

k

 1 −uT

−u pΛ + uuT,

+ oP (1).
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A.7 Proof of results in Table 1

When the covariate has a t distribution, from Theorem 4, for simple linear model, the

variance of the estimator of β1 using the D-OPT IBOSS approach is of the same order

as (z(n)1 − z(1)1)−2. From Theorems 2.1.2 and 2.9.2 of Galambos (1987), we obtain that

z(n)1 − z(1)1 �P n1/ν . Thus, the variance is of the order n−2/ν .

For the full data approach, the variance of the estimator of β1 is of the same order

as (
∑n

i=1 z
2
i1)−1. When z1 has a t distribution with degrees of freedom ν > 2, from Kol-

mogorov’s strong law of large numbers (SLLN),
∑n

i=1 z
2
i1 = O(n) almost surely. If ν ≤ 2,

E[{z2
i1}1/(2/ν+α)] <∞ for any α > 0. Thus, from Marcinkiewicz-Zygmund SLLN (Theorem

2 of Section 5.2 of Chow and Teicher, 2003),
∑n

i=1 z
2
ij = o(n2/ν+α) almost surely for any

α > 0. This shows that the order of (
∑n

i=1 z
2
i1)−1 is slower than n−(2/ν+α) for any α > 0.

For the UNI approach, the lower bound for the variance of the estimator of β1 is of the

same order as n(
∑n

i=1 z
2
i1)−1, which is of order O(1) when ν > 2 and is slower than n2/ν−1+α

for any α > 0 when ν ≤ 2.

For the intercept β0, the variance of the estimator is of the same order as the inverse of

the sample size used in each method.
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Supplementary Material

for “Information-Based Optimal Subdata Selection for Big Data

Linear Regression”

We present additional numerical results about the performance of the IBOSS method.

S.1 Predictive performance

In this section, we investigate the performance of IBOSS in predicting the mean response

for a given setting of covariates. We focus on the mean squared prediction error (MSPE),

MSPE = E[{E(ynew)− ŷnew}2] = E[{xT
new(β̂ − β)}2]. (S.1)

Note that the mean squared prediction error for predicting a future response is

E{(ynew − ŷnew)2} = E[{ynew − E(ynew)}2] + E[{E(ynew)− ŷnew}2] = σ2 + MSPE, (S.2)

and the variance of ynew, σ2, cannot be reduced by choosing a better subdata or a larger

subdata sample size k. Thus it is reasonable to focus on the MSPE in (S.1) to evaluate the

performance of IBOSS. For prediction, the estimation of β0 is also important, so we use

β̂Da0 = ȳ − z̄Tβ̂
D

1 as indicated in the paper.

We use the same five cases considered in the paper to generate full data sets. In

addition, we consider another case, Case 6, in which the covariates are from a multivariate

t distribution with degrees of freedom ν = 1. This is a case often used in evaluating the

performance of the LEV method.

Case 6. zi’s have a multivariate t distribution with degrees of freedom ν = 1, i.e., zi ∼

t1(0,Σ).

For each case, we implement different methods to obtain parameter estimates, and then

generate a new sample of size 5,000 to calculate the MSPEs. The simulation is repeated

1,000 times and empirical MSPEs are calculated. Figure S.1 presents plots of the log10 of

the MSPEs against log10(n). For prediction, the relative performance of IBOSS compared

1



with other methods are similar to that of parameter estimation. That is, the D-OPT

IBOSS method uniformly dominates the subsampling-based methods UNI and LEV, and its

advantage is more significant if the tail of the covariate distribution is heavier. Specifically

for Case 6, it is seen that the performance of D-OPT IBOSS is almost identical to that of

the full data approach, and LEV significantly outperforms the UNI.

S.2 Column permutation

In this section, we provide numerical results accessing the effect of column permutation on

the IBOSS method. To differentiate the effect of each column in the covariate matrix, we

change the covariance matrix Σ such that Σij = 0.5|i−j| if i 6= j, and Σij = 1 + 3(i− 1)/p

if i = j, i, j = 1, ..., 50. With this setup, the correlation structure for the covariates is

unexchangeable and variances for different columns are different. Using this covariance

matrix, we generate covariates zi’s according to Case 5 in Section 5.1 of the paper. The

IBOSS method is applied with the original order of covariate columns as well as with a

single random permutation of covariate columns. Results are presented in Figure S.2. It is

seen that the performances of IBOSS for the two approaches are very similar. This agrees

with the theoretical results.

S.3 Interaction model

In this section, we consider a case that the true model contains all the main effects and

all the pairwise interaction terms. However, only the main effects are used in selecting

subdata. Data are generated from the following linear model,

yi = β0 +
10∑
j=1

zijβj +
10∑

j1 6=j2

zij1zij2βj1j2 + εi, i = 1, ..., n, (S.3)

where the true value of regression coefficients are βj = βj1j2 = 1 for j, j1, j2 = 1, ..., 10, and

εi’s are i.i.d. N(0, 9). Two different distributions are considered to generate covariates zi’s:

one is a multivariate normal distribution zi ∼ N(0,Σ10×10) and the other is a multivariate

lognormal distribution zi ∼ LN(0,Σ10×10), where Σ10×10 is a 10 by 10 covariance matrix
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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(c) Case 3: zi’s are t2.
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(d) Case 4: zi’s are a mixture.

4.0 4.5 5.0 5.5 6.0

-3
.0

-2
.0

-1
.0

re
c.
p
lo
t[
1,

]

log10(n)

lo
g 1

0
(M

S
P
E
)

D-OPT
UNI
LEV
FULL

(e) Case 5: zi’s include interaction terms.

4.0 4.5 5.0 5.5 6.0

-4
-3

-2
-1

0
1

re
c.
p
lo
t[
1,

]

log10(n)

lo
g 1

0
(M

S
P
E
)

D-OPT
UNI
LEV
FULL

(f) Case 6: zi’s are t1.

Figure S.1: MSPEs for predicting mean responses for six different distributions of the

covariates zi. The subdata size k is fixed at k = 1000 and the full data size n changes.

Logarithm with base 10 is taken of n and MSPEs for better presentation of the figures.
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(a) Original order, slope parameter
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(b) Shuffled order, slope parameter
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(c) Original order, intercept parameter
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(d) Shuffled order, intercept parameter

Figure S.2: MSEs for estimating the slope parameter (top panel) and the intercept param-

eter (bottom panel) with different orders of the covariate columns. The left panel presents

results with the original order of covariate columns and the right panel presents results with

the randomly shuffled order of covariate columns. The subdata size k is fixed at k = 1000

and the full data size n changes. Logarithm with base 10 is taken of n and MSEs for better

presentation of the figures.
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with Σij = 0.5I(i 6=j), for i, j = 1, ..., 10. In selecting subdata, only the main effects are

used. The interaction terms are not used in subdata selection but are used in parameter

estimation.

Figure S.3 presents the MSEs for estimating the slope parameters, which are calculated

from 1000 iterations of the simulation. It is seen that IBOSS is still the most efficient

method among subdata-based methods for both of the distributions.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.

Figure S.3: MSEs for estimating the slope parameter for two different distributions of the

covariates zi. The subdata size k is fixed at k = 1000 and the full data size n changes.

Logarithm with base 10 is taken of n and MSEs for better presentation of the figures.

S.4 Nonlinear relationships

In this section, we consider the scenario that true relationships between the response and

the covariates are nonlinear, and transformations cannot linearize the relationships, i.e., a

finite-dimensional linear model cannot be correct. We consider the following two models

yi = β0 +

p−1∑
j=1

zijβj +
3ez

(t)
ip

1 + ez
(t)
ip

+ εi, i = 1, ..., n, (WM1)

yi = β0 +

p−1∑
j=1

zijβj + 30 log
(

1 + ez
(t)
ip

)
+ εi, i = 1, ..., n, (WM2)

where z
(t)
ip = zipI(zip ≤ 100) + 100I(zip > 100). Covariates and parameter setups are the

same as those of Case 4 for the mixture distribution. Although full data are generated
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from nonlinear model (WM1) or (WM2), the linear main effects model is used for subdata

selection and analysis.

Figure S.4 presents plots of the log10 of the MSEs of estimating the slope parameter and

the intercept parameter against log10(n), and plots of the log10 of the MSPEs of predicting

the mean response. It is seen that, including the full data approach, no method dominates

others and larger sample sizes do not necessarily mean more accurate results. When the

underlying model is incorrect, the problem is very complicated and there is no simple answer

to which method will produce satisfactory results. We present the numerical studies here

to show that IBOSS does not always produce the worst results for this scenario, but we

have no intention to state that the IBOSS works better than other methods.
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(b) Model (WM2), slope parameter
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(c) Model (WM1), intercept parameter
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(d) Model (WM2), intercept parameter
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(e) Model (WM1), prediction
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(f) Model (WM2), prediction

Figure S.4: MSEs for estimating the slope parameter (top row), MSEs for estimating the

intercept parameter (middle row), and MSPEs for predicting the mean response (bottom

row) when true models are nonlinear. The left column is for model (WM1) and the right

column is for model (WM2). The subdata size k is fixed at k = 1000 and the full data size

n changes. Logarithm with base 10 is taken of n and MSEs for better presentation of the

figures.
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S.5 Accuracy-cost tradeoff of the IBOSS method

In this section, we provide additional results showing the accuracy-cost tradeoff of the

IBOSS method. Full data of size n = 5× 106 are generated using the same setup of Case

1. The IBOSS method is implemented with subdata sample sizes of k = 102, 103, 104, 105

and 106, and the average CPU times and MSEs are calculated from 100 repetitions of the

simulation. Results are reported in Figure S.5. It is seen that as the required CPU time

increases, the MSE decreases, which indicates a clear tradeoff between computational cost

and estimation accuracy for the IBOSS method. However, as the CPU time increases,

the MSE can drop sharply. For example, when the CPU time increases from 6.4976 sec-

onds (corresponding to k = 102) to 7.0839 seconds, the MSE decreases from 13.57091 to

0.00786855. Thus the IBOSS has the advantage to significantly increase the estimation

accuracy with little increase in computational cost.
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Figure S.5: Average CPU times and MSEs for different subdata sample size k when the

covariates are from a multivariate normal distribution. The full data size is set to n = 5×106

with a dimension p = 50.
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We perform additional experiments to further investigate the accuracy-cost tradeoff

of the IBOSS for both large n and large p, and draw comparisons with the performance

of repeating the UNI method. Full data are generated with n = 5 × 105 and p = 500,

and subdata of sizes k = 103, 5 × 103, 104, 5 × 104, and 105 are taken using the IBOSS

method or the UNI method. For the UNI method, it is repeated multiple times so that

it consumes similar CPU times to the IBOSS method, and the average of the estimates

from all repetitions are used as the final estimate. Figure S.6 presents the results when

the covariates are from the multivariate normal distribution (Case 1) and the mixture

distribution (Case 4) described in Section 5 of the main paper. The average CPU times

and MSEs for the slope parameters are calculated from 100 repetitions of the simulation.

For Case 1 with multivariate normal covariates, the repeated UNI method may produce

smaller MSEs compared with the IBOSS method using similar CPU times. However, the

differences are not very significant compared with the advantage of the IBOSS method for

Case 4, in which the covariate distribution has a heaver tail.
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(a) Case 1: zi’s are normal.
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(b) Case 4: zi’s are a mixture.

Figure S.6: MSEs for different CPU times when the covariates are from a multivariate

normal distribution (a) and a mixture distribution (b). The full data size is set to n = 5×105

with dimension p = 500. Subdata sample size are k = 103, 5× 103, 104, 5× 104, and 105.
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S.6 Comparison with the divide-and-conquer method

In this section, we provide numerical results comparing the IBOSS method and the divide-

and-conquer (DC) method proposed in Section 4.3 of Battey et al. (2015). The DC method

divide the full data into S subdata sets (The notation k is used in Battey et al. (2015); we

use S here because k is used to denote the subdata size.), and the ordinary least squares

estimate, say β̂s, is calculated for each subdata. The DC estimate is the average of β̂s’s,

i.e., β̄ = S−1
∑S

s=1 β̂s. We choose S = bn1/4c. In our implementation, if n/S is not an

integer, the last subdata will have a sample size of n− bn/Sc ∗ (S − 1).

Figure S.7 gives the average CPU times and MSEs for the slope parameters with di-

mension p = 50 and different full data size n, with choices of 5 × 103, 104, 105, and 106.

The average CPU times and MSEs are calculated from 100 repetitions of the simulation. It

is seen that the relative performances of estimation efficiency between the IBOSS D-OPT

method and the DC method depend on the covariate distribution. The DC method is better

when covariates are normally distributed; the IBOSS D-OPT method and the DC method

perform similarly when the covariate has a mixture distribution; the IBOSS D-OPT domi-

nates the DC method when the covariate has a t1 distribution. In terms of computational

cost in Figure S.7 (d), the IBOSS D-OPT is more efficient than the DC method especially

for large values of n. Note that the CPU times for either the DC method or the IBOSS

D-OPT method do not depend on the covariate distribution.
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(a) Case 1: zi’s are normal.
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(b) Case 4: zi’s are a mixture.
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(c) Case 6: zi’s are t1.
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Figure S.7: MSEs and CPU times for estimating the slope parameter: (a)-(c) give results

for MSEs and (d) gives results for CPU times. The subdata size k is fixed at k = 1000 and

the full data size n changes with fix dimension p = 50. Logarithm with base 10 is taken of

n and MSEs for better presentation of the figures.

To further compare the IBOSS D-OPT method and the DC method with a larger p, we

increase the dimension to be p = 500. Figure S.8 gives the average CPU times and MSEs

for the slope parameters. Full data are generated with sample sizes n = 5 × 103, 104, 105,

and 5 × 105. Subdata sample size for the IBOSS method is k = 1000. It is seen that the

relative performances of estimation efficiency between the IBOSS D-OPT method and the

DC method depend on the covariate distribution are similar to those with p = 50. In terms

of computational cost in Figure S.8 (d), the advantage of the IBOSS D-OPT method is

more significant compared with the DC method.
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(a) Case 1: zi’s are normal.
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(b) Case 4: zi’s are a mixture.
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(c) Case 6: zi’s are t1.
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Figure S.8: MSEs and CPU times for estimating the slope parameter: (a)-(c) give results

for MSEs and (d) gives results for CPU times. The subdata size k is fixed at k = 1000 and

the full data size n changes with fixed dimension p = 500. Logarithm with base 10 is taken

of n and MSEs for better presentation of the figures.

S.7 Performance of IBOSS with regularization method

In this section, we provide numerical results to evaluate the performance of the IBOSS

method in application to regularization methods. We use the IBOSS method to select

subdata, and then feed it to the elastic net regularization(Zou and Hastie, 2005) method.

Full data with dimension p = 60 are generated for sample sizes n, with choices of 5 ×

103, 104, 105, and 106. The intercept is set to β0 = 1, while the slope parameter β1 has

a sparse structure with the first 10 element being 0.1 and the rest 50 element being 0.
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The elastic net method is implemented using the glmnet R package (Friedman et al.,

2010). Tuning parameters are selected using the cross validation method provided in the

R package.

We calculate the MSPEs based on 100 repetitions of the simulation. In each repetition,

we implement different methods to obtain a subdata set of k = 1000, apply the elastic net

to the subdata set to estimate a model, and then use the model to calculate the MSPEs

based on a new sample of size 5,000. Figure S.9 presents the results of the simulation. It

is seen that the relative performance of IBOSS compared with other methods are similar

to that of parameter estimation in the main paper. That is, the D-OPT IBOSS method

uniformly dominates the subsampling-based methods UNI and LEV, and its advantage is

more significant if the tail of the covariate distribution is heavier.

We also implement the ridge regression method. The results are similar so we omit

them.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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(c) Case 3: zi’s are t2.
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(d) Case 4: zi’s are a mixture.

Figure S.9: MSPEs for predicting mean responses using the elastic net method with the

subdata of size k = 1000 selected from the full data. Logarithm with base 10 is taken of

the full data sample size n and MSPEs for better presentation of the figures.

S.8 Unequal variance

In this section, we provide a simple numerical study to evaluate the performance of the

IBOSS method when the error term in the linear model is heteroscedastic. We use same

setup in the main paper to generate the full data except that the standard deviations of

the error terms are different and are generated from the exponential distribution with rate

parameter 1, i.e., the variance for each error term is randomly generated from a squared

exponential random variable. Figure S.10 presents MSE for estimating the slope parameter.

It is seen that the relative performance of IBOSS compared with other methods are similar
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to that of parameter estimation in the main paper. That is, the D-OPT IBOSS method

uniformly dominates the subsampling-based methods UNI and LEV, and its advantage is

more significant if the tail of the covariate distribution is heavier. Note that when the error

terms have unequal variances, transformations are often used to stabilize the variances or

weighted least squares are often used instead of the ordinal least squares. These questions

are beyond the scope of this paper and we will investigate them in another project.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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(c) Case 3: zi’s are t2.
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(d) Case 4: zi’s are a mixture.

Figure S.10: MSEs for estimating the slope parameter when the error terms are het-

eroscedastic. The subdata size k is fixed at k = 1000 and the full data size n changes.

Logarithm with base 10 is taken of n and MSEs for better presentation of the figures.
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