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Abstract

Subdata selection methods provide flexible tradeoffs between compu-
tational complexity and statistical efficiency in analyzing big data.
In this work, we investigate a new algorithm for selecting informa-
tive subdata from massive data for a broad class of models, including
generalized linear models as special cases. A connection between the
proposed method and many widely used optimal design criteria such
as A-, D-, and E-optimality criteria is established to provide a compre-
hensive understanding of the selected subdata. Theoretical justifications
are provided for the proposed method, and numerical simulations are
conducted to illustrate the superior performance of the selected subdata.

Keywords: Generalized linear models, Information matrix, Massive data,
Optimality criteria

1 Introduction

Notably growth of data volumes is ubiquitous in the big data era. Analysis
of huge-volume datasets with proven statistical methods meets new challenges
due to the limits of the available computational resources. There is an urgent
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need to find a balance between computational cost and statistical efficiency for
the following two main reasons. Firstly, diminishing marginal utility indicates
that analyzing a small but representative data set might be more cost-effective
for obtaining the population’s information without a loss of too much estima-
tion efficiency. Secondly, a timely responsive analysis is more desired in the big
data era. Some intended results may become less useful when the computation
takes a long time to run.

Among various big data analysis tactics, subdata selection and subsam-
pling play an important role in achieving a good tradeoff between statistical
efficiency and computational cost. The key idea is to utilize a small portion
of data to approximate the information contained in the full data. A lot of
subsampling and selection methods have been proposed to accommodate dif-
ferent statistical modeling and data analysis. Typical investigations include
but are not limited to leverage score based subsampling for linear and vec-
tor autoregression models (Ma et al., 2015; Xie et al., 2019; Ma et al., 2020);
orthogonal array and Latin hypercube based sampling for linear and Gaussian
process regressions (Zhao et al., 2018; Wang et al., 2021; Meng et al., 2020);
A-optimality motivated optimal subsampling method for generalized linear
models and quantile regressions (Wang et al., 2018; Ai et al., 2021; Wang and
Ma, 2021; Ai et al., 2021; Zhang et al., 2021); information-based optimal sub-
data selection (IBOSS) for linear and logistic regressions (Wang et al., 2019;
Cheng et al., 2020); and optimal design subsampling (Deldossi and Tommasi,
2022) for linear regressions. A literature review can be found in Yu et al. (2023).

Subsampling method and subdata selection method have a lot in common,
but they are essentially different in the selection scheme. To be precise, sub-
sampling is a randomized algorithm, and the major goal is to approximate
the full data estimator using a small subsample. This is very similar to the
problem of finite population sampling in this the goal is to estimate finite
population parameters (Deville and Särndal, 1992; Särndal et al., 1992). On
the other hand, subdata selection is a deterministic algorithm with the major
goal to estimate the parameter of the population that generates the full data.
This approach is more akin to the problem of optimum experimental design
but with substantial differences. Classical optimum experimental design theory
concerns theorems and algorithms for choosing optimum designs over a speci-
fied region, or from a specified set of candidate points. For large problems, this
may be very computational expensive. In the present paper we suggest new
ways of selecting the design points using computationally efficient algorithms
that are scalable to big data, with the additional feature that the responses
are collected too. Please see Drovandi et al. (2017) for more systematic discus-
sions on the connections between experimental design and big data analysis.
Compared with existing subsampling methods, subdata selection has its own
advantage since the data selection step does not involve additional variation.
Consequently, one may expect that the mean squared error decreases as the
size of full data increases, even when the subdata size is fixed. Take a linear
regression as an example. Wang et al. (2019) showed that the variance of a
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random subsampling based estimator converges to zero at a rate proportional
to the inverse of the subdata size, while the IBOSS based slope estimator may
converge to zero at a rate related to the size of the full data. Thus under some
mild conditions, the subdata selection based methods may have “supper effi-
ciency” compared with random subsampling based estimators in terms of the
convergence rate of the variance.

Compared with the extensive studies on the subsampling approach, system-
atic investigations on the subdata selection approach for massive data analysis
lag behind. To the best of our knowledge, the most relevant studies are Wang
et al. (2019) and Cheng et al. (2020), which focus on linear regression and logis-
tic regression, respectively. These results cannot fulfill the needs of analyzing
various massive datasets. In this work, we study an optimal subdata selection
procedure for a broad class of models that contains generalized linear models
as special cases. The contributions are the following three folds. Firstly, we
present a general subdata selection algorithm for a broad class of models which
contain the IBOSS algorithm for linear models as a special case. Secondly,
we build the connections between the proposed method and some commonly
used optimal design criteria, including A-, D-, E-, and T-optimality criteria
(Pukelsheim, 2006). It naturally gives a comprehensive understanding of the
proposed method and the IBOSS methods in Wang et al. (2019) and Cheng
et al. (2020). Thirdly, we show that the information from the new algorithm
increases along with the size of full data both theoretically and numerically.
These results justify the information-based subdata selection under nonlinear
models.

The rest of the paper is organized as follows. Section 2 introduces the
problem setups. Section 3 introduces A-, D-, E-, and T-optimality criteria in
the context of subdata selection. Section 4 introduces a new algorithm and
discusses its rationale under multiple optimality criteria. Section 5 provides
some theoretical analysis for the proposed method. Section 6 compares the
performance of the proposed algorithm with other commonly used subsampling
and subdata selection algorithms numerically. Technical details are postponed
to the Appendix.

2 The framework

The regression problem is to determine a statistical relationship between an
explanatory variable x and a response variable y. In a parametric setup, the
statistical relationship is characterized by a conditional distribution of y given
x, say f(y | x,θ), where θ is a d dimensional parameter vector of interest.
Linear and generalized linear regressions are special cases with different spec-
ifications of f(y | x,θ). Assume that (x1, y1), . . . , (xN , yN ) are independent
data from the distribution of (x, y). With the full data, the maximum likeli-
hood estimator (MLE) is broadly adopted to estimate the unknown parameter

θ, which is given by θ̂ = argmaxθ N
−1

∑N
i=1 log f(yi | xi,θ).
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The Fisher information plays an important role characterizing estimation
efficiency, because it is related to the inverse of the (asymptotic) variance-
covariance matrix of the MLE. Herein, the per-observation Fisher information
matrix given x is

I(x) = Ey|x

[{
∂ log f(y | x,θ)

∂θ

}{
∂ log f(y | x,θ)

∂θ

}T
]
, (1)

where Ey|x means taking the conditional expectation given x, and the Fisher
information matrix given covariates for θ based on full data is

If =

N∑
i=1

I(xi).

To improve the estimation efficiency, optimal experimental design theory
(Kiefer, 1959) suggests finding the experimental setting of x1, . . . ,xn such
that ψ(If ) attains its maximum. The function ψ is known as the optimality
criterion function. Examples of ψ will be introduced in Section 3.

Let (x∗
1, y

∗
1), . . . , (x

∗
n, y

∗
n) be a subdata of size n chosen deterministically

from the full data, in which the rule to determine whether a data point is
included or not depend on X = (x1, ...,xN )T only. Note that the selection
rule only relies on the marginal distribution of xi which is ancillary to θ. As
argued in Efron and Hinkley (1978), statistical inference on parameters should
be done based on the observed information when the experimental procedure
is ancillary. Thus, the statistical inference procedure based on the selected
subdata is the same as using the full data; see also Deldossi and Tommasi
(2022). We denote the MLE based on the subdata by θ̂∗. Let δi be the indicator
that observation (xi, yi) is included in the subdata. The Fisher information
matrix of a subdata of size k can be written as

I(δ) =
N∑
i=1

δiI(xi), (2)

where δ = {δ1, δ2, ..., δN} such that
∑N

i=1 δi = n. To have an optimal estimator
based on a subdata, one can choose δ that “maximizes” the above informa-
tion matrix (2) in the sense of some criterion function ψ(·). The problem is
presented as the following optimization problem conditional on the observed
full data:

δopt = argmax
δ

ψ(I(δ)),
N∑
i=1

δi = n. (3)



Springer Nature 2021 LATEX template

Information-Based Optimal Subdata Selection for Non-linear Models 5

3 Optimality criteria

In this paper, we consider the class of models for which the per-observation
information matrix can be expressed as I(xi) = zi(xi,θ)z

T
i (xi,θ), where

zi(xi,θ) is a vector function of xi that may depend on θ. For simplicity, we
write zi(xi,θ) as zi if there is no confusion, and denote (z1, . . . ,zN )T by Z.
Similarly, letZ∗ = (z∗

1 , . . . ,z
∗
n)

T be the corresponding quantity for the selected
subdata. This kind of information matrix expression occurs in a natural way
not only for linear and generalized linear models but also for various other
models, like accelerated failure time models and general nonlinear regression
models. We present two classes of models with this information expression
below to facilitate the later discussion.

Example 1 Consider a generalized linear regression model

g(E(y | x)) = xTθ, (4)

where the distribution of y given x belongs to the exponential family and g(·) is a
link function. Let var(y | x) and SD(y | x) be the variance and standard deviation
of y given x, respectively. The per-observation information matrix for θ at x is

I(x) =
{ġ−1(xTθ)}2

var(y | x) xxT, (5)

where ġ−1 is the derivative of the inverse function of g. Thus, zi =
{|ġ−1(xT

i θ)|
/
SD(yi | xi)}xi for a generalized linear model.

Example 2 Consider the following general nonlinear regression model

y = g(x,θ) + ε, (6)

where ε follows a normal distribution with mean zero and variance σ2. The per-
observation information matrix for θ at x is

I(x) =
1

σ2

{
∂g(x,θ)

∂θ

}{
∂g(x,θ)

∂θ

}T

. (7)

From (7), zi = σ−1∂g(xi,θ)/∂θ.

In the following, we discuss A-, D-, E-, and T-optimality criteria, which
are all defined in Chapter 9 of Pukelsheim (2006). To be precise, A-optimality

suggests to maximize {tr(I−1(δ))}−1, so that the average variance of θ̂∗ is
minimized. D-optimality suggests to maximize det(I(δ)), so that the volume of

the confidence ellipsoid based on θ̂∗ is minimized. E-optimality is to maximize
λmin(I(δ)), so that the maximum variance of lT θ̂∗ among all unit vector l
attains its minimal. Here λmin(A) denotes the smallest eigenvalue of the matrix
A. The T-otimality suggests to maximize tr(I(δ)) which is different from the
criterion with the same name studied in Atkinson and Fedorov (1975). For
mathematical rigorousness, ψ(I(δ)) is defined as zero when I(δ) is singular.

In the following, we write the mathematical definitions of optimal subdata
of size n under A-, D-, E-, and T-optimality criteria. The constant dimension
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d is used in the expressions to make different optimality criteria on the same
scale.

• A-optimality:

δ
opt
A = argmax

δ
{tr(d−1I−1

(δ))}−1
= argmax

δ

tr

 1

d

(
N∑

i=1

δiziz
T
i

)−1


−1

,
N∑

i=1

δi = n.

(8)

• D-optimality:

δ
opt
D = argmax

δ
{det(I(δ))}1/d

= argmax
δ

det

(
N∑

i=1

δiziz
T
i

)1/d

,

N∑
i=1

δi = n. (9)

• E-optimality:

δ
opt
E = argmax

δ
λmin(I(δ)) = argmax

δ
λmin

(
N∑

i=1

δiziz
T
i

)
,

N∑
i=1

δi = n. (10)

• T-optimality:

δ
opt
T = argmax

δ
tr(d

−1I(δ)) = argmax
δ

tr

(
d
−1

N∑
i=1

δiziz
T
i

)
,

N∑
i=1

δi = n. (11)

The A-, D-, and T-optimality criteria correspond to the harmonic mean,
geometric mean, and arithmetic mean of the eigenvalues of I(δ), respec-
tively. For any given subdata set δ, the relationship between the four criteria,
namely A-, D-, E, and T-optimality, can be directly derived by the well-known
inequality of means. Specifically, it follows that

λmin(I(δ)) ≤ {tr(d−1I−1(δ))}−1 ≤ {det(I(δ))}1/d ≤ tr(d−1I(δ)), (12)

and these equalities hold when all the eigenvalues are the same. Although
there is no strict ordering for the four optimal subdata selection methods, E-
optimality subdata selection leads to reasonable efficiencies under A-, D-, and
T- optimality criteria, since it maximizes a lower bound of all the other criteria.

4 The proposed method

In this section, we present the subdata selection algorithms under A-, D-, E-,
and T-optimality criteria.

The optimal subdata selection under the T-optimality criterion takes a
particularly simple form. Thus we first introduce the analytic solution of the
T-optimality subdata selection.

Theorem 1 For a given massive data {(xi, yi), i = 1, . . . , N}, the T -optimal subdata
of size n consists of data points with the n largest values of {∥zi∥2, i = 1, . . . , N}.

Finding larger ∥zi∥’s to improve the statistical efficiency is common in
survey sampling literature. The popular technique that adopts such an idea
is the probability proportional to size (PPS) sampling (Särndal et al., 1992).
As shown in Hartley and Rao (1962), if the auxiliary information used in the
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sampling is correlated with the variables of interest, the PPS sampling reduces
sampling variance and improves precision for estimation.

Unlike the T-optimal subdata selection, it is much more difficult to obtain
a closed-form solution for A-, D-, or E-optimality criteria in general. A naive
exhaustive search for the subdata in the full data satisfying A-, D- or E-
optimality criterion is unrealistic because this is often more computationally
demanding than finding the full data MLE. In working towards approximate
solutions, we first derive some bounds for I(δ) under A-, D- and E-optimality
criteria, which will guide our later algorithms.

Theorem 2 Let var(Z∗
j ) =

∑n
i=1(z

∗
ij − z̄∗j )

2/(n − 1) be the sample variance for
the jth column of Z∗ where z̄∗j =

∑n
i=1 z

∗
ij/n, and varmin(Z

∗) be the smallest value
among {var(Z∗

j ), j = 1, . . . , d}. For any subdata of size n, represented by δ with
I(δ) > 0, the following results hold:

dλmin(R
∗)∑d

j=1 1/var(Z
∗
j )

≤ d

(n− 1){tr(I−1(δ))}
≤ dλmax(R

∗)∑d
j=1 1/var(Z

∗
j )

, (13)

λmin(R
∗)

 d∏
j=1

var(Z∗
j )

1/d

≤ {det(I(δ))}1/d

n− 1
≤ λmax(R

∗)

 d∏
j=1

var(Z∗
j )

1/d

,

(14)

λmin(R
∗)varmin(Z

∗) ≤ λmin(I(δ))
n− 1

≤ λmax(R
∗)varmin(Z

∗), (15)

where R∗ is the sample correlation matrix of Z∗, and λmax(A) is the maximum
eigenvalue of matrix A.

From Theorem 2, one sees that a larger variation in subdata covariates
leads to better estimation. This encourages us to select the subdata with large
variation in the induced covariates zj ’s (j = 1, . . . , d). More importantly, under
some mild conditions that λmin(R

∗) > 0 with fixed d and varmin(Z
∗) → ∞, one

can expect that λmin(I(δ)) with δ selected by the proposed selection strategy
grows much faster than n while λmin(I(δ)) = OP (n) under simple random
sampling, which implies our methods are more efficient than simple random
sampling.

Improving the subdata induced covariate variances for all dimensions simul-
taneously may still exceed the limits of computational budgets. To further
accelerate the selection procedure, we suggest enlarging the subsample’s range
of each dimension separately. This is because a sample range usually serves
as a proxy for a sample standard deviation in the statistical literature. Such
idea was investigated back in Tippett (1925), and it has been widely adopted
in hypothesis testing (David et al., 1954) and statistical process control
(Montgomery, 2019).

Along with this thinking, we only need to collect subdata with extreme
values of Zj ’s (j = 1, . . . , d), both small and large, occurring with the same
frequency. This agrees with the common statistical knowledge that selecting
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the edge points of the data region improves statistical efficiency. For example,
the optimal design points for the generalized linear model constructed in Yang
et al. (2011) and Schmidt and Schwabe (2017) lie on the edge of some covari-
ates. The information-based optimal subdata selection methods for linear and
logistic regression also encourage selecting both small and large values of Zj ’s
(j = 1, . . . , d), occurring with the same frequency. Readers may refer to Wang
et al. (2019); Cheng et al. (2020) for more details.

When Z is given, we propose to apply the IBOSS algorithm of Wang et al.
(2019), which consists of selecting 2r data points with the r data points with
the smallest zij values and r data points with the r largest zij values for
j = 1, . . . , d. The subdata is formed by collecting these n = 2rd points together.
However, care is necessary as zi’s are often functions of θ. To select a subdata
based on the information matrix, θ has to be replaced by a pilot estimate, say
θ̃. Denote z̃i = zi(xi, θ̃). We will perform subdata selection by applying the
IBOSS algorithm to Z̃ = (z̃1, . . . , z̃N )T, which is summarized in the following:

Algorithm 1 Suppose that r = n/(2d) is an integer.

(1) Take a random subsample of size n0 from the full sample and use it to obtain
a pilot estimate of θ, θ̃. Calculate z̃i = zi(xi, θ̃), for i = 1, ..., N .

(2) Using a partition-based selection algorithm, perform the following steps:

(a) For z̃i1, 1 ≤ i ≤ N , include 2r data points with the r smallest z̃i1 values
and r data points with the r largest z̃i1 values;

(b) For j = 2, ..., d, exclude data points that were previously selected, and from
the remainder select r data points with the smallest z̃ij values and r data
points with the largest z̃ij values for the subdata.

(3) Calculate and return the MLE and associated statistics using the selected
subdata.

Let us note that this approach has already been followed by Deldossi
and Tommasi (2022) for comparing the IBOSS algorithm to other selection
methods in a logistic regression model.

Remark 1 Given a pilot estimate θ̃ of θ, for any subdata of size k, represented by
δ, the results in Theorem 2 still hold when θ is replaced by θ̃. Under some mild
conditions that I(δ) is continuous with respect to θ, and θ̃ is a consistent estimator
of θ. The proposed algorithm is still a viable approach to enhance the estimation
efficiency based on the selected subdata.

Remark 2 For Algorithm 1, the time to obtain θ̃ is often O(n0d
2ξ0) where ξ0 is

the number of iterations in the optimization procedure. The time to calculate Z̃
is O(Nd). By partition-based selection algorithm (Musser, 1997; Mart́ınez, 2004),
the time to select the r largest and smallest elements of Zj has an average time

complexity O(N). The time to calculate θ̂∗ is often O((n0 + n)d2ξ) where ξ is the
number of iterations in the optimization procedure. If n0, n and d are all much
smaller than N , the time complicity of Algorithm 1 is O(Nd).
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Remark 3 The proposed method provides an economic solution for semi-supervised
learning problems, in which the response variable is expensive to measure. Specif-
ically, although the computational cost may be higher compared with the uniform
subsampling method, it requires fewer data to be labeled in order to achieve the
same statistical efficiency. This is because we only need the response values for the
selected subdata to estimate θ, and Z does not depend on the response.

It is worth mentioning that both T-optimal subdata selection and Algo-
rithm 1 are sensitive to correlations of zi’s (or z̃i’s). Moreover, the T-optimal
subdata selection is also influenced by scales of Z or Z̃. For simplicity, we
only consider Z̃ here. If Z̃ has strong co-linearity, some extreme values of Z̃j ’s
may cluster together. Consequently, it may lead to the corresponding infor-
mation matrix I(δ) being close to singular. To solve this problem, we use the
idea of principal components. Let the singular value decomposition (SVD) of
Z̃ be Z̃ = ŨΛ̃Ṽ , where Ũ is a matrix whose columns contain the left singular
vectors of Z̃, Ṽ is a matrix whose columns contain the right singular vectors
of Z̃, and Λ̃ is a diagonal matrix with the (non-negative) singular values in
decreasing order. We suggest to apply Algorithm 1 using Ũ instead of Z̃. The
advantages of working with ũi’s are two folds. Firstly, the columns of Ũ are
orthogonal. Secondly, the data have been normalized with ∥Ũj∥2 = 1 for all
columns. We summarize this procedure in the following algorithm:

Algorithm 2 Suppose that r = n/(2d) is an integer.

(1) Take a random subsample of size n0 from the full sample and use it to obtain
a pilot estimate of θ, θ̃. Calculate Z̃ = (z̃1, ..., z̃N )T.

(2) Perform a SVD Z̃ = ŨΛ̃Ṽ to obtain the left-singular-vector matrix Ũ of Z̃.

(3) Implement steps (3) and (4) of Algorithm 1 using columns of Ũ instead of
columns of Z̃.

Remark 4 Performing subdata data selection on Ũ and Z̃ are different in general.
Selecting subdata based on Ũ can be regarded as a subdata selection on “normal-
ized” and “orthogonalized” covariates, which often makes the algorithm more stable.
However, the additional step of SVD to obtain Ũ requires additional O(Nd2) time.

Similarly, the T-optimality motivated algorithm based on SVD can be done.
We omit the detail due to its simplicity. For linear regression, ∥ũi∥2 corre-
sponds to the leverage score of the ith data point. Some theoretical results
for this kind of selection methods for linear regression are available in Xie
et al. (2019); Yu and Wang (2022). Moreover, selecting high leverage score
data points is beneficial not only in deterministic subdata selection but also
in the random subsampling approach. A typical example is leverage score
subsampling. Readers may refer to Ma et al. (2015, 2020) for more details.
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5 Asymptotic Analysis

In this section, we derive the asymptotic properties of the proposed modifica-
tions of the IBOSS algorithm. Note that the A-, D-, and E-optimality criteria
in (8), (9), and (10) are equivalent to minimizing tr(Ĩ−1(δ)), {det(Ĩ−1(δ))}1/d,
and λmax(Ĩ−1(δ)), respectively. For simplicity, we focus on the case that
the pilot is given in the first step and consider the behavior of tr(Ĩ−1(δ)),
{det(Ĩ−1(δ))}1/d, λmax(Ĩ−1(δ)), in the next Theorem 3. The results for the
T-optimality based selection, presented as the behavior of tr(Ĩ(δ)), are in the
next Theorem 5. We assume that N → ∞, d is fixed, and the pilot θ̃ is a
constant or given independently of the full data in this section.

Let |z̃|(N)j = max(|z̃1j |, |z̃2j |, . . . , |z̃Nj |). The following theorem shows the
goodness of the subdata selected by Algorithm 1 in terms of A-,D-, and E-
optimality.

Theorem 3 Let Ĩ(δ) be the information matrix based on subdata of size n = 2dr
selected using Algorithm 1. If z̃(r)j − z̃(1)j = oP (z̃(N)j − z̃(1)j) and z̃(N)j −
z̃(N−r+1)j = oP (z̃(N)j − z̃(1)j), then the following results hold.

tr(Ĩ−1(δ)) ≤
d∑

j=1

4d2

2λmin(R̃)r|z̃|2
(N)j

(1 + oP (1)) , (16)

{det(Ĩ−1(δ))}1/d ≤ 4d2

2λmin(R̃)r

 d∏
j=1

|z̃|2(N)j

−1/d

(1 + oP (1)) , (17)

λmax(Ĩ−1(δ)) ≤ 4d2

2λmin(R̃)rmin(|z̃|2
(N)j

, j = 1, . . . , d)
(1 + oP (1)) , (18)

where R̃ is the sample correlation matrix of z̃i’s (i = 1, ..., n) in the subdata.

As pointed out in Theorem 5 of Wang et al. (2019), the assumptions
z̃(r)j − z̃(1)j = oP (z̃(N)j − z̃(1)j) and z̃(N)j − z̃(N−r+1)j = oP (z̃(N)j − z̃(1)j) hold
under some mild conditions on the tail probability of z̃. The proposed method
enjoys a super-efficiency compared with simple random sampling in terms of
tr(Ĩ−1(δ)) and det(Ĩ−1(δ)) if |z̃|(N)j → ∞ for some j. In addition, it also

enjoys a super-efficiency in terms of λmax(Ĩ−1(δ)) when |z̃|(N)j → ∞ for all j.
Note that the sample maximum |z̃|(N)j goes to infinity as N goes to infinity
if the distribution of z̃ is not bounded, regardless of the subdata size n. This
implies that when all components of z̃ come from unbounded distributions,
then even if n is a fixed constant, the information for the selected subdata will
grow with the full data size N . We discuss this aspect in the following two
specific examples.

Example 3 Consider a logistic regression with

P (y = 1 | x,θ) = px,θ = g−1(xT θ) =
exp(xT θ)

1 + exp(xT θ)
. (19)
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The z̃i = w(xi, θ̃)xi, i = 1, ..., N , with w(x,θ) = {px,θ(1 − px,θ)}1/2. The follow-
ing proposition states that z̃ has an unbounded support with normally distributed
covariates under mild conditions.

Proposition 4 Suppose that x ∼ N(µ,Σ) with Σ > 0, and the nonrandom θ̃ is
finite with more than one nonzero element. The support of any component of z̃ for
the logistic regression in Example 3 is unbounded; and it is (−∞,∞).

Proposition 4 indicates that |z̃|(N)j goes to infinity as N → ∞ for j = 1, . . . , d

under the required conditions. Thus it is clear to see that tr(Ĩ−1(δ)), and det(Ĩ−1(δ))
go to zero even for a fixed k. As for λmax(Ĩ−1(δ)), when there is no intercept in the
model, it also goes to zero for a fixed n. If an intercept is included (i.e., xi1 = 1),
then z̃i1 = w(xi, θ̃) ≤ 0.5, which is a bounded random variable. Thus for a fixed
k, λmax(Ĩ−1(δ)) does not go to zero. However, we always have λmax(Ĩ−1(δ)) =
O(n−1).

Example 4 Consider the following Poisson regression

E(y | x,θ) = g−1(xTθ) = exp(xTθ). (20)

We have zi = exp(xT
i θ/2)xi (i = 1, ..., N), for a full data of size N . Similarly to

Example 3, suppose that x comes from a multivariate normal distribution with mean
µ and variance Σ > 0, and assume that θ̃ has more than one nonzero elements. It
is easy to show that all components of z̃ come from unbounded distributions. Thus
the quantity λmax(Ĩ−1(δ)), tr(Ĩ−1(δ)), and det(Ĩ−1(δ)) will go to zero even for a
fixed n. When an intercept term is included in the model, the result still holds.

Remark 5 According to Wiely’s theorem (Horn and Johnson, 2013), we have

λmax(Ĩ−1(δ)) ≤ λmax(Λ̃
−1)λmax((

∑N
i=1 δiũiũ

T
i )

−1). Thus the result in Theorem 3

can be easily extended to Algorithm 2 by replacing Z̃TZ̃ by ŨTŨ . Similarly, note
the fact that tr(Ĩ−1(δ)) ≤ λmax(Λ̃

−1)tr((
∑N

i=1 δiũiũ
T
i )

−1), and det(Ĩ−1(δ)) =

det(Λ̃)−2 det((
∑N

i=1 δiũiũ
T
i )

−1). We can obtain similar results for Algorithm 2 as
Theorem 3. Thus, we omit the details.

At the end of this section, we consider the behavior of tr(Ĩ(δ)) with δ
obtaining by the n largest values of {∥ũi∥2, i = 1, . . . , N}. It is easy to see the
following result by noting the fact that ∥z̃i∥2 = ∥Λ̃ũi∥2 ≥ λmin(Z̃

TZ̃)∥ũi∥2.

Theorem 5 Let Ĩ(δ) be the Fisher information for the subdata selected by the n
largest values of {∥ũi∥2, i = 1, . . . , N}. Then the following result holds.

tr(Ĩ(δ)) ≥ λmin(Z̃
TZ̃)

n∑
i=1

∥ũ(N−i+1)∥
2, (21)

where ∥ũ(N−i+1)∥2 is the (N − i+1)th order statistics of {∥ũi∥2, i = 1, . . . , N} with

∥ũ(1)∥2 ≤ ∥ũ(2)∥2 ≤ . . . ≤ ∥ũ(N)∥2.
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6 Numerical Examples

In this section, we use numerical experiments to evaluate the practical
performance of the proposed methods.

Since a pilot subdata of size n0 is required to obtain the pilot estimator θ̃,
we combine it with the estimator θ̂ from a proposed algorithm to obtain the
final subdata estimator

θ̌ = (M̃X + M̂X)−1(M̃X θ̃ + M̂X θ̂), (22)

where M̃X and M̂X are Hessian matrices for the objective functions on the
pilot subdata and IBOSS subdata, respectively. The estimation performance
of the final estimators are evaluated with the empirical mean squared error

MSE =
1

T

T∑
t=1

∥θ̌t − θ∥2, (23)

where T is the number of times the simulation was repeated.

6.1 Logistic regression

In this subsection, we consider the logistic regression illustrated in Example 3.
The pilot estimator is obtained using the case-control sampling, which is more
stable than the uniform sampling for imbalanced data. We follow the settings in
Wang et al. (2018) to generate full data. To be precise, full data are generated
from the logistic regression model in (19), where we set θ as a 7 dimension
vector with all elements being 0.5. Let Σ be a matrix with entries Σij =
0.5I(i ̸=j), where I(·) is the indicator function. The covariates xi’s are generated
from the following six distributions.
(a) mzNormal, x ∼ N(0,Σ). The generated responses were balanced with

around half being 0’s and half being 1’s.
(b) nzNormal, x ∼ N(1.5,Σ). The generated responses were imbalanced

with around 5% of 0’s and 95% of 1’s.
(c) ueNormal, x ∼ N(0,WΣW ), where W is a diagonal matrix with the

j-th diagonal element being j−1. This setting yields balanced responses.
(d) mixNormal. x ∼ 0.5N(1,Σ) + 0.5N(−1,Σ). The covariate distribution

was bimodal and the responses were balanced.
(e) Mvt3. x ∼ t3(0,Σ)/10. The covariate distribution had heavy tails and

the responses were balanced.
(f) EXP, components of x are independently generated from an exponential

distribution with rate parameter 2. The covariate distribution was skewed,
and the responses were imbalanced with around 17% of 0’s and 83% of 1’s.

We implement the proposed Algorithm 1 (denoted oD), Algorithm 2
(denoted oDsvd), and the T-optimal subdata selection as described in
Theorem 5 (denoted oTsvd). For comparison, we also perform the OSMAC
method in (Wang et al., 2018) with mMSE and mVc probabilities, IBOSS
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based subdata selection method proposed in Cheng et al. (2020) (denoted as
CWY’s method), and the uniform subsampling without replacement. The tun-
ing parameter in CWY’s method is set to be 0.5 for balanced and 2.5 for
unbalanced responses as suggested in Cheng et al. (2020).

We first consider the scenario when the subdata size are fixed and the full
data size increases. Specifically, we set N = 5× 104, 105, 5× 105, 106, 5× 106

and 107 with fixed n0 = 1500 and n = 2500 for the proposed algorithms and
the OSMAC method. For fair comparison the uniform sampling use a sample
size of n0 + n = 4000. The simulations are repeated for T = 1000 times. The
estimation results are shown in Figure 1.

Algorithm 1 (oD) and Algorithm 2 (oDsvd) outperform OSMAC based
procedures and CWY’s method under all covariate distributions considered in
Figure 1. The oTsvd is better than Algorithms 1 and 2 in cases (a)-(e) with
symmetric covariate distributions, but it does not perform well in case (f) in
which the covariate distribution is skewed. The three random sampling based
methods (uniform, mMSE, and mVc) do not have significant improvement as
the dataset size n grows. The decrease of the MSE in mMSE and mVc methods
as N increases for small N is because sampling with replacement was used
in the sampling step. There were some replicates in the resulting subsample
for smaller N which made the resulting estimator not that efficient. The MSE
of uniform sampling based estimator is very stable. In contrary, the proposed
algorithms have decreasing MSEs as N increases.

To evaluate the impact of the pilot estimator, we fix full sample size N =
106, optimal subdata size n = 2500, and varied pilot subdata size n0. The
empirical MSEs of pre-combined estimators θ̂ are reported in Figure 2 for
Cases (a) and (b).

In Figure 2, the MSE decreases as the pilot size n0 increases from 200
to 1500, and the improvement is very limited when n0 is greater than 1000
for both two cases. Therefore the pilot estimator is accurate enough when
n0 = 1500, and simply fixed n0 = 1500 as we used in this example yielded
satisfactory performance.

As discussed in Example 3, the intercept parameter has a different behav-
ior compared with the slope parameters since its corresponding covariate is
bounded. To further evaluate our methods, we also consider adding an inter-
cept term θ0 = 0.5 to the aforementioned logistic regression model. To be
precise, we replace xTθ in (19) in the previous setup by θ0 + xTθ1 and esti-
mate the 8-dimension parameter, where θ0 is the intercept parameter and θ1
is the slope parameter. With the added intercept, the percentages of 1’s in
the generated responses become around 56%, 96%, 60%, 54%, 62%, and 89%
for the cases (a)-(f), respectively. To exam the performance of the proposed
method on the intercept and the slope separately, we present the MSEs for the
intercept and slope parameters in Figure 3 and Figure 4, respectively.

In Figure 3, we see that the proposed procedures fall short compared to
OSMAC methods and perform similarly to CWY’s method in intercept estima-
tion, except in case (b). In Figure 4, the relative performance between random
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(a) mzNormal (b) nzNormal

(c) ueNormal (d) mixNormal

1

(e) Mvt3 (f) EXP

Fig. 1: Empirical MSE of θ̌ for logistic regression without an intercept when
the full sample size increases.

sampling based methods and the proposed methods in estimating the slope
parameter are resembling to the scenario without an intercept, except that a
larger full sample size is required for the proposed method to outperform the
OSMAC methods in case (f).

Next, we evaluate the impact of the subdata size. The full sample
size is fixed at N = 106 and the subsample size n vary from n =
1000, 2000, 3000, 4000, to 5000. The pilot subsample size n0 = 1000. The results
for the logistic regression model with an intercept are given in Figure 5. We
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1(a) mzNormal (b) nzNormal

Fig. 2: Empirical MSE of θ̂ in logistic regression without intercept with vary-
ing pilot sample size.

Table 1: MSEs and the corresponding computing times using R.

Method d=7 d=50
n MSE Time(ms) n MSE Time(ms)

Uniform 5000 0.02038 4.05 52000 0.0901 1132
oD 1000 0.02189 145 10000 0.0856 1056
oDsvd 1000 0.02233 246 10000 0.0831 5061
oTsvd 1000 0.01967 165 10000 0.1161 4657
Uniform 13000 0.00787 8.66 250000 0.0183 5752
oD 4000 0.00763 149 40000 0.0177 1405
oDsvd 4000 0.00804 244 40000 0.0170 5613
oTsvd 4000 0.00781 166 40000 0.0184 5055
Uniform 16000 0.00648 11.1 330000 0.0140 7544
oD 5000 0.00657 147 50000 0.0139 1596
oDsvd 5000 0.00682 249 50000 0.0135 5633
oTsvd 5000 0.00666 178 50000 0.0145 5152

present the results only for Case (a) as an example because results for other
cases are similar and thus omitted.

As expected, all methods perform better as subdata size n increases. The
relative performance between the proposed methods and the random subsam-
pling based methods are in general similar to those in Figure 3 and Figure 4
for the intercept and slope parameters, respectively.

In the following, we record the computing times together with the MSEs
for Case (a) with d = 7 and d = 50. All the other settings are the same as
in Figure 5 except that the subdata size of the uniform sampling method is
enlarged so that its MSEs’ are comparable with other methods and the pilot
sample size is increased to n0 = 2000 for d = 50. All the computations were
carried out on a Desktop computer with AMD 3950x processor using the R
programming language. The results are reported in Table 1.

From Table 1, one sees that the uniform sampling has its own advantage
compared with other methods, especially when d = 7. This is because the
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(a) mzNormal (b) nzNormal

(c) ueNormal
1

(d) mixNormal

(e) Mvt3 (f) EXP

Fig. 3: Empirical MSE of the intercept estimator θ̌0 in logistic regression with
varying full data sample size.

estimation is relatively easier when d is small. However, this does not mean
that uniform sampling is always better than the proposed method, because it
has higher costs in other aspects. If the available memory is very limited while
the computational time is relatively cheap or if the responses are expensive
to measure (e.g., data need human annotation as we discussed in Remark 3),
the proposed method is more economic. When d = 50, the proposed methods
may outperform the uniform subsampling methods in terms of computation
time, especially when n is large. This is because calculating the parameter
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(a) mzNormal (b) nzNormal

(c) ueNormal (d) mixNormal

1

(e) Mvt3 (f) EXP

Fig. 4: Empirical MSE of the slope estimator θ̌1 in logistic regression model
with an intercept when the full data sample size increases.

estimates based on the selected subdata becomes harder and requires more
time. Note that Newton’s method requires O(ζnd2) time, where ζ are the
number of iterations. The proposed oD method only needs O(Nd) times for
data selection, and it require much more smaller n than the uniform sampling
approach in achieving similar MSEs and thus requires much shorter times in
parameter estimation.
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1Empirical MSE of θ̌0 Empirical MSE θ̌1

Fig. 5: Empirical MSEs of intercept estimator θ̌0 and slope estimator θ̌1 in
logistic regression with an intercept when subdata size n increases for Case (a)
mzNormal.

6.2 Poisson regression

In this subsection, we evaluate the proposed methods with the Poisson regres-
sion in Example 4. The pilot estimator is obtained from uniform sampling
without replacement. Full data is generated from the Poisson regression model
given by (20) with an intercept term, i.e., xTθ is replaced by θ0+xTθ1 where
θ0 is the intercept parameter and θ1 is the slope parameters. Here θ1 is a 6-
dimension vector with all elements being 0.25, and θ0 is also set to be 0.25.
The following two distributions are used to generate the covariates.
(a) Normal x ∼ N(0,Σ), where Σuv = 0.5|u−v| is the (u, v)-th entry of

Σ. Components of x are dependent with a symmetric distribution whose
support are unbounded to both positive and negative infinity.

(b) EXP, components of x are independent Exponential (2) with rate param-
eter 2. This distribution is skewed, bounded from below away from
negative infinity but unbounded from infinity.

Similarly to the example of logistic regression, we implement the proposed
Algorithm 1 (denoted oD) and Algorithm 2 (denoted oDsvd), together with the
results from OSMAC with mVc and mMSE probabilities for Poisson regression
(Ai et al., 2021), and uniform sampling without replacement for comparisons.

As in the previous subsection, the estimation accuracy for the intercept
and slope parameters are reported in Figure 6 and Figure 7, respectively. The
full data size N varies from 104 to 107, and the subdata sizes are fixed at
n0 = 1500 for pilot estimates and n = 2500 for the proposed methods. Each
procedure was repeated for T = 1000 times to obtain reliable empirical MSEs.

In Figure 7, the proposed methods are significantly better than other
methods in terms of estimating the slope parameter, and the overall relative
performance is similar to the results for logistic regression reported in Subsec-
tion 6.1. It is worth mentioning that the MSE of the intercept term for the
proposed methods also decreases under Poisson regression, which is different



Springer Nature 2021 LATEX template

Information-Based Optimal Subdata Selection for Non-linear Models 19

from what we have seen under logistic regression. This is because, unlike the
case of logistic regression, the sample maximum |z̃|(N)1 goes to infinity as N
goes to infinity for the intercept term.

(a) Normal
1

(b) EXP

Fig. 6: Empirical MSEs of intercept estimator θ̌0 in Poisson regression with
varying full sample size.

(a) Normal
1

(b) EXP

Fig. 7: Empirical MSEs of slope estimator θ̌1 (bottom panel) in Poisson regres-
sion with varying full sample size.
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Appendix A Proofs

A.1 Proof of Theorem 1

Proof Note that

δoptT = argmax
δ

tr (I(δ)) = argmax
δ

δi∥xi∥2.

Thus, the T-optimal subdata is the subdata with the k largest values of ∥xi∥2. □

A.2 Proof of Theorem 2

Before proving Theorem 2, we need the following lemma.

Lemma A.1 Let λ1, . . . , λd be the d eigenvalues of I(δ) with λmin = λ1 ≤ . . . ≤
λd = λmax. Assume that var(Z∗

1 ) ≤ . . . ≤ var(Z∗
d) with var(Z∗

j ) being the sample
variance for the jth column of Z∗. For any subdata of size n, represented by δ, it
holds that

(n− 1)λmin(R
∗)var(Z∗

j ) ≤ λj(I(δ)) ≤ (n− 1)λmax(R
∗)var(Z∗

j ), (A.1)

where R∗ is the sample correlation matrix of Z∗.

Proof Recall Z∗ = (z∗
1 , ..., z

∗
n)

T. Let 1 be a n×1 vector of ones, and var(Z∗
j ) be the

sample variance for the jth column of Z∗, j = 1, ..., d. It follows that

I(δ,θ) =Z∗TZ∗

≥Z∗T
(
I − 1

n
11T

)
Z∗

=(n− 1)


√

var(Z∗
1 )

. . . √
var(Z∗

d)

R∗


√

var(Z∗
1 )

. . . √
var(Z∗

d)

 .

Note the fact that for any matrices A ≥ 0 and B ≥ 0, it holds that
λmin(B)λj(A

2) ≤ λj(ABA) ≤ λmax(B)λj(A
2). The desired result follows immedi-

ately by letting B = R∗ and A = diag(
√

var(Z∗
1 ), . . . ,

√
var(Z∗

d)). □

Proof of Theorem 2 Recall that λ1, . . . , λd are d eigenvalues of I(δ) with 0 < λmin =
λ1 ≤ . . . ≤ λd = λmax. We have

{tr(d−1I−1(δ))}−1 =

d−1
d∑

j=1

λ−1
j

−1

, (A.2)

{det(I(δ))}1/d =

 d∏
j=1

λj

1/d

. (A.3)

Thus (13)–(15) can be easily obtained by Lemma A.1. □
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A.3 Proof of Theorem 3

Proof For each sample variance,

var(Z̃∗
j ) =

1

n− 1

n∑
i=1

(z̃∗ij − ¯̃z∗j )
2

=
(z̃(N)j − z̃(1)j)

2

k − 1

n∑
i=1

(
z̃∗ij − ¯̃z∗j

z̃(N)j − z̃(1)j

)2

≥
(z̃(N)j − z̃(1)j)

2

n− 1

 r∑
i=1

+

N∑
i=N−r+1

( z̃(i)j − ¯̃z∗j
z̃(N)j − z̃(1)j

)2

. (A.4)

For the first summation in (A.4),

r∑
i=1

(
z̃(i)j − ¯̃z∗j

z̃(N)j − z̃(1)j

)2

=
1

n2

r∑
i=1

(∑n
s=1 z̃

∗
sj − nz̃(i)j

z̃(N)j − z̃(1)j

)2

. (A.5)

Each term in the summation of (A.5) can be written as∑n
s=1 z̃

∗
sj − nz̃(i)j

z̃(N)j − z̃(1)j

=

N∑
s=N−r+1

z̃(s)j − z̃(i)j

z̃(N)j − z̃(1)j
+

r∑
s=1

z̃(s)j − z̃(i)j

z̃(N)j − z̃(1)j

+
∑
l ̸=j

 r∑
s=1

+

N∑
s=N−r+1

 z̃
(s)l
j − z̃(i)j

z̃(N)j − z̃(1)j
, (A.6)

where z̃
(s)l
j is the jth dimension of the subdata point selected according to {z̃il, i =

1, . . . , N} in the second step of Algorithm 1. From the Assumption 1, we have that

for s, i ≤ r, (z̃(s)j − z̃(i)j)/(z̃(N)j − z̃(1)j) = oP (1) and (z̃
(s)l
j − z̃(i)j)/(z̃(N)j − z̃(1)j)

is either positive or oP (1). Thus (A.6) implies∑n
s=1 z̃

∗
sj − nz̃(i)j

z̃(N)j − z̃(1)j
≥

N∑
s=N−r+1

z̃(s)j − z̃(i)j

z̃(N)j − z̃(1)j
. (A.7)

From assumptions 1 and 2, for s ≥ N − r + 1 and i ≤ r, as N → ∞,

z̃(s)j − z̃(i)j

z̃(N)j − z̃(1)j
=

z̃(s)j − z̃(N)j

z̃(N)j − z̃(1)j
+

z̃(N)j − z̃(1)j

z̃(N)j − z̃(1)j
+

z̃(1)j − z̃(i)j

z̃(N)j − z̃(1)j
= 1 + oP (1) (A.8)

From (A.5), (A.7) and (A.8),

r∑
i=1

(
z̃(i)j − ¯̃z∗j

z̃(N)j − z̃(1)j

)2

≥ 1

n2

r∑
i=1

 N∑
s=N−r+1

z̃(s)j − z̃(i)j

z̃(N)j − z̃(1)j
+ oP (1)

2

=
r3

n2
+ oP (1).

(A.9)

Similarly,

N∑
i=N−r+1

(
z̃(i)j − ¯̃z∗j

z̃(N)j − z̃(1)j

)2

≥ r3

n2
+ oP (1). (A.10)
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Combining (A.4), (A.9) and (A.10),

var(Z̃∗
j ) ≥

2r3(z̃(N)j − z̃(1)j)
2

n2(n− 1)
(1 + oP (1)). (A.11)

If z̃(1)j/z̃(N)j
P→ 0 or ±∞, then

z̃(N)j − z̃(1)j

|z̃|(N)j
= 1 + oP (1). (A.12)

Combining (A.11) and (A.12) shows that

var(Z̃∗
j ) ≥

2r3|z̃|2(N)j

n2(n− 1)
(1 + oP (1)). (A.13)

Thus, the desired results come from Theorem 2 and Slutsky’s theorem.
If z̃(N)j → ∞ and z̃(1)j is bounded below, or z̃(1)j → −∞ and z̃(N)j is bounded

above, then
z̃(N)j − z̃(1)j

|z̃|(N)j
= 1 + oP (1). (A.14)

From (A.11) and (A.14), it follows that

var(Z̃∗
j ) ≥

2r3|z̃|2(N)j

n2(n− 1)
(1 + oP (1)). (A.15)

Thus, the desired results come from Theorem 2 and Slutsky’s theorem.
□

A.4 Some details of Example 3 and Proposition 4

Lemma A.2 Suppose x ∼ N(µ,Σ) with Σ > 0 and θ has more than one nonzero
elements. Then it holds that (xj ,θ

Tx)T is still a nondegenerate normal distribution
for all j.

Lemma A.3 Suppose x ∼ N(µ,Σ) with Σ > 0, and θ lies in a compact ball with
more than one nonzero element. Then for any given M , and C > 0, it holds that

P
( xj

e−xTθ/2 + ex
Tθ/2

> M, |xTθ| ≤ 2C
)
> 0,

P
( xj

e−xTθ/2 + ex
Tθ/2

< −M, |xTθ| ≤ 2C
)
> 0,

for all j.

Proof of Proposition 4 Note that the jth dimension of z̃ can be written as

z̃j =
xj

e−xTθ̃/2 + ex
Tθ̃/2

.

For any j, one can see that

P
( xj

e−xTθ/2 + ex
Tθ/2

> M
)
≥ P

( xj

e−xTθ/2 + ex
Tθ/2

> M, |xTθ| ≤ 2C
)
> 0,

where M and C are some constant independent of x.
Similarly, one can show that

P
( xj

e−xTθ/2 + ex
Tθ/2

< −M
)
≥ P

( xj

e−xTθ/2 + ex
Tθ/2

< −M, |xTθ| ≤ 2C
)
> 0.

From Lemma A.3, the desired result follows. □
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Details of Example 3 Grounded on the two lemmas, we can see that for any M > 0
and j = 1, . . . , d,

P(z̃j,(N) > M) = 1− P(z̃j,(N) ≤ M) (A.16)

= 1− PN (z̃j ≤ M) (A.17)

= 1− PN
( xj

e−xTθ/2 + ex
Tθ/2

≤ M
)
. (A.18)

From Lemma A.3, it is clear to see that

PN
( xj

e−xTθ/2 + ex
Tθ/2

≤ M
)
→ 0. (A.19)

Thus the result follows. □

Proof of Lemma A.2 Without loss of generality, we only consider the case j = 1 here.
Note that x is a multivariate normal distribution. Let ej be a unit vector with jth
element being one and C = (ej ,θ). Note that θ has more than one nonzero element
by assumption. It is clear to see the rank of C equals two. Since Σ > 0, the rank
of CTΣC is also two. The x̌ = CTx = (xj ,θ

Tx)T is also a non degenerate normal

distribution with mean CTµ = (µj ,µ
Tθ)T, and variance

CTΣC = Σ̌ =

(
σjj σ̌12
σ̌T
12 σ̌22

)
,

where µj is the jth elements in µ, σjj is the (j, j)th element of Σ, σ̌12 equals to

(ΣT
·jθ) with Σ·j being the jth column of Σ, and σ̌22 = θTΣθ.

□

Proof of Lemma A.3 For the first result, simple calculation yields that

P
( xj

e−xTθ/2 + ex
Tθ/2

> M, |xTθ| ≤ 2C
)

(A.20)

≥ P
(
xj > 2eCM, |xTθ| ≤ 2C

)
> 0, (A.21)

since (xj ,x
Tθ)T are non degenerate normal distribution by the fact proved in

Lemma A.2. The second result is quite similar. Thus we omit it.
□
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