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1. INTRODUCTION

We congratulate Luo et al. (2023) for proposing the innovative statistical framework with time- 5

varying regression coefficient to analyze correlated streaming data. They integrated a weighting
matrix into the quadratic inference function (Qu et al., 2000), giving larger weights to more recent
data. An elegant decomposition of the first-order autoregression base matrices across batches was
also introduced, enabling a computationally feasible online updating algorithm.

Faced with massive data, a key to extract useful information is to balance computational ef- 10

ficiency and statistical efficiency. Besides the approach by Luo et al. (2023), subsampling is
another effective approach to achieve computational feasibility with some compromise on es-
timation efficiency (Wang et al., 2018, 2019). We point out that subsampling is more effective
for correlated data than for independent data, because the correlation in selected subsample may
become negligible. Ignoring correlation may then be a valid option to simplify the computation 15

as comparing to the full data analysis. When the data generating parameter changes across data
batches, we show that there is a bias-variance tradeoff that is affected by the smoothness of the
parameter function and the weights assigned to historical batches. We discuss the optimal rate of
the weights in a simplified case.

2. IGNORE THE CORRELATION? 20

In dealing with massive data, it’s typically inevitable that some estimation efficiency is sacri-
ficed in exchange for computational feasibility. Although some methods may achieve the same
estimation efficiency as the offline full data estimator in an asymptotic sense, there is often no-
ticeable efficiency loss with finite samples. Since a key point in analyzing massive data is the
trade-off between estimation efficiency and computational feasibility, it is natural to wonder 25

whether we can ignore the correlation. For simplicity, we illustrate the ideas using the linear
regression model,

Y = Xβ + ε, (1)

where the response vector Y and the design matrix X may have some batch structure, and ε has
mean zero and covariance matrix Σ.

The most efficient estimator under mild conditions is the weighted least squares estimator, 30

β̂w = (XTΣ−1X)−1XTΣ−1Y, (2)

if Σ is known. Let the ordinary least squares estimator be

β̂o = (XTX)−1XTY. (3)
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Although β̂w is more efficient than β̂o, the latter is also unbiased and still widely used in practice
due to its simplicity. Their covariance matrices satisfy

V (β̂o | X)− V (β̂w | X) = (XTX)−1XTΣX(XTX)−1 − (XTΣ−1X)−1 = ggT ≥ 0,

where g = (XTΣ−1X)−1XTΣ−1/2 − (XTX)−1XTΣ1/2. If Σ has a first-order autoregressive
structure Σij = σ2ρ|i−j|, then V (β̂o | X) and V (β̂w | X) get closer as ρ gets closer to 0. As35

such, the ordinary least squares estimator β̂o may provide a better trade-off if ρ is small.
Subsampling is an effective approach to extract useful information when the full data analysis

is computationally expensive or even infeasible. Existing investigations on subsampling meth-
ods mainly focus on independent data. Inspired by Luo et al. (2023), we want to stress that the
advantage of subsampling can be more significant with correlated data than with independent40

data, because subsampling can help reduce correlation and simplify the data analysis. Again,
consider the autoregressive correlation structure. If we take a subsample of size s from the total
of N = bnj correlated observations with equal time gaps, then the correlation between adja-
cent observations in the subsample reduces to rN/s, which goes to zero fast as N/s gets large.
Intuitively, measurements taken in a close time range tend to contain similar information, so45

removing certain observations collected in similar times may not lead to as significant lost of
information as in the independent data case.

2.1. Numerical illustration
We perform limited simulations on two scenarios to illustrate the effectiveness of subsam-

pling with correlated data streams. Scenario 1 is the same as the example in Section 4.2 of50

Luo et al. (2023) except that the regression coefficient is a constant vector β = (β0, β1, β2)
T =

(0.2,−0.5, 0.5)T. The two covariates in this scenario are independent standard normal random
variables. For longitudinal data, the variation of covariates across subjects is often larger than
that within subjects. For example, variables such as body mass index and presence of some coro-
nary diseases usually do not change much for the same subject while they may vary greatly for55

different subjects, and covariates such as sex and high school education status are typically time
invariant. To mimic this situation, we consider Scenario 2 with the same set up of Scenario 1
except that the two covariates have different distributions. Specifically, the covariate of β1 for
the kth (= 1, ..., nj) observation of subject i (= 1, ...,m) at batch j (= 1, ..., b) is Zi + gl with
Zi (i = 1, ...,m) being independent standard normal random variables and gl (l = 1, ..., bnj) be-60

ing bnj evenly spaced scalars in [2, 3]; and the covariate for β2 follows a Bernoulli distribution
of success probability 0.5 across the m = 100 subjects and stays a constant across the b = 200
batches of nj = 20 observations.

We implemented the ordinary least squares and the weighted least squares based on the full
data of size mbnj = 400, 000, a deterministic uniform subsample of size s = 2, 000, and the65

last batch of mnj = 2000 observations. We run the simulation 500 times and calculate the mean
squared error of estimating the mean responses for each method; the results are reported in Ta-
ble 1. There is indeed some estimation efficiency loss with the ordinary least squares estimator
compared with the weighted least squares estimator for full data analyses, but the information
loss is not substantial, especially in the more practical Scenario 2. The weighted least squares70

estimator uses the unknown ρ, so it is optimal but impractical. With uniform subsamples, the
ordinary and weighted least squares estimators do not have noticeable difference. Another inter-
esting observation is that the subsample estimator uses only 0.5% of the full data to achieve about
11% and 22% of the optimal full data results. More sophisticate subsampling methods such as
optimal subsampling method (Wang et al., 2018) or the information based method (Wang et al.,75
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2019) may further improve the estimation efficiency with the same subsample sizes, but how to
design better subsampling algorithms warrants for future investigations.

Table 1. Root mean squared error (×103) of estimating the mean
responses

Case Full data Uniform Sampling Last Batch
OLS WLS OLS WLS OLS WLS

Scenario 1 8.847 7.640 70.734 70.734 112.454 93.507
Scenario 2 15.689 15.663 70.213 70.213 251.68 239.576

OLS means ordinary least squares estimator as in (3); WLS means weighted
least squares estimator as in (2).

3. WEIGHTING FROM THE PERSPECTIVE OF BIAS-VARIANCE TRADEOFF

Luo et al. (2023) considers an interesting and practical setting that β changes over time, similar
to the setting of varying-coefficient models (Hastie & Tibshirani, 1993). The convergence rate 80

of an estimator in this case is typically slower than the root N rate, and there is a bias-variance
tradeoff (Fan & Zhang, 1999). A tuning parameter bandwith controls the bias-variance tradeoff
in local regression, and a two-step procedure is necessary to achieve the optimal nonparametric
convergence rate. Luo et al. (2023) introduce an additional weight parameter to the quadratic
inference function. We discuss the weighting from the perspective of the bias-variance tradeoff. 85

We consider a simplified case here. Let Yj be random variables observed at time tj = j/b with
means βj and variance σ2 for j = 1, . . . , b, and the correlation between Yi and Yj is ρ|i−j|. This
corresponds to the specific case of model (1) with m = nj = 1 and X being a vector of ones. A
weighted sample mean β̂b = (1− w)(1− wb)−1

∑b
i=1w

b−iYi is used to estimate the parameter
in the last batch, the mean βb, where w is the weight assigned to the previous batch. Here w 90

corresponds to q1/b in Section 3 of Luo et al. (2023) and w corresponds to q in Sections 4 and 5
of Luo et al. (2023). The variance of β̂b (detailed calculations in the supplement) is

V (β̂b) = σ2 (1− w)2

(1− wb)2

{
1− w2b

1− w2
+

2ρ

w − ρ

(
w2 − w2b

1− w2
− wρ− wbρb

1− wρ

)}
. (4)

If w → w0 as b → ∞ for some w0 ∈ [0, 1), then

V (β̂b) → σ2 1− w0

1 + w0

1 + w0ρ

1− w0ρ
> 0.

The variance of β̂b does not converge to zero in this case although the full data sample size b 95

goes to infinity. It is also seen that the limit of V (β̂b) decreases as w0 increases, showing that
previous observations should receive higher weights to reduce the variance.

If w → 1 and wb → w∞ ∈ [0, 1) as b → ∞, then

V (β̂b) ≍ (1− w)
σ2

2

1 + w∞
1− w∞

1 + ρ

1− ρ
→ 0,

where ≍ means two sequences are of the same order. Thus it is important the weight w assigned
to the previous batch converges to one in order to utilize the full data information. Furthermore, 100

if w → 1 fast enough so that w∞ > 0, then 1− w ≍ b−1, meaning that the variance goes to
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zero at the optimal parametric convergence rate. If w → 1 in a slower rate so that w∞ = 0, e.g.,
b(1− w) → ∞, then the variance may converge to zero at a rate slower than b−1.

Now we consider the bias, which depends on the smoothness of β as a function of time. If β
is continuously differentiable or Lipschitz continuous in [0, 1], then |βb − βj | ≤ δ(b− j)/b for105

some δ ≥ 0. Therefore the bias of estimating βb satisfies

|Bias(β̂b)| ≤
1− w

1− wb

b∑
j=1

wb−jδ(b− j)/b ≤ wδ

b(1− w)
. (5)

Combining the variance in (4) and the bias bound in (5), we see that the mean squared error
E(β̂ − βb)

2 may converge to zero at the optimal parametric rate of b−1 only if δ goes to zero at110

a rate of O(b−1/2) and w goes to one fast enough so that w∞ > 0. The root rate b−1/2 is also
widely used in the local misspecification framework for asymptotics of statistical experiments
(LeCam, 1960; van der Vaart, 1998) and frequentist model averaging (e.g., Claeskens et al.,
2008; Wang et al., 2009). The more interesting case is when δ is a fixed constant, and we see that
the optimal rate of w that minimizes E(β̂ − βb)

2 is w ≍ 1− b−2/3. The corresponding optimal115

convergence rate of the mean squared error is E(β̂ − βb)
2 ≍ b−2/3. An important open question

is how to select the weights that achieve the optimal rate using observed data adaptively.
We also want to make a remark that the numerical results in Luo et al. (2023) might not fully

demonstrate the efficiency of their proposed methods. We see from aforementioned discussions
that qj in their numerical results should be close to one for the proposed estimator to leverage his-120

torical batches of data. We expect the estimation efficiency in their simulation to be significantly
improved if qj are enlarged, while how to adjust the bias for inference is an open question.
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Supplement for Discussion of ‘Statistical inference for
streamed longitudinal data’

In this supplement, we provide detailed derivations of (5), (6), (7), and (8) in Section 3.

A Derivation of (5)

The variance of

β̂b =
1− w

1− wb

b∑
i=1

wb−iYi

is

V (β̂b) = σ2 (1− w)2

(1− wb)2

b∑
i=1

b∑
j=1

w2b−i−jρ|i−j|. (A.1)

Note that

b∑
i=1

b∑
j=1

w2b−i−jρ|i−j| =
b∑

i=1

w2b−2i + 2
∑

1≤i<j≤b

w2b−i−jρj−i

=
b−1∑
i=0

w2i + 2
b−1∑
i=1

b∑
j=i+1

w2b−i−jρj−i

=
1− w2b

1− w2
+ 2

b−1∑
i=1

wb−iρ−i

b∑
j=i+1

wb−jρj

=
1− w2b

1− w2
+ 2

b−1∑
i=1

wb−iρ−i

b−i∑
k=1

wb−i−kρi+k

=
1− w2b

1− w2
+ 2

b−1∑
i=1

w2b−2i

b−i∑
k=1

w−kρk

=
1− w2b

1− w2
+ 2

b−1∑
i=1

w2b−2i
ρ
w
− ρb−i+1

wb−i+1

1− ρ
w

=
1− w2b

1− w2
+ 2

ρ

w − ρ

b−1∑
i=1

w2b−2i − 2w

w − ρ

b−1∑
i=1

wb−i−1ρb−i+1

1



=
1− w2b

1− w2
+ 2

ρ

w − ρ

b−1∑
i=1

w2b−2i − 2ρ

w − ρ

b−1∑
i=1

(wρ)b−i

=
1− w2b

1− w2
+ 2

ρ

w − ρ

b−1∑
i=1

w2i − 2ρ

w − ρ

b−1∑
i=1

(wρ)i

=
1− w2b

1− w2
+

2ρ

w − ρ

w2 − w2b

1− w2
− 2ρ

w − ρ

wρ− wbρb

1− wρ
.

Thus, we obtain (5).

B Derivation of (6)

If w → w0 as b → ∞ for some w0 ∈ [0, 1), we have that wb → 0 and thus

V (β̂b) →σ2(1− w0)
2

{
1

1− w2
0

+
2ρ

w0 − ρ

(
w2

0

1− w2
0

− w0ρ

1− w0ρ

)}
= σ2(1− w0)

2 1 + w0ρ

(1− w2
0)(1− w0ρ)

= σ21− w0

1 + w0

1 + w0ρ

1− w0ρ
,

which gives (6).

C Derivation of (7)

Note that

V (β̂b) = σ2 (1− w)

(1− wb)2

{
1− w2b

1 + w
+

2ρ

w − ρ

(
w2 − w2b

1 + w
− (1− w)(wρ− wbρb)

1− wρ

)}
.

If w → 1 and wb → w∞ ∈ [0, 1) as b → ∞, we have that

V (β̂b)

(1− w)
→ σ2

2(1− w∞)2

{(
1− w2

∞
)(

1 +
2ρ

1− ρ

)}
=

σ2

2

1 + w∞

1− w∞

1 + ρ

1− ρ
.

Therefore, (7) holds.

D Derivation of (8)

From Lipschitz continuity, we have

|Bias(β̂b)| =
1− w

1− wb

∣∣∣∣∣
b∑

j=1

wb−j (βj − βb)

∣∣∣∣∣
2



≤ 1− w

1− wb

b∑
j=1

wb−j |βj − βb|

≤ 1− w

1− wb

b∑
j=1

wb−j δ(b− j)

b

=
δ

b

1− w

1− wb

b∑
j=1

wb−j(b− j)

=
δ

b

1− w

1− wb

b−1∑
j=0

jwj.

Letting S =
∑b−1

j=0 jw
j, we have that wS =

∑b
j=1 jw

j+1. Therefore,

(1− w)S =
b−1∑
j=1

jwj −
b∑

j=1

(j − 1)wj =
b−1∑
j=1

wj − (b− 1)wb =
w − wb

1− w
− (b− 1)wb.

Thus,

|Bias(β̂b)| ≤
δ

b

1− w

1− wb

{
w − wb

(1− w)2
− (b− 1)wb

1− w

}
≤ wδ

b(1− w)

1− wb−1

1− wb
≤ wδ

b(1− w)
,

where the last inequality is because 1−wb−1 ≤ 1−wb when 0 < w < 1. Therefore, we obtain
(8).
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