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Abstract

An important contribution to the literature on frequentist model averaging
(FMA) is the work of Hjort and Claeskens (2003), who developed an asymp-
totic theory for frequentist model averaging in parametric models based on
a local mis-specification framework. They also proposed a simple method for
constructing confidence intervals of the unknown parameters. Our paper shows
that the confidence intervals based on the FMA estimator suggested by Hjort
and Claeskens (2003) are asymptotically equivalent to that obtained from the
full model under both parametric and the varying-coefficient partially linear
models. Thus, as long as interval estimation rather than point estimation is
concerned, the confidence interval based on the full model already fulfills the
objective and model averaging provides no additional useful information.
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1. Introduction

Model selection aims to choose the best single model among all candi-
dates that can be used to fit the given set of data. Well-known criteria devel-
oped for searching the ”best” model include the AIC (Akaike, 1973), Mallows’
Cp (Mallows, 1973), BIC (Schwarz, 1978), RIC (Foster and George, 1994),
FIC (Claeskens and Hjort, 2003), among others. No matter which criterion
is adopted, the searching process recognizes the existence of more than one
plausible model structure, thus additional uncertainty is introduced associ-
ated with the choice of model. However, this uncertainty is seldom taken
into account when subsequent inferences are made based on the chosen model.
Hence, an overconfident inference about the unknown parameters results, such
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as underestimated variances and too optimistic confidence intervals (Hjort and
Claeskens, 2003; Wan and Zou, 2003; Danilov and Magnus, 2004; Claeskens
and Hjort, 2008; Liang et al., 2011; Zhang et al., 2012).

An alternative approach to model selection is model averaging, where a
weighted average estimator is obtained across a set of plausible models with
weights indicating the degree to which each model is trusted. Without at-
taching to a single model, model averaging can incorporate the uncertainty
aforementioned and thus does not suffer from the distortions usually associ-
ated with model selection. In addition, model averaging avoids the possibility
of selecting one very poor model, and thus holds promise for reducing the risk
in estimation (Leung and Barron, 2006).

Compared to its Bayesian counterpart which has long been popular among
statisticians (Hoeting et al., 1999; Clyde and George, 2004), the studies on fre-
quentist model averaging (FMA) are mostly of recent vintage. Unlike Bayesian
model averaging (BMA), FMA need not specify any prior distribution; yet how
to determine the optimal weighting schemes by a data-driven approach is the
biggest challenge. Since recently, a great deal of work has been done in this
area and important progress has been achieved. For example, Buckland et al.
(1997) suggested combining models using the exponent of the negative of the
AIC value as the weight for each candidate model. Yang (2001, 2003) de-
veloped an adaptive regression mixing method, and Yuan and Yang (2005)
further built on this method by implementing a model screening procedure
prior to model combinations. Leung and Barron (2006) proposed a weight
choice scheme based on risk minimization. Hansen (2007, 2008) and Wan
et al. (2010) investigated the properties of a model average estimator based
on the Mallows’ criterion. Magnus et al. (2010, 2011) considered a model av-
erage estimator that is semi-Bayesian and semi-frequentist. Schomaker et al.
(2010) considered FMA when observations are partially missing. Liang et al.
(2011) developed a weighting mechanism for FMA estimators that exhibits
optimality properties in terms of the mean squared error (MSE) of the esti-
mators. Of particular relevance to the current study is the work of Hjort and
Claeskens (2003) (hereafter referred to as HC 2003), who suggested a local mis-
specification framework for studying the limiting distributions and asymptotic
risk properties of model selection and averaging estimators in parametric mod-
els. HC (2003)’s approach has been extended to other model frameworks such
as the Cox’s proportional hazards models (Hjort and Claeskens, 2006), general
semi-parametric models (Claeskens and Carroll, 2007) (hereafter referred to
as CC 2007), and the generalized additive partial linear models (Zhang and
Liang, 2011). Useful surveys of this rapidly growing literature can be found
in Claeskens and Hjort (2008) and Wang et al. (2009). A recent example of
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FMA in the applied literature was given in Wan and Zhang (2009).

One major focus of the aforementioned studies was on the comparisons
of risk performances between model selection estimators and model average
estimators obtained from different weight choices. However, the comparisons
were mainly carried out for point estimators rather than interval estimators.
HC (2003) and CC (2007) investigated the interval estimation based on model
averaging. The former work proposed a simple method for constructing con-
fidence intervals for the unknown parameters, and showed that the resultant
intervals have a coverage probability that converges to the intended level in
large samples. CC (2007) demonstrated that all the results of HC (2003) hold
in the semi-parametric context, and the simulation study revealed that the
intervals based on AIC weights are remarkably close to those derived from
fitting the full model.

In the current paper, we prove that the confidence intervals constructed
along the lines of HC (2003) are asymptotically equivalent to those obtained
from the full model. Kabaila and Leeb (2006) stated this result as an ob-
servation without giving a proof due to its simplicity. However, the work in
Kabaila and Leeb (2006) was conducted in the parametric context. We prove
that this asymptotic equivalence result holds not only in parametric models,
but within the varying-coefficient partially linear (VCPL) models as well. The
VCPL model (Zhang et al., 2002; Fan and Huang, 2005) has been an impor-
tant development in the semi-parametric literature in recent years. It allows
the covariates in the model to interact in a flexible way, and includes vari-
ous semi-parametric models, such as the varying-coefficient model (Hastie and
Tibshirani, 1993) and the partially linear model (Engle et al., 1986), as special
cases. Hence, our result implies that as long as interval estimation rather than
point estimation is concerned, the confidence interval based on the full model
already fulfills the objective, and model averaging provides no additional use-
ful information.

The rest of the paper is organized as follows. Section 2 describes the
model setup. Section 3 presents the main theoretical results in the parametric
context. Section 4 extends the analysis to the VCPL model framework. Section
5 offers our concluding remarks and the Appendix contains the proofs of the
theorems.

2. Model framework and basic results

In this section, we summarize the key results of HC (2003) which provides
the basis of our analysis. Assume i.i.d observations Y1, ..., Yn come from density
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f which takes the form

ftrue(y) = f(y, θ, γ) = f(y, θ0, γ0 + δ/
√
n), (1)

where θ and γ are respectively p and q dimensional vectors, θ0 is the unknown
true value of θ, γ0 is fixed and known, and δ = (δ1, ..., δq)

> is a q dimensional
vector representing the degree of departure from the null model f(y, θ, γ0).
The inclusion of θ in the model is mandatory, while that of γ = (γ1, ..., γq)

> is
optional. This is the local misspecification framework suggested in HC (2003).
The parameter of interest is µtrue = µ(θ, γ) = µ(θ, γ0 + δ/

√
n). Clearly, there

are 2q submodels to consider in which δj = 0 for j ∈ SC and others are not,
where S is a subset of {1, ..., q} and SC is the complement of S. The submodel
S includes exactly the γj parameters for j ∈ S. Let θ̂S and γ̂S be respectively
the maximum likelihood estimators (MLEs) of θ and γjs in model S. The MLE

of µ = µ(θ, γ) is thus µ̂S = µ(θ̂S, γ̂S, γ0,SC), where γ̂j for j ∈ S are included
while other elements of γ are kept at their null values of γ0.

Denote Jfull as the (p + q) × (p + q) information matrix of the full model
evaluated at the null point (θ0, γ0), then

Jfull = V ar0

(
U(Y )

V (Y )

)
=

(
J00 J01

J10 J11

)

with inverse

J−1full =

(
J00 J01

J10 J11

)
,

where V ar0(M) is the variance matrix of M evaluated at the null point, and
U(y) = ∂ log f(y, θ0, γ0)/∂θ and V (y) = ∂ log f(y, θ0, γ0)/∂γ are the p and q
dimensional score functions, respectively.

Let πS be the projection matrix such that πSv = vS; that is, the vec-
tor v = (v1, ..., vq)

> is mapped to its subvector vS with components vj, j ∈
S. Define K = J11 = (J11 − J10J

−1
00 J01)

−1, KS = (πSK
−1π>S )−1, HS =

K−1/2π>SKSπSK
−1/2, and ω = J10J

−1
00 ∂µ/∂θ − ∂µ/∂γ. Then from HC (2003)

(Lemmas 3.2 and 3.3), we have

Dn = δ̂full =
√
n(γ̂full − γ0)

d−→ D ∼ Nq(δ,K), (2)

and

√
n(µ̂S − µtrue)

d−→ ΛS ≡
(
∂µ

∂θ

)>
J−100 M + ω>(δ −K1/2HSK

−1/2D), (3)
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where
d−→ denotes convergence in distribution, γ̂full is the MLE of γ under the

full model, M ∼ Np(0, J00) is independent of D, and the partial derivatives
are evaluated at the null point (θ0, γ0).

With each submodel estimator being a candidate, the model averaging
estimator takes the form

µ̂ =
∑
S

c(S | Dn)µ̂S, (4)

where c(S | Dn)’s are weight functions and it is required that
∑

S c(S|d) = 1
for each d. Theorem 4.1 in HC (2003) showed that

√
n(µ̂− µtrue)

d−→ Λ ≡
(
∂µ

∂θ

)>
J−100 M + ω>{δ − δ̂(D)}, (5)

where δ̂(D) = K1/2{
∑

S c(S | D)HS}K−1/2D. Moreover, the asymptotic risk
of µ̂ is

Ra(µ̂, µ) = E(Λ2) = τ 20 + E{ω>δ̂(D)− ω>δ}2,

where τ 20 = (∂µ/∂θ)> J−100 (∂µ/∂θ).

The asymptotic distribution of the model averaging estimator µ̂ is non-
normal. HC (2003) then suggested an approach of constructing the confidence
interval based on the model averaging estimator. The confidence limits are
developed as

lown = µ̂− ω̂>[Dn − δ̂(Dn)]/
√
n− uκ̂/

√
n,

upn = µ̂− ω̂>[Dn − δ̂(Dn)]/
√
n+ uκ̂/

√
n,

(6)

where ω̂ and κ̂ are consistent estimators of ω and κ = (τ 20 +ω>Kω)1/2, respec-
tively, and u is a standard normal quantile. They showed that the coverage
probability of this proposed interval converges to the intended level in large
samples, i.e.,

Pr
{
µtrue ∈ (lown, upn)

}
→ 1− α,

where 1− α is the nominal coverage probability.

3. Asymptotic equivalence of confidence intervals

This section shows that the confidence interval with lower and upper limits
(6) is asymptotically equivalent to that constructed based on the full model
estimator that asymptotically follows a normal distribution. It is obtained
from (3) that the limiting variable corresponding to the full model is Λfull ≡
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(
∂µ
∂θ

)>
J−100 M + ω>(δ − D) which has an N(0, κ2) distribution. Accordingly,

the lower and upper limits of the confidence interval obtained from the full
model estimation are respectively

lowfull = µ̂full − uκ̂/
√
n,

upfull = µ̂full + uκ̂/
√
n,

(7)

where µ̂full denotes the estimator of µ under the full model. Note that the
difference between the lengths of the intervals (6) and (7) is of order oP ( 1√

n
),

and ω̂ and κ̂ are consistent estimators. In what follows, we show that the dif-
ference between the centers of the two intervals is also of order oP ( 1√

n
). This

result, once proved, indicates that the intervals (6) and (7) are asymptotically
equivalent.

From HC (2003), we have(
θ̂S − θ0
γ̂S − γ0,S

)
= J−1S

(
Ūn

V̄n,S

)
+ oP (

1√
n

)

= J−1S

(
I 0

0 πS

)(
Ūn

V̄n

)
+ oP (

1√
n

),

(8)

where Ūn = 1
n

∑n
i=1 U(Yi), V̄n = 1

n

∑n
i=1 V (Yi), and

JS = V ar0

(
U(Y )

VS(Y )

)
=

(
J00 J01π

>
S

πSJ10 πSJ11π
>
S

)
.

In particular, (
θ̂full − θ0
γ̂full − γ0

)
= J−1full

(
Ūn

V̄n

)
+ oP (

1√
n

), (9)

where θ̂full is the MLE of θ under the full model.
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From equations (8) and (9), we obtain that(
θ̂S − θ0
γ̂S − γ0,S

)
=J−1S

(
I 0

0 πS

)
Jfull

(
θ̂full − θ0
γ̂full − γ0

)
+ oP (

1√
n

)

=

(
J−100 + J−100 J01π

>
SKSπSJ10J

−1
00 −J−100 J01π

>
SKS

−KSπSJ10J
−1
00 KS

)
×(

I 0

0 πS

)(
J00 J01

J10 J11

)(
θ̂full − θ0
γ̂full − γ0

)
+ oP (

1√
n

)

=

(
I J−100 J01(I − π>SKSπSK

−1)

0 KSπSK
−1

)(
θ̂full − θ0
γ̂full − γ0

)
+ oP (

1√
n

).

Therefore, we have

θ̂S − θ0 = (θ̂full − θ0) + J−100 J01(I − π>SKSπSK
−1)(γ̂full − γ0) + oP (

1√
n

), (10)

and

γ̂S − γ0,S = KSπSK
−1(γ̂full − γ0) + oP (

1√
n

). (11)

By a Taylor series expansion,

µ̂S = µ(θ̂S, γ̂S)

= µ(θ0, γ0) +
(∂µ
∂θ

)>
(θ̂S − θ0) +

(∂µ
∂γ

)>
π>S (γ̂S − γ0,S) + oP (

1√
n

),
(12)

and

µ̂full = µ(θ̂full, γ̂full)

= µ(θ0, γ0) +
(∂µ
∂θ

)>
(θ̂full − θ0) +

(∂µ
∂γ

)>
(γ̂full − γ0) + oP (

1√
n

).
(13)
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Substituting equations (10) - (13) into (4), we derive that

µ̂ =µ(θ0, γ0) +
(∂µ
∂θ

)>∑
S

c(S|Dn)(θ̂S − θ0) +
(∂µ
∂γ

)>∑
S

c(S|Dn)π>S (γ̂S − γ0,S) + oP (
1√
n

)

=µ(θ0, γ0) +
(∂µ
∂θ

)>[
(θ̂full − θ0) + J−100 J01

(
I −

∑
S

c(S|Dn)π>SKSπSK
−1)(γ̂full − γ0)

]
+
(∂µ
∂γ

)>[∑
S

c(S|Dn)π>SKSπSK
−1(γ̂full − γ0)

]
+ oP (

1√
n

)

=µ(θ0, γ0) +
(∂µ
∂θ

)>
(θ̂full − θ0) +

(∂µ
∂γ

)>
(γ̂full − γ0)

+
(∂µ
∂θ

)>
J−100 J01(γ̂full − γ0)−

(∂µ
∂γ

)>
(γ̂full − γ0)

−
[(∂µ
∂θ

)>
J−100 J01 −

(∂µ
∂γ

)>]∑
S

c(S|Dn)π>SKSπSK
−1(γ̂full − γ0) + oP (

1√
n

)

=µ̂full + ω>

[
I −K1/2

{∑
S

c(S|Dn)K−1/2π>SKSπSK
−1/2

}
K−1/2

]
(γ̂full − γ0) + oP (

1√
n

)

=µ̂full + ω>[Dn − δ̂(Dn)]/
√
n+ oP (

1√
n

). (14)

Upon the comparison among equations (6), (7) and (14), we obtain that
lown = lowfull + oP ( 1√

n
) and upn = upfull + oP ( 1√

n
). Thus, the two confidence

intervals, based on the model averaging estimator and the full model estima-
tor, are asymptotically equivalent. This result is obtained in the parametric
context; we extend this analysis to the semi-parametric model framework in
the next section.

4. Extension to varying-coefficient partially linear models

Consider varying-coefficient partially linear (VCPL) model (Zhang et al.,
2002; Fan and Huang, 2005):

Y = Z>β +X>α(T ) + ε, (15)

where Y is the response variable and (Z,X, T ) are covariates, β = (θ̃>, γ̃>)>

is a (p + q) dimensional parametric coefficient vector with θ̃ and γ̃ being p
and q dimensional respectively, α(·) = (α1(·), ..., αr(·))> is an r dimensional
unknown coefficient function, and ε is a random error vector with mean 0 and
variance σ2, and it is independent of (Z,X, T ). Following Fan and Huang
(2005), we assume that the dimension of T is one. The VCPL model includes
many common models as special cases. For example, when β ≡ 0 , it reduces
to the varying-coefficient model (Hastie and Tibshirani, 1993), and when r = 1
and X ≡ 1, it becomes the partially linear model (Engle et al., 1986).
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Similar to the local mis-specification framework in the preceding analysis

under parametric setup, we assume β =

(
θ̃

γ̃

)
=

(
θ̃

δ̃/
√
n

)
, where the parame-

ters δ̃1, ..., δ̃q represent the degrees of model departure in directions 1, ..., q from
the narrow model for which γ̃ = 0 as in CC (2007).

For any submodel S, it includes all elements of θ̃, while contains only cer-
tain elements of γ̃. Let θ̃S and γ̃S be the coefficients in model S. The profile
least-squares method suggested in Fan and Huang (2005) can be used to esti-

mate βS = (θ̃>S , γ̃
>
S )> and the estimator is denoted by β̂S = (ˆ̃θ>S , ˆ̃γ

>
S )>. Define

Mn1 =
√
n(ˆ̃θfull− θ0) and Mn2 =

√
nˆ̃γfull, where θ̃full and γ̃full are the coefficients

in the full model. Let B = E(ZZ>)−E
[
E(ZX>|T )E(XX>|T )−1E(XZ>|T )

]
and partition B comfortably with the dimensions of θ̃ and γ̃ into

(
B11 B12

B21 B22

)
.

A consistent estimator of B is Bn =

(
Bn11 Bn12

Bn21 Bn22

)
= Z>(In − S)>(In − S)Z,

where Z = (Z1, ..., Zn)> is the sample matrix of Z, and S is the smoothing
matrix as defined in Fan and Huang (2005). Note that M1 +B−111 B12(M2 − δ)
and M2 are stochastically independent.

Consider the parameter of interest µ̃true = µ̃(θ̃, γ̃). Let the estimator based

on the reduced model S be ˆ̃µS = µ̃(ˆ̃θS, ˆ̃γS). The following theorem is then
obtained.

Theorem 1. Assume that µ̃ is differentiable at β0 =

(
θ̃0

0q×1

)
. If conditions

(C1) - (C6) in the Appendix are satisfied, and ε and (Z,X, T ) are independent,
then we have

√
n(ˆ̃µS − µ̃true)

d−→ Λ̃S =µ̃>
θ̃

[M1 +B−111 B12(M2 − δ̃)]

+ ω̃>
(
δ̃ − A−1/2H̃sA

1/2M2

)
,

(16)

where M1 and M2 are the limiting variables of Mn1 and Mn2 respectively, µ̃θ̃ =
∂µ(θ̃0,0)

∂θ̃
, µ̃γ̃ =

∂µ̃(θ̃0,0)
∂γ̃

, ω̃ = B21B
−1
11 µ̃θ̃ − µ̃γ̃, A = B22 − B21B

−1
11 B12, and H̃S =

A1/2π>S (πSAπ
>
S )−1πSA

1/2.

Consider the FMA estimator

ˆ̃µ =
∑
S

c̃(S|Mn2)ˆ̃µS, (17)
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where c̃(S|Mn2)’s are weight functions and it is required that
∑

S c̃(S|d) = 1

for each d. The asymptotic properties of the estimator ˆ̃µ are illustrated in the
following theorem.

Theorem 2. Assume that µ̃ is differentiable at β̃0, and c(S|·) is a.s. continu-
ous. If conditions (C1) - (C6) in the Appendix hold, and ε and (Z,X, T ) are
independent, then we have

√
n(ˆ̃µ− µ̃true)

d−→ Λ̃ = µ̃>
θ̃

[
M1 +B−111 B12(M2 − δ̃)

]
+ ω̃>

(
δ̃ −Q(M2)M2

)
,

E(Λ̃) = ω̃>
(
δ̃ − E[Q(M2)M2]

)
, and

Var(Λ̃) = τ̃ 20 + ω̃>Var
[
Q(M2)M2

]
ω̃,

where τ̃ 20 = µ̃>
θ̃
B−111 µ̃θ̃ and Q(M2) = A−1/2

(∑
S c̃(S|M2)H̃S

)
A1/2.

This theorem reveals that the asymptotic distribution of the model av-
eraging estimator is non-normal; we thus follow the approach suggested in
HC (2003) and CC (2007) and develop the confidence limits for the interval
estimate of µ̃ as

l̃own = ˆ̃µ− ˆ̃ω>[Mn2 −Q(Mn2)Mn2]/
√
n− uˆ̃κ/

√
n,

ũpn = ˆ̃µ− ˆ̃ω>[Mn2 −Q(Mn2)Mn2]/
√
n+ uˆ̃κ/

√
n,

(18)

where ˆ̃ω and ˆ̃κ are consistent estimators of ω̃ and κ̃ =
√

(µ̃>
θ̃
, µ̃>γ̃ )B−1(µ̃>

θ̃
, µ̃>γ̃ )>,

respectively, Qn(Mn2) = A
−1/2
n

(∑
S c(S|Mn2)H̃nS

)
A

1/2
n , An = Bn22−Bn21B

−1
n11Bn12,

and H̃nS = A
1/2
n π>S (πSAnπ

>
S )−1πSA

1/2
n . The confidence interval bounded by

l̃own and h̃ighn covers the true parameter with probability Pr
{
µ̃true ∈ {l̃own, h̃ighn}

}
= Pr{−u ≤ Tn ≤ u}, where

Tn =

√
n(ˆ̃µ− µ̃true)− ˆ̃ω>[Mn2 −Qn(Mn2)Mn2]

ˆ̃κ
.

From the Continuous mapping theorem and Slutsky theorem, we have{√
n(µ̂− µtrue),Mn2

} d−→
{
µ̃>
θ̃

[
M1 +B−111 B12(M2 − δ̃)

]
+ ω̃>

(
δ̃ −Q(M2)M2

)
,M2

}
.

Thus,

Tn
d−→

µ̃>
θ̃

[
M1 +B−111 B12(M2 − δ̃)

]
+ ω̃>(δ̃ −M2)

κ̃
=
µ̃>
θ̃
M1 + µ̃>γ̃ (M2 − δ̃)

κ̃
.

Since µ̃>
θ̃
M1 + µ̃>γ̃ (M2 − δ̃) ∼ N(0, κ̃2), we have Pr{−u ≤ Tn ≤ u} → 1− α.
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Denoting ˆ̃µfull as the estimator of µ̃ under the full model, then we obtain
from Theorem 1 that

√
n(ˆ̃µfull − µ̃true)

d−→µ̃>
θ̃

[M1 +B−111 B12(M2 − δ̃)] + ω̃>
(
δ̃ −M2

)
= µ̃>

θ̃
M1 + µ̃>γ̃ (M2 − δ̃).

The confidence limits of µ̃true based on µ̂full are thus{
l̃owfull = ˆ̃µfull − uˆ̃κ/

√
n

ũpfull = ˆ̃µfull + uˆ̃κ/
√
n.

(19)

Through a Taylor series expansion, we have

ˆ̃µS = µ̃(ˆ̃θS, ˆ̃γS) = µ̃(θ̃0, 0) +

(
µ̃θ̃
πµ̃γ̃

)>( ˆ̃θS − θ̃0
ˆ̃γS

)
+ oP (

1√
n

). (20)

Substituting equation (20) into the definition of ˆ̃µ in equation (17), we then
obtain that

ˆ̃µ = µ̃(θ̃0, 0) +
∑
S

c̃(S|Mn2)

(
µ̃θ̃
πµ̃γ̃

)>( ˆ̃
θS − θ̃0

ˆ̃γS

)
+ oP (

1√
n

)

= µ̃(θ̃0, 0) + µ̃>
θ̃

(
ˆ̃
θfull − θ̃0) +

∑
S

c̃(S|Mn2)
(
µ̃>
θ̃
Cns ˆ̃γfull + µ̃>γ̃ π

> ˆ̃γS

)
+ oP (

1√
n

)

= µ̃(θ̃0, 0) + µ̃>
θ̃

(
ˆ̃
θfull − θ̃0) +

∑
S

c̃(S|Mn2)
(
µ̃>
θ̃
Cns ˆ̃γfull + µ̃>γ̃ A

−1/2
n H̃nSA

1/2
n

ˆ̃γfull

)
+ oP (

1√
n

)

= µ̃(θ̃0, 0) + µ̃>
θ̃

(
ˆ̃
θfull − θ̃0)

+
∑
S

c̃(S|Mn2)
{
µ̃>
θ̃
B−111 B12(Iq −A−1/2n H̃nSA

1/2
n ) + µ̃>γ̃ A

−1/2
n H̃nSA

1/2
n

}Mn2√
n

+ oP (
1√
n

)

= µ̃(θ̃0, 0) + µ̃>
θ̃

(
ˆ̃
θ − θ̃0) + µ̃>γ̃ ˆ̃γ + ω̃>{Mn2 −Q(Mn2)Mn2}/

√
n+ oP (

1√
n

), (21)

where Cns = B−1n11Bn12(I − A−1/2n HnsA
1/2
n ).

By a Taylor series expansion,

ˆ̃µfull = µ̃(θ̃0, 0) + µ̃>
θ̃

(ˆ̃θfull − θ̃0) + µ̃>γ̃ ˆ̃γfull + oP (
1√
n

). (22)

Therefore, we have

ˆ̃µfull = ˆ̃µ− ω̃>[Mn2 −Q(Mn2)Mn2]/
√
n+ oP (

1√
n

). (23)

Combining equations (18), (19) and (23), we obtain that l̃own = l̃owfull+oP ( 1√
n
)

and ũpn = ũpfull + oP ( 1√
n
). Hence, the confidence interval based on the model
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averaging estimator is asymptotically equivalent to that based on the full model
estimator.

Note that if µ̃ is a linear combination of θ̃ and γ̃, then the remainder in
(22) vanishes. Moreover, κ̃ and ω̃ are quantities associated with the full model
only, thus the estimators ˆ̃κ and ˆ̃ω are the same for both the full model and the
model averaging. Hence, if the parameter of interest is a linear combination
of regression coefficients, the confidence interval constructed from model aver-
aging will be exactly equivalent to that obtained under the full model. This
indicates that if the main concern of the investigator is interval estimation
rather than point estimation, the confidence interval based on the full model
is recommended. It not only serves the purpose of estimation, but provides
simplicity in computation as well.

Now we examine the finite sample performance of the FMA estimator
through a simulation example. The application of our method requires a proper
bandwidth h for the nonparametric component in the model, because h con-
trols the trade-off between the goodness-of-fit and the prediction capability of
the nonparametric part. In particular, smaller h results in a better goodness-
of-fit, while larger h increases the prediction capability. However, our main
concern is the estimation of parameters in the linear component of the model,
which is insensitive to the choice of the value of h (Fan and Huang, 2005).
In our simulations we use a cross-validation method to choose the bandwidth,
and the values of h are selected to be 0.25 and 0.15 for n = 100 and n = 200
respectively. Our simulation study is implemented on the VCPL model

Y = Z>β̃ +X>α(T ) + ε

= Z1θ̃1 + Z2θ̃2 + Z3θ̃3 + Z4γ̃1 + Z5γ̃2 + Z6γ̃3 + Z7γ̃4 + Z8γ̃5

+X1 sin(2πT ) +X2 sin(6πT ) + ε,

where Z = (Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8)
>, X = (X1, X2)

> β = (θ̃>, γ̃>)> =
((3, 1.5, 2), δ̃/

√
n)>, δ̃ = (0, 1.5, 0, 1, 0)>, Z1,....,Z8, X1 and X2 are covariates

each having a standard normal distribution with ρij being the correlation co-
efficients between covariates i and j of (Z>, X>)>, i, j = 1, ..., 10, and both T
and ε follow the standard normal distribution. Three cases are considered for
the correlation ρij:
Case 1. ρij = 0;
Case 2. ρij = 0.5|i−j|; and
Case 3. ρij = 0.6.
Our parameters of interest are µlinear = `>θ with ` = (1, 2, 1.5, 1, 1, 1, 1, 1)>

and µratio = θ̃1/θ̃2. In each case 1000 independent samples of size n are drawn.

12



Following Buckland et al. (1997)’s suggestion, we construct FMA estima-
tors by using smoothed AIC (S-AIC) and smoothed BIC (S-BIC) values, de-

fined as
exp(− 1

2
AICnS)∑

S exp(− 1
2
AICnS)

and
exp(− 1

2
BICnS)∑

S exp(− 1
2
BICnS)

respectively, as weights for each

candidate model S. We also consider the post-model selection estimators using
AIC and BIC, which are denoted as P-AIC and P-BIC estimators respectively.
They can be viewed as a model averaging estimator in the form of equation
(17) with indicator functions as its weights. For example, assuming that there
are no ties among the AIC values, we may write P-AIC estimator as

ˆ̃µAIC =
∑
S

I{AICS is the smallest} ˆ̃µS ≡
∑
S

c(S|Mn2)ˆ̃µS,

where AICS denotes the AIC value for model S. The same result holds for the
P-BIC estimator.

Table 1: Simulation results for µlinear

µlinear n=100(h=0.25) n=200(h=0.15)

ρ Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

MSE

S-AIC 0.1504 0.0749 0.1468 0.0649 0.0292 0.0538

S-BIC 0.1542 0.0811 0.1496 0.0660 0.0311 0.0542

P-AIC 0.1811 0.0881 0.1533 0.0688 0.0310 0.0539

P-BIC 0.1679 0.0844 0.1528 0.0694 0.0310 0.0537

Full model 0.1945 0.0912 0.1565 0.0721 0.0320 0.0545

C.P.

Full model 93.8% 93.4% 93.3% 95.3% 95.3% 95.5%

Upper

Full model 10.1266 9.8320 10.0018 9.6995 9.5306 9.6404

Lower

Full model 8.4458 8.7077 8.5418 8.6401 8.8161 8.7095

We compare the coverage probabilities (C.P.) and the upper and lower lim-
its of confidence intervals constructed based on model averaging, post-model
selection, as well as the full model. Meanwhile, we also evaluate the MSE
performances of FMA estimator, post-model selection estimator, and the esti-
mator derived from the full model. The results are reported in Tables 1 and
2. We observe that model averaging has an advantage over model selection
estimators and full model estimation with respect to the MSE values, which

13



indicates that the selection of appropriate weights is necessary for point es-
timates. In the case where the parameter of interest is µlinear (Table 1), the
confidence intervals developed from model averaging are exactly the same as
those obtained from the full model, hence only the results derived under the
full model are reported. When we focus on the parameter µratio, Table 2 shows
that the both the coverage probabilities and confidence limits of the intervals
developed based on model averaging are very close to those obtained under
the full model, and the differences in the confidence limits decrease with the
sample size.

Table 2: Simulation results for µratio

µratio n=100(h=0.25) n=200(h=0.15)

ρ Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

MSE

S-AIC 0.0340 0.0668 0.0801 0.0137 0.0275 0.0327

S-BIC 0.0339 0.0688 0.0853 0.0137 0.0280 0.0342

P-AIC 0.0360 0.0733 0.0901 0.0140 0.0284 0.0342

P-BIC 0.0363 0.0709 0.0845 0.0140 0.0282 0.0330

Full model 0.0362 0.0737 0.0941 0.0139 0.0285 0.0350

C.P.

S-AIC 93.6% 94.1% 93.1% 95% 94.6% 95.2%

S-BIC 93.6% 94% 93.1% 95% 94.6% 95.2%

P-AIC 93.6% 94.1% 93.2% 95% 94.6% 95.3%

P-BIC 93.6% 94.1% 93.2% 95% 94.6% 95.3%

Full model 93.6% 94% 93.2% 95% 94.6% 95.3%

Upper

S-AIC 2.3689 2.5319 2.5938 2.2307 2.3307 2.3686

S-BIC 2.3686 2.5310 2.5921 2.2306 2.3304 2.3680

P-AIC 2.3681 2.5302 2.5911 2.2306 2.3304 2.3680

P-BIC 2.3685 2.5309 2.5926 2.2306 2.3306 2.3686

Full model 2.3679 2.5297 2.5901 2.2305 2.3303 2.3677

Lower

S-AIC 1.6469 1.5059 1.4504 1.7774 1.6871 1.6533

S-BIC 1.6466 1.5050 1.4488 1.7773 1.6869 1.6528

P-AIC 1.6461 1.5042 1.4477 1.7772 1.6868 1.6527

P-BIC 1.6465 1.5049 1.4492 1.7773 1.6870 1.6533

Full model 1.6459 1.5037 1.4467 1.7772 1.6867 1.6524
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5. Conclusions

This paper derives the asymptotic equivalence of the confidence intervals
based on the model averaging estimator and the full model estimator under
the framework of general parametric models and the semi-parametric VCPL
models. More specifically, if the parameter of interest is a linear combination
of regression coefficients, the intervals obtained from the FMA and full model
are exactly equivalent. Hence, if the investigator’s main interest is in interval
estimation, the confidence interval based on the full model is recommended
given its computational ease. Since our simulation findings suggest that FMA
estimator generally has a smaller MSE than that obtained from the full model,
alternative methods of developing confidence intervals based on the FMA esti-
mator may exist which result in more efficient estimates. This is an issue that
warrants further study. Moreover, whether this equivalence applies to other
model frameworks provides another fruitful avenue for future research.

Appendix: Proofs

The proofs of Theorems 1 and 2 require the following technical conditions,
which were also used in Fan and Huang (2005).

(C1) The random variable T has bounded support Ω, and its density f is
Lipschitz continuous and bounded away from 0 on its support.

(C2) For each T ∈ Ω, the r × r matrix E(ZZ>|T ) is non-singular, and
E(ZZ>|T ), E(XX>|T ) and E(ZX>|T ) are all Lipschitz continuous.

(C3) There exists some t > 2 s.t. E‖X‖2t < ∞, E‖Z‖2t < ∞, E‖U‖2t < ∞
and E‖ε‖2t <∞, and ρ < 2− t−1 s.t. nh2ρ−1 →∞.

(C4) αj(T ), j = 1, ..., r, is twice continuously differentiable in T ∈ Ω.

(C5) K(·) is a symmetric density with compact support.

(C6) The conditions nh8 → 0 and nh2/[log(n)]2 → ∞ are satisfied for the
bandwidth h.

Proof of Theorem 1. By the Taylor series expansion,

µ̃true = µ̃(θ̃0,
δ̃√
n

) = µ̃(θ̃0, 0) + µ̃>γ̃
δ̃√
n

+ oP (
1√
n

),

and

ˆ̃µs = µ̃(ˆ̃θs, ˆ̃γs) = µ̃(θ̃0, 0) +

(
µ̃θ̃
πSµ̃γ̃

)>( ˆ̃θs − θ̃0
ˆ̃γs

)
+ oP (

1√
n

)
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Thus,

ˆ̃µs − µ̃true

=

(
µ̃θ̃
πSµ̃γ̃

)>( ˆ̃θs − θ̃0
ˆ̃γs

)
− µ̃>γ̃

δ√
n

+ oP (
1√
n

)

=

(
µ̃θ̃
πSµ̃γ̃

)>(
Ip Cns

0r×q (πSAnπ
>
s )−1πSAn

)(
ˆ̃θfull − θ̃0

ˆ̃γfull

)
− µ̃>γ̃

δ√
n

+ oP (
1√
n

).

Expending the matrix product, we obtain that

√
n(ˆ̃µs − µ̃true) = µ̃>

θ̃
[Mn1 +B−111 B12(Mn2 − δ)] + ω>

(
δ − A−1/2n HsA

1/2
n Mn2

)
.

Using the similar approach in Fan and Huang (2005), we can show that(
Mn1

Mn2

)
=
√
n

(
ˆ̃θfull − θ̃0

ˆ̃γfull

)
d−→

(
M1

M2

)
∼ N

((
0

δ

)
, B−1

)
.

Based on the Continuous mapping theorem and Slutsky Theorem,
√
n(ˆ̃µs−

µ̃true) will converge in distribution to Λ̃s.

Proof of Theorem 2. From definition of the FMA estimator in equation (17),
we have

√
n(ˆ̃µ− µ̃true) =

∑
S

c̃(S|Mn2)×
√
n(ˆ̃µS − µ̃true).

From the proof of Theorem 1, ˆ̃µS − µ̃true is a linear function of Mn1 and Mn2.
Since c(S|·) is almost surely continuous, the equation above is an almost surely
continuous function of Mn1 and Mn2. Applying the Continuous mapping theo-
rem, Slutsky theorem, and Theorem 1, we then obtain the required result.
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pp. 267–281. Budapest: Akademiai Kaidó.
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