
Adaptive LASSO for Varying-Coefficient Partially Linear

Measurement Error Models

HaiYing Wang1, Guohua Zou2, and Alan T.K. Wan3

1Department of Statistics, University of Missouri, Columbia, Missouri 65211, U.S.A.
(Email: hwzq7@mail.missouri.edu)

2MADIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, P. R. China (Email: ghzou@amss.ac.cn)

3Department of Management Sciences, City University of Hong Kong, Kowloon, Hong
Kong (Email: Alan.Wan@cityu.edu.hk)

Abstract

This paper extends the adaptive LASSO (ALASSO) for simultaneous parameter estimation
and variable selection to a varying-coefficient partially linear model where some of the covariates
are subject to measurement errors of an additive form. We draw comparisons with the SCAD,
and prove that both the ALASSO and SCAD attain the oracle property under this setup. We
further develop an algorithm in the spirit of LARS for finding the solution path of the ALASSO
in practical applications. Finite sample properties of the proposed methods are examined in
a simulation study, and a real data example based on the U.S. Department of Agriculture’s
Continuing Survey of Food Intakes by Individuals (CSFII) is considered.

Keywords: Adaptive LASSO, LARS, Measurement Errors, Model Selection, Oracle Property,
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1 Introduction

Consider the following semi-parametric varying-coefficient partially linear model with additive mea-
surement errors on some of the covariates:

Y = X>β + Z>α(T ) + ε,

W = X + U,

ζ = Z + V,

(1)

where Y is a univariate response variable; X and Z are d×1 and r×1 covariate vectors respectively;
β is a d-dimensional unknown parameter vector associated with X; α(·) = (α1(·), ..., αr(·))> is a
r-dimensional unknown function vector associated with Z; ε is a disturbance term with mean 0
and variance σ2, and U and V, which have mean 0 and variance-covariance matrices Σu and
Σv respectively, represent the measurement errors associated with W and ζ, the proxies for the
unobserved X and Z. It is assumed for simplicity that T is univariate; (X>,Z>, T ), U, V and ε
are mutually independent, and Σu and Σv are known. The (more realistic) case where Σu and Σv

are unknown will be taken up later in the paper. We refer to model (1) as the varying-coefficient
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partially linear measurement error (VCPLE) model. Clearly, when U ≡ 0 and V ≡ 0, the VCPLE
model reduces to the well-known varying-coefficient partially linear (VCPL) model. The main
attraction of the VCPL model is that it allows T and Z to interact in a flexible way such that each
different level of T is associated with a different linear model. Recent papers on the VCPL model
emphasize the development of estimation procedures; e.g., Zhang et al. (2002), Fan and Huang
(2005), You and Zhou (2006) and Huang and Zhang (2009).

There is a long standing literature on statistical modeling subject to measurement errors. More
recently, attention has focused on refinements to various semi-parametric estimation methods in the
face of measurement errors. Liang et al. (1999) applied the so-called “correction for attenuation”
to the semi-parametric partially linear model in the context of measurement errors, and derived
the asymptotic properties of the resultant estimator. Liang (2000) demonstrated the asymptotic
normality of the estimator for the parametric component in a partially linear model when variables
in the non-parametric component are measured with errors. You et al. (2006) proposed a corrected
local polynomial estimator for the varying-coefficient model when the covariates are measured with
errors. You and Chen (2006) modified the estimation method of Fan and Huang (2005) for the
VCPL model to account for measurement errors in the covariates of the parametric part. Liang
and Li (2009) considered the problem of variable selection in a partially linear model based on the
SCAD penalty function (Fan and Li, 2001), and established the oracle property of the proposed
estimator. Ma and Li (2009) studied the variable selection problem for the general non-linear and
a class of semi-parametric models under measurement errors. Other studies on semi-parametric
modeling involving errors-in-variables include Tsiatis and Ma (2004), Ma and Carroll (2006), Hall
and Ma (2007), Liang et al. (2007), among others.

The current paper proposes a unified estimation and variable selection method for the VCPLE
model in the spirit of the adaptive LASSO (ALASSO) developed by Zou (2006) and Zhang and
Lu (2007). The original LASSO (“least absolute shrinkage and selection operator”), introduced
by Tibshirani (1996), is a technique for simultaneous parameter estimation and variable selection
based on the penalized least-squares method. It is a variant of the Bridge (Frank and Friedman,
1993), the Smoothly Clipped Absolute Deviation (SCAD) (Fan and Li, 2001), and the Least Angle
Regression Selection (LARS) (Efron et al., 2004) estimators. One characteristic of the LASSO is
that it shrinks some of the coefficients to exactly zero, and in doing so, reduces the estimation
variance while providing an interpretable final model. The LASSO technique has found widespread
applications in many fields of science. While the LASSO is known to be near mini-max optimal
as well as consistent under certain regularity conditions, Zou (2006) showed that it falls short
of attaining the oracle property (Fan and Li, 2001, 2002, 2004; Fan and Peng, 2004; Cai et al.,
2005). By this latter property, an estimator estimates a zero coefficient exactly as zero with
probability approaching one, while still being asymptotically normal for the non-zero coefficients
in large samples. In this respect, the LASSO is inferior to other competing methods like the
SCAD estimator which possesses the oracle property. To reconcile this shortcoming of the LASSO,
Zou (2006) and Zhang and Lu (2007) independently developed the ALASSO, which uses adaptive
weights for penalizing different coefficients in the `1 penalty. This is unlike the original LASSO that
uses the same penalty for all the coefficients. Zou (2006) and Zhang and Lu (2007) demonstrated
that the ALASSO possesses the aforementioned oracle property with optimal convergence rate in
addition to enjoying all the good properties of the LASSO including near mini-max optimality.
Compared to the SCAD estimator which has a drawback in that its penalty function is non-convex,
the ALASSO has the advantage of having a convex penalty form which guarantees the existence of
a unique solution. For the linear regression model, Zou (2006) showed that the ALASSO estimates
can be readily calculated using the LARS algorithm (Efron et al., 2004). Generalizations of the
LASSO and ALASSO to cases of variable selection by groups rather than individually were made
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by Yuan and Lin (2006) and Wang and Leng (2008).
In the context of the VCPL model, Zhao and Xue (2009) tackled the variable selection problem

in the parametric component of the model by the SCAD method. Zhao and Xue (2010) applied
the group version of the ALASSO developed by Wang and Leng (2008) for variable selection in
the VCPLE model. More recently, Zhao and Xue (2011) considered a VCPLE model, a special
case of model (1), in which the covariates of the non-parametric part are assumed to be free of
measurement errors.

In this paper, a modified version of the LARS algorithm is proposed to obtain the solutions for
the target function. This makes it possible to provide the entire solution paths of the coefficients
corresponding to all tuning parameters, whereas with other algorithms such as the quadratic ap-
proximation, the solution pertains only to the tuning parameter specified at the outset. Another
attraction of the LARS is that it gives the exact minimum of the target function, whereas the
quadratic approximation only results in an approximate minimum. Yet in spite of these merits,
LARS does not require enormous amounts of computing power to execute; for the linear model,
LARS is no more intricate computationally than an ordinary least-squares fit to the full model
(Efron et al., 2004). In the context of the linear model, Zou (2006) used LARS to obtain the
solution path of the ALASSO. To the best of our knowledge, the implementation of LARS coupled
with a LASSO-type penalty function has not been explored when the covariates cannot be observed
precisely. One purpose of the present paper is to take some steps in this direction by modifying
the existing LARS algorithm to cater for the special features of the VCPLE model. We find that
the modified algorithm performs well for both variable selection and parameter estimation. We
also examine the asymptotic properties of the SCAD estimator in the context of the VCPLE model
given by (1). Our results show that SCAD retains the oracle property under this set-up.

The remainder of the paper is organized as follows. In Section 2, we discuss the estimation
method and the ALASSO penalty function. In Section 3, in addition to providing the main theo-
retical results, we also describe the modified LARS algorithm. Results of simulation experiments
designed to investigate the small sample properties of the method along with an example based on
real data are contained in Section 4. Section 5 concludes, and proofs of technical results are given
in two appendices.

2 Estimation method and the ALASSO penalty

We will consider parameter estimation and variable selection within the framework of profile least-
squares estimation (Fan and Huang, 2005; You and Chen, 2006). To motivate discussion, assume
temporarily that there are no measurement errors and we observe i.i.d. samples of {Yi,Xi,Zi, Ti},
i = 1, ..., n. For any t in the neighbourhood of t0, let αj(t) be approximated by the following linear
function:

αj(t) ≈ αj(t0) + α′j(t0)(t− t0) ≡ aj + bj(t− t0), j = 1, 2, ..., r.

If β is known, then we can obtain solutions to aj and bj by solving the following weighted local
least-squares problem:

min
a1,...,ar,b1,...br

n∑
i=1

{
Yi −X>i β −

r∑
j=1

Zij
[
aj + bj(Ti − t0)

]}2

Kh(Ti − t0),

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a bandwidth. The solution is given by(
ă1(t), ..., ăr(t), hb̆1(t), ..., hb̆r(t)

)>
=
(

(DZ
t )>ΩtD

Z
t

)−1
(DZ

t )>Ωt(Y −Xβ),
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where Y = (Y1, ..., Yn)>, X = (X1, ...,Xn)>,

Ωt = diag{Kh(T1 − t), ...,Kh(Tn − t)} and DZ
t =

Z>1
T1−t
h Z>1

...
...

Z>n
Tn−t
h Z>n


n×2r

Substituting (ă1(t), ..., ăr(t))
> into model (1), we obtain

Yi − Y̆i = (Xi − X̆i)
>β + εi,

where Y̆i = (Z>i , 0)
[
(DZ

ti )
>ΩtiD

Z
ti

]−1
(DZ

ti )
>ΩtiY, and X̆i =

{
(Z>i , 0)

[
(DZ

ti )
>ΩtiD

Z
ti

]−1
(DZ

ti )
>ΩtiX

}>
.

Then β in the above regression can be estimated, as in Fan and Huang (2005), by the least-squares

estimator β̆LS =
{∑n

i=1(Xi − X̆i)
⊗2
}−1{∑n

i=1(Xi − X̆i)(Yi − Y̆i)
}

, where M⊗2 = MM>.
When the covariates are subject to measurement errors such that Xi’s are unobserved and re-

placed by the surrogates Wi’s defined above, You and Chen (2006) proposed the following modified
least-squares estimator for estimating β:

β̆MLS = arg min
β

{
n∑
i=1

[
Yi − Y̆i − (Wi − W̆i)

>β
]2
− nβ>Σuβ

}
,

where W̆i = X̆i + Ŭi, Ŭi =
{

(Z>i , 0)
[
(DZ

ti )
>ΩtiD

Z
ti

]−1
(DZ

ti )
>ΩtiU

}>
, and U = (U1, ...,Un)>.

Now, when Zi’s are also subject to measurement errors and ζi’s are used instead, we propose
to modify β̆MLS to

β̂MLS = arg min
β

{
n∑
i=1

[
Yi − Ŷi − (Wi − Ŵi)

>β
]2
− nβ>Σuβ

}
, (2)

where Ŷi = ψiY, ψi = (ζ>i , 0)
[
(Dζ

ti
)>ΩtiD

ζ
ti
− φti

]−1
(Dζ

ti
)>Ωti , Ŵi = X̂i + Ûi, X̂i = {ψiX}>,

Ûi = {ψiU}>,

Dζ
ti

=

ζ
>
1

T1−ti
h ζ>1

...
...

ζ>n
Tn−ti
h ζ>n

 and φti =

n∑
j=1

(
1

Tj−ti
h

Tj−ti
h

(Tj−ti)2
h2

)
⊗ ΣvKh(Tj − ti).

The term φt is a correction term suggested by You et al. (2006) for the the varying-coefficient model
under measurement errors. It has the purpose of correcting the bias introduced by measurement
errors. You et al. (2006) showed that the estimator of the unknown function under their model
setup is inconsistent if this term is dropped.

Now, by incorporating the `1 penalty in the objective function in (2), we obtain the LASSO
estimator of β, defined as:

β̂LASSO = arg min
β

{
n∑
i=1

[
Yi − Ŷi − (Wi − Ŵi)

>β
]2
− nβ>Σuβ + λn

d∑
j=1

|βj |

}
, (3)

where the last term in the above equation is the `1 penalty. The purpose of this penalty is to
shrink some of the coefficients to exactly zero. This makes the LASSO a simultaneous estimation
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and variable selection procedure. However, as noted by Zou (2006), because the `1 penalty forces
the coefficients to be equally penalized, no estimator based on the LASSO can attain the oracle
property. To reconcile this difficulty, Zou (2006) introduced the ALASSO, and proved under a
linear model setup that it possesses the oracle property. Here, we adopt Zou’s (2006) idea, and
propose the following ALASSO estimator under the VCPLE model setup discussed above:

β̂ = arg min
β

{
n∑
i=1

[
Yi − Ŷi − (Wi − Ŵi)

>β
]2
− nβ>Σuβ + λn

d∑
j=1

|βj |
|β̂∗j |γ

}
, (4)

where β̂
∗

is a consistent estimator of β, and γ > 0 is a constant - large values of γ generally result
in sparse models, and vice versa; Zhang and Lu (2007) fixed γ to 1, but in general, this parameter

may be chosen by cross-validation. One possible choice for β̂
∗

is the consistent estimator β̂MLS

in equation (2). The implementation of β̂ also requires estimates of the unknown Σu and Σv. To
estimate these matrices, it is useful to assume that there exist partially replicated observations such
that Wij = Xi + Uij and ζil = Zi + Vil are observed, j = 1, ..., J , l = 1, ..., L, i = 1, ..., n (Carroll
et al., 2006; Liang and Li, 2009). Then

Σ̂u =
1

n(J − 1)

n∑
i=1

J∑
j=1

(Wij − W̄i)
⊗2

and

Σ̂v =
1

n(L− 1)

n∑
i=1

L∑
l=1

(ζil − ζ̄i)⊗2

are consistent and unbiased estimators of Σu and Σv respectively, where W̄i =
∑J

j=1 Wij/J and

ζ̄i =
∑L

l=1 Wil/L. Now, denote Ūi =
∑J

j=1 Uij/J and V̄i =
∑L

l=1 Vil/L, then model (1) is
modified to 

Yi = X>i β + Z>i α(Ti) + εi,

W̄i = Xi + Ūi

ζ̄i = Zi + V̄i.

(5)

Correspondingly, the ALASSO estimator given in (4) is modified to

β̂ = arg min
β

{
n∑
i=1

[(
Yi − ˆ̄Yi − (W̄i − ˆ̄Wi)

>β
)2
− 1

J
β>Σ̂uβ

]
+ λn

d∑
j=1

|βj |
|β̂∗j |γ

}
, (6)

where ˆ̄Yi = ψ̄iY, ˆ̄Wi =
{
ψ̄iW̄

}>
, ψ̄i = (ζ̄

>
i , 0)

[
(Dζ̄

ti
)>ΩtiD

ζ̄
ti
− φ̄ti

]−1
(Dζ̄

ti
)>Ωti , W̄ = (W̄1, ...,W̄n),

Dζ̄
ti

=

ζ̄
>
1

T1−ti
h ζ̄

>
1

...
...

ζ̄
>
n

Tn−ti
h ζ̄

>
n

 and φ̄ti =
1

L

n∑
j=1

(
1

Tj−ti
h

Tj−ti
h

(Tj−ti)2
h2

)
⊗ Σ̂vKh(Tj − ti).

3 Main results and a modified LARS algorithm

The purpose of this section is three-fold. We will first present the key theoretical properties of
the ALASSO estimators in (4) and (6). This is followed by the development of a method for
constructing standard errors of the ALASSO estimates. Finally, we will discuss a LARS-type
algorithm for computing the ALASSO estimates in practice.
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3.1 Oracle property and standard errors construction

Without loss of generality, let the true value of β be β0 = (β>10,β
>
20)>, where β10 and β20 are

non-zero and zero vectors of dimensions s and d− s respectively. Let W(1), X(1) and U(1) be the

upper s× 1 sub-vectors of W, X and U respectively, and Σ
(11)
u be the s× s upper-left sub-matrix

of Σu that corresponds to U(1).

Theorem 1. Assume that Assumptions 1 - 6 in Appendix A hold. If λn/
√
n→ 0, and there exists

a sequence dn → ∞ such that dn(β̂
∗ − β0) = OP (1) and dγnλn/

√
n → ∞ as n → ∞, then with

probability approaching 1, the ALASSO estimator β̂ satisfies the following properties:

(a) Sparsity, i.e., β̂2 = 0, where β̂2 is the estimator of β20.

(b) Asymptotic normality, i.e.,

√
n
(
β̂1 − β10

) d−→ N
(

0, (B(11))−1F (11)(B(11))−1
)
, (7)

where β̂1 is the estimator of β10,

B(11) =E
[
X(1)(X(1))>

]
−E

[
E(X(1)Z>|T )[E(ZZ>|T )]−1E(X(1)Z>|T )>

]
+ E

[
E(X(1)Z>|T )[E(ZZ>|T )]−1Σv[E(ZZ>|T )]−1E(X(1)Z>|T )>

]
, and

F (11) =E
([

W(1) −E(X(1)Z>|T )[E(ZZ>|T )]−1ζ
] (
ε−U>β0

)
+ Σ(11)

u β10

)⊗2
,

if Σu and Σv are known, or

B(11) =E
[
X(1)(X(1))>

]
−E

[
E(X(1)Z>|T )[E(ZZ>|T )]−1E(X(1)Z>|T )>

]
+

1

L
E
[
E(X(1)Z>|T )[E(ZZ>|T )]−1Σv[E(ZZ>|T )]−1E(X(1)Z>|T )>

]
, and

F (11) =E

([
W̄

(1)
i −E(X

(1)
i Z>i |T )[E(ZiZ

>
i |T )]−1ζ

]
(εi − Ū>i β0) +

∑J
j=1(W

(1)
ij − W̄

(1)
i )⊗2β10

J(J − 1)

)⊗2

,

if Σu and Σv are unknown.

In the special case where the measurement errors are symmetrically distributed, expression F (11)

may be simplified to(
σ2 + β>0 Σuβ0

)
B(11) + σ2Σ(11)

u + E
([(

U(1)
)⊗2 − Σ(11)

u

]
β10

)⊗2
,

if Σu and Σv are known.

By Theorem 1, the ALASSO estimator estimates a zero coefficient exactly as zero with probability
that tends to 1, as well as being

√
n−consistent for the non-zero coefficients in large samples. Also,

the estimators of the non-zero coefficients have the same asymptotic variance-covariance matrix as
when the true model is known. The proof of Theorem 1 is contained in Appendix A. In Appendix
B, we will show that the SCAD estimator when applied to the VCPLE model is also an oracle
procedure.

Next, we develop methods of constructing standard errors of the ALASSO estimates. Let β̂
nz

and β̂
z

be the non-zero and zero components of β̂ (note that β̂
nz

and β̂
z

are not necessarily the
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same as β̂1 and β̂2 defined above). Now, if a coefficient is estimated as 0, the variance of the
estimate is also is 0 (Tibshirani, 1996; Fan and Li, 2001; Zou, 2006). So, the standard errors of all
elements in β̂

z
are zero. To construct standard errors for β̂

nz
, we follow Fan and Li’s (2001) and

Zou’s (2006) approaches of approximating the ALASSO penalty for a nonzero βj by the quadratic
function

|βj |
|β̂∗j |γ

≈ |βj0|
|β̂∗j |γ

+
β2
j − β2

j0

2|βj0(β̂∗j )γ |
, j = 1, ..., s.

Then by using arguments similar to Fan and Li (2001), the ALASSO estimates can be approximated
by computing

β̂
(k)

=

{
n∑
i=1

[
(Wi − Ŵi)

⊗2 − Σu

]
+ λnΣ(β̂

(k−1)
)

}−1 n∑
i=1

(Wi − Ŵi)(Yi − Ŷi)

iteratively, where β̂
(k)

is the estimate at the k-th iteration and β̂
(k−1)

is the estimate at the (k−1)-

th iteration, Σ(β) = diag (
I(β1 6=0)

|β1(β̂∗1 )γ |
, ...,

I(βd 6=0)

|βd(β̂∗d)γ |
), and I(·) is an indicator function. This leads to

the following estimated variance-covariance matrix of β̂
nz

:

ĈOV(β̂
nz

) =
1

n

[
B̂nz
n +

λn
n

Σ(β̂
nz

)
]−1

F̂nzn

[
B̂nz
n +

λn
n

Σ(β̂
nz

)
]−1

, (8)

where B̂nz
n = 1

n

∑n
i=1

[
(Wnz

i − Ŵnz
i )⊗2 − Σnz

u

]
, F̂nzn = 1

n

∑n
i=1

(
(Wnz

i − Ŵnz
i )
[
Yi − Ŷi − (Wnz

i −

Ŵnz
i )>β̂

nz]
+ Σnz

u β̂
nz
)⊗2

, and Wnz
i , Ŵnz

i and Σnz
u are sub-matrices defined analogously to Wi,

Ŵi and Σu respectively, and having dimensions conformable to β̂
nz

. If Σu and Σv are unknown,

Σu can be replaced by 1
J Σ̂u developed previously and Ŵi and Ŷi can be replaced by ˆ̄Wi and ˆ̄Yi

respectively.

3.2 A modified LARS algorithm

The LARS developed by Efron et al. (2004) is a variable selection algorithm. Under a linear model
setup, Efron et al. (2004) and Zou (2006) showed that with slight modifications, this algorithm can
be used to find the solution paths of the LASSO and ALASSO. Here, we modify the algorithm of
Zou (2006) to account for the special features of the VCPLE model.

The basic idea underlying our method is as follows. Write Ỹ = (Y1 − Ŷ1, ..., Yn − Ŷn)>, W̃ =

(W1 − Ŵ1, ...,Wn − Ŵn)> and A = W̃>W̃ − nΣu. Then by some matrix manipulations, the
objective function within (4) may be written as

L(β) ≡
∥∥∥Ỹ − W̃β∥∥∥2

− nβ>Σuβ + λn

d∑
j=1

|βj |
|β̂∗j |γ

=Ỹ>(I − W̃A−1W̃>)Ỹ +
∥∥∥A− 1

2 W̃>Ỹ −A
1
2β
∥∥∥2

+ λn

d∑
j=1

|βj |
|β̂∗j |γ

. (9)

Let y = A−
1
2 W̃>Ỹ and (x1/|β̂∗1 |γ , ...,xd/|β̂∗d |γ) = A

1
2 . Note that the first term on the r.h.s. of (9)

does not involve β. Thus, minimizing L(β) is equivalent to minimizing∥∥∥∥∥y −
d∑
j=1

xj
βj

|β̂∗j |γ

∥∥∥∥∥
2

+ λn

d∑
j=1

|βj |
|β̂∗j |γ

. (10)
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Denote β̃j =
βj

|β̂∗j |γ
j = 1, ..., d. Equation (10) then becomes

∥∥∥y − d∑
j=1

xj β̃j

∥∥∥2
+ λn

d∑
j=1

|β̃j |, (11)

which has the same form as the original LASSO penalty. This transformation allows the application
of the LARS algorithm to find the solution path with respect to β̃j , j = 1, ..., d. The steps of our
algorithm are summarized as follows.

Steps of the modified LARS algorithm:

Step 1. Compute A = W̃>W̃ − nΣu, and obtain y = A−
1
2 W̃>Ỹ and xj = ej |β̂∗j |γ for j = 1, ..., d,

where ej is the jth column of A
1
2 ; Σu in A may be replaced by 1

J Σ̂u if it is unknown, and Ŵi

and Ŷi may be replaced by ˆ̄Wi and ˆ̄Yi if Σv is unknown. .

Step 2. Apply the steps of LARS as per Efron et al. (2004) to obtain the solution path of

ˆ̃
β = argmin

β

{∥∥∥y − d∑
j=1

xjβj

∥∥∥2
+ λn

d∑
j=1

|βj |

}
.

Step 3. Obtain the final solution β̂j =
ˆ̃
βj |β̂∗j |γ , j = 1, ..., d.

It is worth pointing out that despite the transformation of the covariate matrix, the piecewise
linearity property (Osborne et al., 2000; Efron et al., 2004) of the solution with respect to λn, the
tuning parameter, still holds for our algorithm. Thus, after applying the transformation of Step
3 the entire solution path of the ALASSO corresponding to different λn values can be obtained.
Indeed, one characteristic of the ALASSO estimates is their dependence on the choice of the tuning
parameter. The fact that our algorithm yields the whole solution path, and not just the solution
based on a single λn value, is a particularly strong feature of our method. The optimal λn can
then be obtained by comparing the properties of the ALASSO estimates based on different tuning
parameters. This particular merit of the ALASSO is not shared by other methods like the SCAD
method which results in just one solution corresponding to the value of λn chosen in advance.

4 Simulation experiments and a real data example

4.1 Simulation experiments

In this subsection, we examine via simulations the small sample properties of the ALASSO estimator
computed by the modified LARS algorithm. Note that the estimation of model (1) also involves
the estimation of the non-parametric component even though our main interest centers on the
selection of variables in the parametric component. As discussed in Section 1, our method uses local
linear approximation as the basis for estimating the non-parametric component. In our numerical
analysis, the selection of the associated bandwidth parameter is based on cross-validation, as in Fan
and Huang (2005) and You and Chen (2006). We use the modified least-squares estimator β̂MLS

defined in (2) as the consistent estimator β̂
∗

included in the formula of the ALASSO estimator β̂,
as seen from (4) and (6).
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Consider the following data generating process:
Y = X>β + Z1 sin(2πT ) + Z2 sin(6πT ) + ε,

W = X + U,

ζ = Z + V,

where X= (X1, · · · , X8)>; Z1, Z2 and the covariates in X are each N(0, 3); ε is N(0, σ2); T is
Uniform(0, 1); U is N(0, σ2

uI8); V is N(0, σ2
uI2); and the correlation matrix of (X>, Z1, Z2)> is

given by {Cij}10×10 with Cij = 0.5|i−j|, i, j = 1, ..., 10. We consider σ = 1; σu = 0, 0.1, 0.3, 0.5
and 1; n = 100, 200; and the following scenarios of β:

S1: β = (3, 1.5, 0, 0, 2, 0, 0, 0)>,

S2: β = (0.85, 0.85, 0, 0, 0.85, 0, 0, 0)>,

S3: β = (3, 1.5, 0, 1, 2, 0, 1, 1)>,

S4: β = (3, 2, 0, 0, 0, 0.85, 0.5, 0)>

S5: β = (3,−2, 0, 0, 0, 0.85,−0.5, 0)>,

S6: β = (3,−2, 0, 0, 0, 0.85, 0.5, 0)>.

Scenarios S1 and S2 represent models with large and small non-zero coefficients respectively,
with the number of zero coefficients being five in both cases. Scenario S3 has only two non-
zero coefficients and is a non-sparse model. Scenario S4 contains both large and small non-zero
coefficients. Scenarios S5 and S6 are similar to Scenario 4 except for the signs of some of the
coefficients. We assess the performance of estimators on the basis of mean squared errors, defined
as MSE = E‖β̂ − β0‖2. For comparison with the ALASSO, we also evaluate the MSEs of the
SCAD, LASSO, ORACLE and full model estimators. The ORACLE estimator is a “hypothetical”
estimator computed using (2) based on the true model that contains none of the covariates with
zero coefficients. The ORACLE estimator is expected to perform best since it is based on the true
model which is unknown in practice, and thus serves as a benchmark for comparisons. We use
two-fold cross-validation to select γ for the ALASSO, and five-fold cross-validation to select the
tuning parameter λn in both the LASSO and ALASSO penalty functions. For the SCAD estimator,
a perturbed version of the local quadratic approximation algorithm (Hunter and Li, 2005; Liang
and Li, 2009) is used to optimize the target function. The tuning parameter is selected by the BIC
following Wang et al. (2007) and Liang and Li (2009). All of our simulations are based on 1000
replications.

Table 1 reports the MSEs of the various estimators. The following general patterns are apparent.
First, as expected, the hypothetical estimator ORACLE nearly always results in the best estimates.
Second, with few exceptions, the full model estimator is the least preferred estimator in MSE terms.
The full model estimator performs especially poorly when σu is large. This suggests that in the
context of the VCPLE model, including all the covariates indiscriminately is generally an inferior
strategy to variable selection, especially when the covariates are measured with large errors. Also,
when σu ≤ 0.3, the ALASSO always yields smaller MSE than the LASSO; when σu = 0.5, the
ALASSO is still the preferred estimator except under S4 with n = 100, but when σu = 1.0, the
ALASSO is inferior to the LASSO in the majority of cases. Across all cases considered the ALASSO
generally have an edge over the SCAD estimator. Exceptions occur, for example, under scenario
S1, where the model contains some large non-zero coefficients, and the SCAD is found to have
an advantage over the ALASSO in seven out of ten cases. Similar to the ALASSO, the SCAD
estimator is dominated by the LASSO when σu = 1.0, but unlike the ALASSO which generally has
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smaller MSE than the LASSO for other values of σu, the SCAD can deliver worse estimates than
the LASSO frequently when σu = 0.5, and occasionally when σu = 0.3. Overall speaking, there is a
tendency for the performance of the ALASSO and the SCAD relative to the LASSO to deteriorate
as the measurement errors grow. We think this may be attributable to the large variations in the
estimator β̂

∗
(which is included in the ALASSO estimator) when W and ζ are poor surrogates for

X and Z.
It is worth noting that under scenario S3 where the true model is close to the full model, the

(relative) performance of the full model estimator improves as expected, and can be superior to
that of the LASSO, although the ALASSO is still the more favored estimator, second only to the
ORACLE most of the time. Interestingly, under scenario S3 and σu = 1.0, the LASSO yields
smaller MSE than the ORACLE. Generally speaking, the inclusion of negative alongside positive
coefficients (as in Scenarios S5 and S6) does not appear to have any significant bearing on the
results.

Table 2 presents the average number of “correct” and “incorrect” zero estimates for the ALASSO,
SCAD and LASSO based on 1000 replications under the six scenarios; a zero estimate is considered
to be “correct” if the actual coefficient is zero, and “incorrect” otherwise. For the β specifications
we have chosen, the target values of correct zeros are 5, 5, 2, 4, 4 and 4 for scenarios S1, S2, S3,
S4, S5 and S6 respectively, and 0 is the target value of incorrect zeros for all the six scenarios. We
observe from the table that in all cases the ALASSO and the SCAD provide more accurate number
of correct zeros than does the LASSO. For the majority of cases, the SCAD is to be preferred to the
ALASSO in terms of producing the number of correct zeros. Interestingly, for a fixed sample size,
for all scenarios except S3, as σu increases, the ALASSO generally improves in terms of its ability
to correctly produce zero estimates for zero coefficients, but it also incorrectly estimates non-zero
coefficients as zeroes more frequently than desired. This behaviour is also observed for the LASSO
under all six scenarios including S3, which corresponds to a non-sparse model with relatively large
parameters. This may be taken as an indication that these strategies tend to select sparser models
as measurement errors grow. The reason for this rather curious finding is probably to do with the
fact that cross-validation was adopted for selecting the tuning parameter λn; due to the presence of
measurement errors, cross-validation favors a tuning parameter that results in more zero coefficients
in the model in order to have lower model prediction errors. It is also found that under scenarios
S4, S5 and S6, the LASSO less frequently estimates non-zero coefficients incorrectly as zero than
the ALASSO or SCAD do, but its ability of generating correct zero estimates is inferior to that of
its other two competitors.

Overall speaking, neither the SCAD nor the ALASSO dominates each other - the ALASSO
generally results in more accurate estimators, while the SCAD is generally a better strategy for
choosing the right variables in the model. On the other hand, probably due to its lack of the oracle
property, the LASSO is frequently the worst strategy in terms of both performance yardsticks. We
have also found that the ALASSO is computationally more efficient than the SCAD - the computing
time required for producing the simulation results for the ALASSO is only about a quarter of the
time for producing the same results for SCAD. This is encouraging particularly in view of the
fact that the ALASSO uses cross-validation which is computationally intensive to select the tuning
parameter.

We have also evaluated the accuracy of formula (8) for calculating standard errors of the
ALASSO estimates of the non-zero coefficients. Table 3 reports the results based on 1000 sim-
ulation replications for scenario S1. The results for the other scenarios are similar and they are
omitted for brevity. In Table 3, ŜE is the average of the standard errors calculated using for-
mula (8), whereas SE is the standard error of the estimates from the replicated samples. Although
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ŜE always underestimates SE, the two values are nevertheless very close for small σu’s, especially
when n=200. However, as σu increases, the accuracy of ŜE deteriorates, ceteris paribus. As ex-
pected, other things being equal, more accurate values of ŜE are obtained when n is large than
when it is small. It also appears that the variability of ε has little effect on the accuracy of ŜE.

4.2 A real data example

This subsection considers an application of the proposed method to a subset of data from the
Continuing Survey of Food Intakes by Individuals (CSFII) conducted by the U.S. Department of
Agriculture. The same data set has been used in a number of health and nutritional studies, e.g.,
(Thompson et al., 1992). This data set contains dietary intake and related information of n = 1827
individuals between the age of 25 and 50. Using the available data, we specify the following model
for calories intake, denoted by y:

y =

18∑
i=1

βixi + f0(t) + zf1(t) + ε,

where x1 is the body mass index, x2, x3, x4, x5 and x6 are intake levels of fat, protein, carbohydrates,
Vitamin A and Vitamin C respectively, x7 - x13 and x14 - x18 are two groups of indicator variables
representing various Hispanic and other race categories respectively, z is income, and t is age. We
use a nonparametric function to address the age effect as the scatter plot of y and t reveals that
the relationship between these two variables is nonlinear; we also postulate that the effect of age
changes with income. In addition, x5 and x6 are measured with errors, and they are replaced by
the mean values of the observed surrogates.

We adopt the same methods of choosing the bandwidth, tuning parameters and γ as per the
simulation exercises of Section 4.1. Again, β̂MLS is used as the consistent estimator included in the
ALASSO. The solution paths of the ALASSO based on the modified LARS algorithm are presented
in Figure 1, where the various paths are labeled by the letters corresponding to the different variables
in Table 4, and the vertical dotted line corresponds to the tuning parameter λn = 0.1604235 selected
by five-fold cross validation. The coefficient estimates based on this tuning parameter are given
in Table 4. For comparison purposes, we also provide the estimates obtained from the full model.
The results show that the intake levels of fat, protein and carbohydrates are the only covariates
selected by ALASSO, and as expected, calories intake has a positive relationship with each of these
three covariates. Figure 2 gives the plot for the residuals ri = yi −W>

i β̂ − f̂0(ti) − zif̂1(ti); with
the two curves being the estimated curves of f0(·) and f1(·).

5 Discussion

The findings in this paper clearly demonstrate that the ALASSO has considerable appeal as a unified
estimation and variable selection method for the VCPLE model. This is also the first time that the
LARS algorithm is applied to models subject to measurement errors in the covariates. One potential
difficulty, however, with the modified least-squares method which we rely upon for correcting the
measurement errors is that while this method has desirable large sample properties, it may not
possess similar properties in finite samples; for example, it is unsure if 1

n

∑n
i=1(Wi−Ŵi)

⊗2−Σu is
a positive definite matrix when the sample size is small. For future research it would be worthwhile
to apply other methods of measurement errors correction (e.g., the orthogonal regression method
developed in Liang and Li (2009)) to the context of investigation considered here.
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While we have used cross-validation which is computationally intensive to select the tuning
parameter in the ALASSO, Wang et al. (2007) showed that in the case of the SCAD, if the BIC is
used to select the tuning parameter, the resulting estimator has superior asymptotic properties to
the estimator based on the tuning parameter chosen by cross-validation. It remains to explore the
use of the BIC for selecting the tuning parameter in the context of the ALASSO. It is envisaged
that some modifications to the BIC may be required to account for the features of the ALASSO.
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A Proofs of theorems

Our theoretical results depend on the following technical assumptions which are common in the
semi-parametric and measurement errors literatures. Fan and Huang (2005) and You and Chen
(2006) also made the same assumptions in their studies.

1. The random variable T has bounded support Ω; in addition, the density f of T is Lipschitz
continuous and bounded away from 0 on its support.

2. For each T ∈ Ω, E(ZZ>|T ) is non-singular, and E(ZZ>|T ), E(XX>|T ) and E(ZX>|T ) are
Lipschitz continuous.

3. There exists some t > 2 s.t. E‖X‖2t < ∞, E‖Z‖2t < ∞, E‖U‖2t < ∞, E‖V‖2t < ∞, and
E‖ε‖2t <∞; as well, there exists some ρ < 2− t−1 s.t. nh2ρ−1 →∞.

4. αj(·), j = 1, ..., r, are twice continuously differentiable in T ∈ Ω.

5. K(·) is a symmetric density with compact support.

6. The bandwidth h satisfies the conditions nh8 → 0 and nh2/[log(n)]2 →∞.

Assumptions 1, 2 and 4 are required for the smoothness of the models of interest, while Assumption 5
is required for obtaining a closed form of the estimator of the unknown function vector. Assumption
3 places conditions on the moments of covariates and the rate of convergence of the bandwidth to
guarantee uniform consistency of the kernel estimators. It was first used by Mack and Silverman
(1982), and subsequently adopted in a number of other semi-parametric studies then frequently
used in semi-parametric modeling (e.g. Fan and Huang, 2005; You and Chen, 2006; Li and Liang,
2008). Assumption 3 is generally satisfied in practice. For instance, suppose t = 3, meaning that

all the random variables have finite sixth moment, and let ρ = 4
3 and h = O(n−

1
5 ). Then since

nh2ρ−1 = O(n
2
3 )→∞, all conditions of Assumption 3 are thus satisfied. The same bandwidth also

satisfies Assumption 6 for guaranteeing the optimal convergence rate in the estimation of the linear
component of the model.

We shall first give the proof of normality followed by that of sparsity, as the proof of the latter
requires results of the former. The proofs need the following lemma:

12



Lemma 1. Provided that Assumptions 1-6 hold, we have following result:

1

n

n∑
i=1

(Wi − Ŵi)
⊗2 P−→ B + Σu,

where B = E(XX>)−E
(
ΦTΓ−1

T Φ>T
)
+E

(
ΦTΓ−1

T ΣvΓ
−1
T Φ>T

)
, ΦT = E(XZ>|T ), and ΓT = E(ZZ>|T ).

Proof of Lemma 1. From Lemma 7.1 of Fan and Huang (2005), we can show that

(Dζ
t )
>ΩtD

ζ
t − φt =

(
1 0
0 µ2

)
⊗ nf(t)Γt[1 +OP (cn)], and

(Dζ
t )
>ΩtW = (1, 0)> ⊗ nf(t)Φt[1 +OP (cn)]

hold uniformly in t ∈ Ω, where µ2 =
∫
t2K(t)dt and cn = h2 + log(1/h)/(nh). Combining these

two equations, we have, uniformly in Ti,

Ŵi = E(XiZ
>
i |Ti)[E(ZiZ

>
i |Ti)]−1ζi[1 +OP (cn)]. (12)

So,

1

n

n∑
i=1

(Wi − Ŵi)
⊗2 =

1

n

n∑
i=1

[
Wi −E(XiZ

>
i |Ti)[E(ZiZ

>
i |Ti)]−1ζi

]⊗2
[1 +OP (cn)].

The required result then follows from the law of large numbers.

Proof of Theorem 1: asymptotic normality. For brevity, we only provide the proof for the
Σu known case. The corresponding proof when Σu is unknown can be similarly obtained. Let
β = β0 + 1√

n
u, and write Q(u) = L(β0 + 1√

n
u). Clearly, minimizing L(β) is equivalent to

minimizing Q(u). This also implies an equivalence between the ALASSO estimator β̂ and the
estimator û that minimizes Q(u). Hence, for our purpose it suffices to consider the minimization
of Q(u) with respect to u. By direct calculations, we obtain

Q(u)−Q(0)

=u>
[ 1

n

n∑
i=1

(Wi − Ŵi)
⊗2 − Σu

]
u

− 2
1√
n

u>
n∑
i=1

{[
Yi − Ŷi − (Wi − Ŵi)

>β0

]
(Wi − Ŵi) + Σuβ0

}
+ λn

d∑
j=1

|βj0 + uj/
√
n| − |βj0|

|β̂∗j |γ

≡J1 − J2 + J3.

To simplify J1, note from Lemma 1 that the quantity between u> and u in J1 goes to B in
probability. To simplify J2, following the idea of You and Chen (2006), we can write

Yi − Ŷi − (Wi − Ŵi)
>β0

=X>i β0 + Z>i α(Ti) + εi − (ζ>i , 0)
[
(Dζ

ti
)>ΩtiD

ζ
ti
− φti

]−1
(Dζ

ti
)>ΩtiY

−X>i β0 −U>i β0 + (ζ>i , 0)
[
(Dζ

ti
)>ΩtiD

ζ
ti
− φti

]−1
(Dζ

ti
)>ΩtiXβ0 + Û>i β0

=εi −U>i β0 − ε̂i + Û>i β0 + Z>i α(Ti)− (ζ>i , 0)
[
(Dζ

ti
)>ΩtiD

ζ
ti
− φti

]−1
(Dζ

ti
)>ΩtiM,
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where M = (Z>1 α(T1), ...,Z>nα(Tn))>, ε̂i = (ζ>i , 0)
[
(Dζ

ti
)>ΩtiD

ζ
ti
− φti

]−1
(Dζ

ti
)>Ωtiε and ε =

(ε1, ..., εn)>. Hence,

∆n ≡
n∑
i=1

{[
Yi − Ŷi − (Wi − Ŵi)

>β0

]
(Wi − Ŵi) + Σuβ0

}
=

n∑
i=1

[
(Wi − Ŵi)(εi −U>i β0) + Σuβ0

]
+

n∑
i=1

(Wi − Ŵi)(Û
>
i β0 − ε̂i)

+
n∑
i=1

(Wi − Ŵi)

{
Z>i α(Ti)− (ζ>i , 0)

[
(Dζ

ti
)>ΩtiD

ζ
ti
− φti

]−1
(Dζ

ti
)>ΩtiM

}

=
n∑
i=1

{[
Wi −E(XiZ

>
i |Ti)[E(ZiZ

>
i |Ti)]−1ζi

]
(εi −U>i β0) + Σuβ0

}
(13)

+

n∑
i=1

[
E(XiZ

>
i |Ti)[E(ZiZ

>
i |Ti)]−1ζi − Ŵi

]
(εi −U>i β0) (14)

+
n∑
i=1

(Wi − Ŵi)(Û
>
i β0 − ε̂i) (15)

+
n∑
i=1

(Wi − Ŵi)

{
Z>i α(Ti)− (ζ>i , 0)

[
(Dζ

ti
)>ΩtiD

ζ
ti
− φti

]−1
(Dζ

ti
)>ΩtiM

}
. (16)

Note that the quantity in (13) is a sum of i.i.d. variables, each having mean 0 and variance

F = E
([

W −E(XZ>|T )[E(ZZ>|T )]−1ζ
]
(ε−U>β0) + Σuβ0

)⊗2
. Substituting equation (12) into

(14), we can see that (14) is equal to

n∑
i=1

[
E(XiZ

>
i |Ti)[E(ZiZ

>
i |Ti)]−1ζi

]
(εi −U>i β0)OP (cn).

From the Central Limit Theorem, we know that the quantity in (14) is of order OP (
√
n)OP (cn)

= oP (
√
n). Similarly, we can show that (15) and (16) are also of order oP (

√
n). So, by Slutsky’s

Theorem and the Central Limit Theorem, J2
d→ 2u>G, where G ∼ N(0, F ).

Last, let us consider J3. For βj0 6= 0 (j = 1, ..., s), noting that β̂
∗

is consistent, then for an
arbitrarily small δ s.t. 0 < δ < |βj0|, with probability tending to one,

λn
|βj0 + uj/

√
n| − |βj0|

|β̂∗j |γ
< λn

|βj0 + uj/
√
n| − |βj0|

(|βj0| − δ)γ
≤ λn√

n

|uj |
(|βj0| − δ)γ

→ 0.

Now, for βj0 = 0 (j = s + 1, ..., d), we have λn
|βj0+uj/

√
n|−|βj0|

|β̂∗j |γ
= λnd

γ
n√
n

|uj |
|dnβ̂∗j |γ

. This last quantity

goes to ∞ for uj 6= 0 because β̂∗j is dn-consistent and λnd
γ
n/
√
n→∞. Therefore, J3

p→ 0 if uj = 0

for all j = s + 1, ..., d, otherwise J3
p→ ∞. Combining J1, J2 and J3, it can be shown that the

limiting distribution of Q(u) is{
(u(1))>B(11)u(1) − 2(u(1))>G(1), if uj = 0, j = s+ 1, ..., d,

∞ otherwise,
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where u(1) is the vector that contains the first s components of u, u(2) contains the other components
and G(1) ∼ N(0, F (11)). Note that this limit is convex. Hence from the epi-convergence results of
Geyer (1994) and Knight and Fu (2000), the estimators of u(1) and u(2) must satisfy

û(1) d−→ (B(11))−1G(1), and

û(2) d−→ 0.

The proof on the part of asymptotic normality is completed by recognizing that û(1) =
√
n(β̂1−β10)

and G(1) ∼ N(0, F (11)).

Proof of Theorem 1: Sparsity. To prove the sparsity part, it suffices to show that with prob-
ability tending to 1, for any βj = O(1/

√
n), j = s+ 1, ...d,

∂L(β̆)

∂βj
> 0 when βj > 0, and

∂L(β̆)

∂βj
< 0 when βj < 0, (17)

where β̆ = (β̂
>
1 ,β

>
2 )>. By direct calculations, we obtain

1√
n

∂L(β̆)

∂βj
= −

2
∑n

i=1

{[
Yi − Ŷi − (Wi − Ŵi)

>β̆
]
(Wi − Ŵi) + Σuβ̆

}
j√

n
+
λnsgn(βj)√
n|β̂∗j |γ

= −2(∆n)j√
n

+
{ 2

n

n∑
i=1

[
(Wi − Ŵi)

⊗2 − Σu

]
×
√
n(β̆ − β0)

}
j

+
λnsgn(βj)√
n|β̂∗j |γ

. (18)

From the previous proof, we know that the first and second terms in (18) are both of order Op(1).

The third term can be written as λnd
γ
n√
n

sgn(βj)

|dnβ̂∗j |γ
p→ sgn(βj)∞. This means the sign of the derivative

is determined solely by the third term. However, the sign of this term is the same as that of βj ’s.

Thus, ∂L(β̆)
∂βj

and βj have the same sign with probability tending to one.

B Proof of the oracle property of the SCAD estimator

The SCAD estimator β̂S is the minimizer of

LS(β) =
1

2

n∑
i=1

{
Yi − Ŷi − [Wi − Ŵi]

>β
}2
− n

2
β>Σuβ + n

d∑
j=1

pλnj (|βj |), (19)

where pλ(·) is the SCAD penalty function. The derivative of pλ(·) is

p′λ(β) = λ

{
I(β ≤ λ) +

(aλ− β)+

(a− 1)λ
I(β > λ)

}
(20)

for a = 3.7 and β > 0, and p′λ(0) = 0. Now, define

an = max
j
{p′λnj (|βj0|) : βj0 6= 0},

bn = max
j
{p′′λnj (|βj0|) : βj0 6= 0},

b =
(
p′λn1(|β10|)sgn(β10), ..., p′λns(|βs0|)sgn(βs0)

)>
, and

Σλ = diag{p′′λn1(|β10|), ..., p′′λns(|βs0|)}.
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Theorem 2. Suppose that an = O( 1√
n

), bn → 0 and Assumptions 1-6 in Appendix A hold. Then

we have:

(i) With probability approaching one, there exists a local minimizer β̂S of LS(β) which is
√
n-

consistent.

If we further suppose lim infn→∞ lim infβ→0+
p′λnj

(β)

λnj
> 0, j = 1, ..., s, then we obtain the following

results:

(ii) Sparsity, i.e., β̂S2 = 0 with probability approaching one, where β̂S2 is the SCAD estimator of
β20.

(iii) Asymptotic normality, i.e.,

√
n
(
B(11) + Σλ

){
β̂S1 − β10 +

(
B(11) + Σλ

)−1
b

}
d−→ N

(
0, F (11)

)
. (21)

Proof of part (i). Following the idea of Fan and Huang (2005) and Liang and Li (2009), it suffices
to show for any ε > 0, there exists a large constant C such that

Pr

{
inf
‖u‖=C

LS(β0 +
u√
n

) > LS(β0)

}
≥ 1− ε. (22)

From the proof of Theorem 1,

LS(β0 +
u√
n

)− LS(β0)

=
1

2
J1 −

1

2
J2 + n

d∑
j=1

{
pλnj (|βj0 +

uj√
n
|)− pλnj (|βj0|)

}

≥ 1

2
J1 −

1

2
J2 + n

s∑
j=1

{
pλnj (|βj0 +

uj√
n
|)− pλnj (|βj0|)

}
(23)

From Fan and Li (2001), the last term of (23) is dominated by J1 when an = O( 1√
n

), bn → 0 and

C is sufficiently large. Also, for sufficiently large C, J1 dominates J2. This proves (22).

Proof of part (ii). We need to show the result in (17) holds if L(·) is replaced by LS(·). To

do this, we only need to replace the last term in (18) by
√
nλnj

p′λnj
(|βj |)

λnj
sgn(βj), which goes to

sgn(βj)∞ under our assumptions.

Proof of part (iii). From the results in parts (i) and (ii), with probability approaching one, there
exists a

√
n-consistent local minimizer β̂S1 of L

(
(β>1 , 0

>)>
)

such that

∂LS
(

(β̂
>
S1, 0

>)>
)

∂βj
= 0 for j = 1, ..., s.

By direct calculations and the Taylor series expansion, for j = 1, ...s,

∂LS
(

(β̂
>
S1, 0

>)>
)

∂βj
=− (∆n)j +

{
n∑
i=1

[
(Wi − Ŵi)

⊗2 − Σu

] (
(β̂
>
S1, 0

>)> − β0

)}
j

+ n
{
p′λnj (|βj0|)sgn(βj0) + p′′λnj (|βj0|)[1 + oP (1)](β̂S1 − β10)j

}
.

16



Note that ∆n/
√
n

d−→ G ∼ N(0, F ). The result then follows from Slutsky’s theorem and the
Central Limit Theorem.

a a a a a a a a a a a a a a a a a a a

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Step

E
st

im
at

ed
 c

oe
ffi

ci
en

ts

b b

b

b b b b b b b b b b b b b b b b

c c c

c c c c c c c c c c c c c c c c

d

d

d
d d d d d d d d d d d d d d d d

e e e e

e e e e e e e e e e e e e e e

f f f f f f f f f f f f f f f f f f fg g g g g g g g g g g g g g g g g g gh h h h h h h h h h h h h h h h h h h
i i i i i i i i i i i i i i i i i i ij j j j j j j j j j j j j j j j j j j
k k k k k k k

k k k k k k k k k k k k
l l l l l

l
l l l l l l l l l l l l l

m m m m m m m m m m m m m m m m m m mn n n n n n n n n n n n n n n n n n n
o o o o o o o o o o o o o o o o o o op p p p p p p p p p p p p p p p p p pq q q q q q q q q q q q q q q q q q q
r r r r r r r r r r r r r r r r r r r

Figure 1: Solution paths of linear coefficients for CSFII data
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Table 1: MSEs of estimators

Scenario n = 100 n = 200
σu = 0.0 0.1 0.3 0.5 1.0 0.0 0.1 0.3 0.5 1.0

S1 ALASSO 0.065 0.071 0.100 0.171 1.450 0.024 0.025 0.036 0.066 0.460
SCAD 0.050 0.054 0.087 0.194 1.822 0.017 0.019 0.029 0.061 1.096
LASSO 0.086 0.091 0.127 0.206 0.861 0.033 0.035 0.050 0.092 0.502

ORACLE 0.040 0.043 0.066 0.121 0.610 0.015 0.016 0.025 0.046 0.211
full model 0.141 0.152 0.237 0.464 9.691 0.054 0.058 0.093 0.181 1.171

S2 ALASSO 0.073 0.075 0.085 0.106 0.419 0.025 0.025 0.027 0.033 0.107
SCAD 0.077 0.079 0.097 0.137 0.403 0.022 0.023 0.031 0.051 0.195
LASSO 0.086 0.087 0.096 0.114 0.249 0.033 0.034 0.036 0.043 0.108

ORACLE 0.040 0.041 0.047 0.060 0.165 0.015 0.015 0.017 0.021 0.053
full model 0.141 0.144 0.170 0.233 2.155 0.054 0.055 0.063 0.084 0.288

S3 ALASSO 0.109 0.119 0.195 0.404 3.959 0.040 0.044 0.073 0.150 1.114
SCAD 0.114 0.124 0.219 0.526 3.016 0.039 0.042 0.073 0.168 1.611
LASSO 0.165 0.177 0.277 0.457 1.920 0.063 0.067 0.104 0.199 0.902

ORACLE 0.089 0.096 0.156 0.305 2.091 0.034 0.037 0.062 0.122 0.656
full model 0.141 0.153 0.252 0.513 12.473 0.054 0.059 0.100 0.203 1.338

S4 ALASSO 0.096 0.103 0.161 0.287 1.539 0.031 0.034 0.053 0.102 0.569
SCAD 0.098 0.105 0.155 0.265 1.523 0.030 0.033 0.058 0.110 0.923
LASSO 0.098 0.105 0.148 0.240 0.911 0.037 0.039 0.058 0.102 0.490

ORACLE 0.058 0.061 0.091 0.162 0.828 0.022 0.023 0.036 0.064 0.284
full model 0.141 0.151 0.231 0.442 5.630 0.054 0.058 0.089 0.167 0.958

S5 ALASSO 0.106 0.114 0.189 0.459 3.057 0.034 0.036 0.063 0.212 2.191
SCAD 0.104 0.115 0.213 0.722 3.980 0.031 0.034 0.066 0.466 2.993
LASSO 0.128 0.137 0.207 0.433 1.992 0.049 0.052 0.090 0.244 1.814

ORACLE 0.058 0.062 0.094 0.179 1.243 0.022 0.023 0.035 0.068 0.417
full model 0.141 0.151 0.235 0.470 12.145 0.054 0.057 0.090 0.176 1.361

S6 ALASSO 0.098 0.104 0.161 0.300 2.555 0.032 0.034 0.054 0.146 1.367
SCAD 0.097 0.104 0.168 0.444 3.586 0.030 0.033 0.062 0.310 2.413
LASSO 0.115 0.123 0.180 0.337 1.535 0.044 0.047 0.079 0.204 1.270

ORACLE 0.058 0.062 0.095 0.180 1.220 0.022 0.023 0.036 0.069 0.415
full model 0.141 0.152 0.237 0.477 11.445 0.054 0.057 0.091 0.179 1.365
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Table 2: Average numbers of correct (C) and incorrect (I) zeros

Scenario σu = 0 σu = 0.1 σu = 0.3 σu = 0.5 σu = 1
C I C I C I C I C I

n = 100
S1 ALASSO 4.330 0 4.312 0 4.436 0 4.610 0 4.739 0.210

SCAD 4.419 0 4.408 0 4.382 0 4.412 0 4.514 0.185
LASSO 2.513 0 2.591 0 3.054 0 3.646 0 4.366 0.016

S2 ALASSO 4.078 0 4.112 0 4.156 0 4.270 0.001 4.532 0.216
SCAD 4.112 0 4.160 0 4.247 0 4.344 0.001 4.393 0.140
LASSO 2.512 0 2.576 0 2.800 0 3.195 0 3.962 0.007

S3 ALASSO 1.671 0 1.664 0 1.653 0 1.627 0.008 1.723 1.192
SCAD 1.799 0 1.791 0 1.755 0 1.693 0.014 1.555 1.023
LASSO 1.136 0.004 1.141 0.004 1.225 0.010 1.318 0.009 1.452 0.330

S4 ALASSO 3.053 0.013 3.051 0.019 3.077 0.059 3.273 0.207 3.718 1.151
SCAD 3.329 0.009 3.355 0.012 3.358 0.041 3.408 0.129 3.559 1.027
LASSO 1.906 0 1.921 0 2.242 0.003 2.622 0.037 3.393 0.504

S5 ALASSO 2.882 0.017 2.850 0.022 3.088 0.104 3.583 0.556 3.954 1.845
SCAD 3.153 0.020 3.132 0.024 3.190 0.140 3.674 0.790 3.792 1.740
LASSO 1.416 0.003 1.444 0.005 1.903 0.021 2.603 0.206 3.579 1.158

S6 ALASSO 3.014 0.017 2.996 0.018 3.236 0.069 3.626 0.266 3.889 1.156
SCAD 3.313 0.011 3.329 0.010 3.460 0.051 3.667 0.169 3.645 0.899
LASSO 1.525 0 1.615 0 2.145 0.003 2.816 0.038 3.434 0.334

n = 200
S1 ALASSO 4.441 0 4.482 0 4.602 0 4.799 0 4.904 0.020

SCAD 4.629 0 4.615 0 4.625 0 4.600 0 4.741 0.019
LASSO 2.552 0 2.653 0 3.327 0 4.029 0 4.632 0

S2 ALASSO 4.369 0 4.383 0 4.445 0 4.624 0 4.838 0.004
SCAD 4.510 0 4.526 0 4.621 0 4.696 0 4.619 0.002
LASSO 2.548 0 2.593 0 2.926 0 3.464 0 4.311 0

S3 ALASSO 1.750 0 1.750 0 1.765 0 1.778 0 1.725 0.268
SCAD 1.901 0 1.878 0 1.853 0 1.810 0 1.652 0.368
LASSO 1.115 0 1.144 0 1.250 0 1.386 0 1.508 0.056

S4 ALASSO 3.403 0 3.396 0 3.369 0.002 3.423 0.036 3.812 0.653
SCAD 3.496 0 3.516 0 3.539 0 3.591 0.017 3.756 0.645
LASSO 1.952 0 1.987 0 2.466 0 2.929 0.001 3.527 0.251

S5 ALASSO 3.327 0 3.322 0 3.396 0.007 3.709 0.204 3.998 1.769
SCAD 3.457 0 3.474 0.001 3.451 0.008 3.723 0.484 3.910 1.461
LASSO 1.472 0 1.568 0 2.215 0 2.948 0.052 3.834 1.090

S6 ALASSO 3.375 0 3.372 0 3.543 0 3.834 0.083 3.974 0.844
SCAD 3.469 0 3.477 0 3.586 0 3.885 0.054 3.832 0.405
LASSO 1.618 0 1.756 0 2.480 0 3.239 0.001 3.758 0.171
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Table 3: Calculated versus simulated SEs

Scenario β̂1 β̂2 β̂3

ŜE SE ŜE SE ŜE SE

S1
σu = 0.1 n = 100 0.111 0.129 0.113 0.135 0.100 0.116

n = 200 0.075 0.076 0.076 0.083 0.067 0.071

σu = 0.3 n = 100 0.136 0.161 0.137 0.167 0.120 0.142
n = 200 0.093 0.096 0.093 0.100 0.082 0.087

σu = 0.5 n = 100 0.181 0.222 0.178 0.222 0.156 0.189
n = 200 0.125 0.133 0.122 0.130 0.107 0.118

Table 4: Results of real data example

Variable ALASSO Full Model
Estimate SE Estimate SE

x1 Body mass index 0 0 -0.0080 0.0043
x2 Fat 0.4521 0.0079 0.4421 0.0090
x3 Protein 0.1702 0.0054 0.1908 0.0125
x4 Carbohydrates 0.4919 0.0046 0.4992 0.0054
x5 Vitamin A 0 0 -0.0512 0.0467
x6 Vitamin C 0 0 -0.0019 0.0172
x7 Hispanic category 1 0 0 -0.0178 0.0271
x8 Hispanic category 2 0 0 0.0272 0.0564
x9 Hispanic category 3 0 0 -0.0081 0.0255
x10 Hispanic category 4 0 0 -0.0304 0.0249
x11 Hispanic category 5 0 0 0.0347 0.0491
x12 Hispanic category 6 0 0 0.0547 0.0538
x13 Hispanic category 7 0 0 -0.0104 0.0212
x14 Race category 1 0 0 -0.0428 0.0273
x15 Race category 2 0 0 -0.0092 0.0204
x16 Race category 3 0 0 0.0143 0.0300
x17 Race category 4 0 0 -0.0290 0.0236
x18 Race category 5 0 0 -0.0241 0.0345
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Figure 2: Residual plot: the solid line and the dashed line are estimated curve for f0(·) and f1(·)
respectively
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